
AN01007 (1.0.2)

Application Note: AN01007

Random numbers on the XS1-L1
The XMOS XS1-L8 multicore microcontroller has provisions that facilitate the construction of random
numbers. This application note gives a brief introduction to those methods.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006857

AN01007 (1.0.2)

1 Overview

The best method to generate pseudo-random numbers is to use a standard library function such as
random(3) and srandom(3). However, if this is too costly in terms of CPU or memory overhead, the CRC
primitive can be used instead. When used with a primitive polynomial, a pseudo-random sequence can be
generated by repeatedly executing:

crc32(seed, -1, polynomial);

Repeatedly executing the CRC using the polynomial 0xEB31D82E generates a sequence:

0x842FF083
0x65EB6512
0x93666947
0x98AB23FE
0x2D516F58
0x6BF973E7
0x664F23F0
...

Since crc32 is a single machine instruction that executes in a single core cycle, it adds only minimal
overhead.

The CRC instruction generates a pseudo-random sequence. The length of the pseudo-random sequence
depends on the polynomial chosen. A polynomial of degree p limits the sequence to at most 2p. To get
close to that sequence, one should choose a primitive polynomial1. Note that polynomials with only few
terms (e.g. 0x80001001) have a tendency to create runs of one and zero bits; more information can be
found in Jain2.

1http://en.wikipedia.org/wiki/Cyclic_redundancy_check
2Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons Inc, New York, 1991.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006857

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

AN01007 (1.0.2)

2 Real random numbers

If real random numbers are required, there are a number sources of randomness that can be exploited in
the XS1-L8: the timer and four ring oscillators. If an external source of events is available (for example, a
USB PHY or an ethernet PHY) then any signals from this can be used too.

2.1 Ring oscillators

The four ring oscillators run independent from each other and are independent from the 100 MHz clock.
Measuring these timers over, for example, a 50µs period will produce a value between 20000 and 25000,
depending on temperature, voltage, and silicon. Between subsequent readings over a fixed time period
there will be an uncertainty due to short term variations in voltage and temperature. This is a good source
of random data, providing around one bit of random data over a 50µs period on an otherwise quiescent
xCORE. On an active tile (with multiple running cores), there will be more random noise, and random data
will be available in a shorter time period.

The six statements that control and read the ring oscillators are:

setps(0x060b, 0xF); // Enable ring oscillators
setps(0x060b, 0x0); // Disable ring oscillators
r0 = getps(0x070b); // read out oscillator 0
r1 = getps(0x080b); // read out oscillator 1
r2 = getps(0x090b); // read out oscillator 2
r3 = getps(0x0a0b); // read out oscillator 3

The getps and setps functions are defined in the xs1.h include file.

An example code sequence that uses the above functions and the 100 MHz timer to generate a four-bit
random number is given below. The ring oscillator values are read twice, and the last bit of the difference
of each ring oscillator is used to generate a total of four random bits in the last line:

timer t;
unsigned time, r;
unsigned short r0, r1, r2, r3;
unsigned short r0a, r1a, r2a, r3a;
r0a = getps(0x070b);
r1a = getps(0x080b);
r2a = getps(0x090b);
r3a = getps(0x0a0b);
setps(0x060b, 0xF); // enable RO
t :> time;
t when timerafter(time+5000) :> int _;
setps(0x060b, 0); // disable RO
r0 = getps(0x070b);
r1 = getps(0x080b);
r2 = getps(0x090b);
r3 = getps(0x0a0b);
r = ((r0-r0a)&0x1)<<3|((r1-r1a)&0x1)<<2|

((r2-r2a)&0x1)<<1|((r3-r3a)&0x1);

There is no requirement to wait for precisely 50µs—computations can be performed during this time.

Measuring the ring oscillator against the timer is sufficient for generating unique identifiers or seeding
random timeouts. For cryptographic purposes, you are advised to characterize the randomness on the
test platform under the desired conditions. Small on-chip variations in voltage and temperature will
guarantee a random bit to be generated if measured over long enough a period.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006857

AN01007 (1.0.2)

2.2 External events

External events provide a useful source of randomness, as measured against either the 100 MHz timer
or the ring oscillator. For example, absolute time at which a USB enumeration occurs is not completely
predictable since the USB SOF clock and the 100 MHz timer are asynchronous. If a device is USB powered,
then the 100 MHz timer will have a similar value on every enumeration, but the last few bits of the timer
will be random.

Similarly, the time between SOF packets, USB transactions, or Ethernet packets can be measured using
either the 100 MHz timer or the ring oscillator. Given that the ring oscillators run at a higher frequency,
and that they are not locked to a crystal, they are likely to provide more random data than the 100 MHz
timer.

CAUTION: The 100 MHz timer is locked to the instruction stream, so sampling the 100 MHz timer in
the boot sequence will provide a non-random value. The value of the 100 MHz timer only provides
randomness when measured against an external signal.

2.3 Measuring over long time intervals

When measuring the difference in timers over longer time intervals, the number of random bits only
increases slowly, and hence random bits are generated more efficiently when sampling the timer X times
at 50µs intervals, then to sample it once after a 50Xµs interval. Sampling X times at 50µs intervals will
give you approximately X random bits per ring oscillator. Sampling once after a 50Xµs interval will give
you approximately

√
X random bits per ring oscillator: sampling over a long time interval effectively uses

random bits to create a binomial distribution which has little variance.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006857

AN01007 (1.0.2)

3 Collating multiple random bits

The random bits can be combined by using bit shift operations, by using one of the built-in random
number primitives such as srandom(3C), or by using the previously mentioned CRC instruction. As an
example, if you want to construct a random number while enumerating a USB device, you can use the
following two functions:

#include <xs1.h>

unsigned int seed;

/* Call init() to initialize, eg at start of enumeration */
init() {

timer t;
int time;
t :> seed;
setps(0x060b, 0xF); // Switch on all ring oscillators

}

/* Called on every SOF and every packet */
collectRandom() {

unsigned short r0, r1, r2, r3;
setps(0x060b, 0); // Switch off RO
r0 = getps(0x070b);
r1 = getps(0x080b);
r2 = getps(0x090b);
r3 = getps(0x0a0b);
setps(0x060b, 0xF); // Switch RO back on
crc32(seed, r0, 0xEB31D82E);
crc32(seed, r1, 0xEB31D82E);
crc32(seed, r2, 0xEB31D82E);
crc32(seed, r3, 0xEB31D82E);

}

In this example, the polynomial used for computing the CRC of an ethernet packet, is used as a method of
cheaply collating the random data, hence the code will collect random data into a 32-bit word. Executed
over a long enough period of time, it will collate 32 bits of random data.

At any time, the seed can be used to start a pseudo-random sequence by using the CRC instruction:

crc32(seed, -1, 0xEB31D82E);

This just generates the pseudo-random sequence, and will not merge in additional true random data.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006857

AN01007 (1.0.2)

4 Conclusions

This note describes low-overhead methods for generating random and pseudo-random numbers. The
standard random functions srandom() and random() can be used to generate pseudo-random numbers
with well-known and tested properties. If the footprint of those functions is too large, then the crc32()
primitive can be used as a low-overhead alternative.

Real random can be created by either measuring the on-chip ring oscillators against the built-in timer, or
by measuring the timings of external events against either the ring oscillators or the built-in timer. The
pseudo-random generators above can be used to collate random bits obtained from an oscillator into a
long random state.

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006857

	Random numbers on the XS1-L1
	Overview
	Real random numbers
	Ring oscillators
	External events
	Measuring over long time intervals

	Collating multiple random bits
	Conclusions

