
AN00219 (1.0.3)

Application Note: AN00219

Low Resolution Delay and Sum

Required tools and libraries

The code in this application note is known to work on version 14.2.4 of the xTIMEcomposer tools suite,
it may work on other versions.

The application depends on the following libraries:

• lib_mic_array (>=3.0.0)
• lib_i2c (>=4.0.0)
• lib_mic_array_board_support (>=2.1.0)
• lib_i2s (>=2.2.0)

Required hardware

The example code provided with the application has been implemented and tested on the Microphone
Array Ref Design v1.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this application note
are linked to in the references appendix.

• The lib_mic_array user guide should be thoroughly read and understood.
• For a description of XMOS related terms found in this document please see the XMOS Glossary1.

1http://www.xmos.com/published/glossary

Copyright 2017 XMOS Ltd. 1 www.xmos.com
XM010100

http://www.xmos.com/published/glossary


AN00219 (1.0.3)

1 Overview

1.1 Introduction

This demo application shows a simple Delay and Sum (DAS) bemformer. It shows the setup of the I2S for
audio output via the DAC and very simple processing of multi-channel audio frames to produce a single
channel output based on a simple single steering direction.

1.2 Block diagram

i2s_master()

Audio DAC

i2c_master_single_port()

i2s_handler()

button_and_led_server()

hires_DAS_fixed()

mic_array_pdm_rx()

mic_array_decimate_to_pcm_4ch() mic_array_decimate_to_pcm_4ch()

PDM Microphone

Figure 1: Application block diagram

Copyright 2017 XMOS Ltd. 2 www.xmos.com
XM010100



AN00219 (1.0.3)

2 How to use lib_mic_array

2.1 The Makefile

To start using the microphone array library, you need to add lib_mic_array to you Makefile:

USED_MODULES = .. lib_mic_array ...

This demo also uses the logging library (lib_logging) for the debug_printf function. This is a faster,
but more limited version of the C-Standard Library printf function. So the Makefile also includes:

USED_MODULES = .. lib_logging ..

The logging library is configurable at compile-time allowing calls to debug_printf() to be easily enabled
or disabled. For the prints to be enabled it is necessary to add the following to the compile flags:

XCC_FLAGS = .. -DDEBUG_PRINT_ENABLE=1 ..

2.2 Includes

This application requires the system headers that defines XMOS xCORE specific defines for declaring and
initialising hardware:

#include <platform.h>
#include <xs1.h>
#include <string.h>
#include <xclib.h>

The microphone array library functions are defined in lib_mic_array.h. This header must be
included in your code to use the library. The support functions for the board are defined in
mic_array_board_support.h and the logging functions are provided by debug_print.h.

#include "mic_array.h"
#include "mic_array_board_support.h"
#include "debug_print.h"

Also required is support for I2S and I2C through the headers:

#include "i2c.h"
#include "i2s.h"

2.3 Allocating hardware resources

A PDM microphone requires a clock and a data pin. For eight PDM microphones a single clock can be
shared between all microphones and the data can be sampled on a single 8 bit port. On an xCORE the
pins are controlled by ports. The application therefore declares one 1-bit port and one 8-bit port:

To generate the PDM clock a 24.576MHz master clock is divided by 8 using a clock block. These two
hardware resources are declared with:

on tile[0]: in port p_mclk = XS1_PORT_1F;
on tile[0]: clock pdmclk = XS1_CLKBLK_1;

and are configured with:

Copyright 2017 XMOS Ltd. 3 www.xmos.com
XM010100



AN00219 (1.0.3)

configure_clock_src_divide(pdmclk, p_mclk, MASTER_TO_PDM_CLOCK_DIVIDER);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

The result begin a 3.072MHz PDM clock is used for clocking the microphone data into the xCORE. Addi-
tionally, the LEDs and buttons are declared by

And the I2S is declared with:

out buffered port:32 p_i2s_dout[1] = on tile[1]: {XS1_PORT_1P};
in port p_mclk_in1 = on tile[1]: XS1_PORT_1O;
out buffered port:32 p_bclk = on tile[1]: XS1_PORT_1M;
out buffered port:32 p_lrclk = on tile[1]: XS1_PORT_1N;
port p_i2c = on tile[1]: XS1_PORT_4E; // Bit 0: SCLK, Bit 1: SDA
port p_rst_shared = on tile[1]: XS1_PORT_4F; // Bit 0: DAC_RST_N, Bit 1: ETH_RST_N
clock mclk = on tile[1]: XS1_CLKBLK_3;
clock bclk = on tile[1]: XS1_CLKBLK_4;

Copyright 2017 XMOS Ltd. 4 www.xmos.com
XM010100



AN00219 (1.0.3)

3 Demo Hardware Setup

To run the demo, connect a USB cable to power the Microphone Array Ref Design v1 and plug the xTAG to
the board and connect the xTAG USB cable to your development machine. You will also need to connect
headphones to the audio jack.

Figure 2: Hardware setup

Copyright 2017 XMOS Ltd. 5 www.xmos.com
XM010100



AN00219 (1.0.3)

4 Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio it can be executed on the Microphone Array Ref Design v1.

Once built there will be a bin/ directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

4.1 Launching from the command line

From the command line you use the xrun tool to download and run the code on the xCORE device:

xrun --xscope bin/app_lores_DAS_fixed.xe

Once this command has executed the application will be running on the Microphone Array Ref Design v1.

4.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin/ directory, right click and go to Run Configurations. Double click on xCORE
application to create a new run configuration, enable the xSCOPE I/O mode in the dialog box and then
select Run.

Once this command has executed the application will be running on the Microphone Array Ref Design v1.

4.3 Running the application

Once the application is started using either of the above methods there will be the output of the micro-
phones through the headphones.

Buttons A and D rotate the direction of the beam which is indicated by the LEDs. Buttons B and C decrease
and increase the gain on the output signal respectively.

Copyright 2017 XMOS Ltd. 6 www.xmos.com
XM010100



AN00219 (1.0.3)

5 Task setup

The PDM microphones interface task and the decimators have to be connected together and to the ap-
plication (lores_DAS_fixed()). There needs to be one mic_array_decimate_to_pcm_4ch() task per
four channels that need processing. The PDM interface task, mic_array_pdm_rx() can process eight
channels so only one is needed for this application. The PDM interface needs to be connected to the
decimators via two streaming channels. Finally, the decimators have to be connected to the application.

streaming chan c_4x_pdm_mic[DECIMATOR_COUNT];
streaming chan c_ds_output[DECIMATOR_COUNT];

interface mabs_led_button_if lb[1];

par {
mabs_button_and_led_server(lb, 1, leds, p_buttons);
mic_array_pdm_rx(p_pdm_mics, c_4x_pdm_mic[0], c_4x_pdm_mic[1]);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic[0], c_ds_output[0], MIC_ARRAY_NO_INTERNAL_CHANS);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic[1], c_ds_output[1], MIC_ARRAY_NO_INTERNAL_CHANS);
lores_DAS_fixed(c_ds_output, lb[0], c_audio);
par(int i=0;i<3;i++)while(1);

}
}

}

Note that the decimators have to be on the same tile as the application due to shared frame memory.

Copyright 2017 XMOS Ltd. 7 www.xmos.com
XM010100



AN00219 (1.0.3)

6 Frame memory

For each decimator an block of memory must be allocated for storing FIR data. The size of the data block
must be:

Number of channels for that decimator * THIRD_STAGE_COEFS_PER_STAGE * Decimation factor * sizeof(int)

bytes. The data must also be double word aligned. For example:

int data[8][THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR];

Note that on the xCORE-200 all global arrays are guaranteed to be double-word aligned.

Copyright 2017 XMOS Ltd. 8 www.xmos.com
XM010100



AN00219 (1.0.3)

7 Configuration

Configuration of the microphone array for the example is achieved through:

mic_array_decimator_conf_common_t dcc = {0, 1, 0, 0, DECIMATION_FACTOR,
g_third_stage_div_2_fir, 0, FIR_COMPENSATOR_DIV_2,
DECIMATOR_NO_FRAME_OVERLAP, FRAME_BUFFER_COUNT};

mic_array_decimator_config_t dc[2] = {
{&dcc, data[0], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4},
{&dcc, data[4], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4}

};

mic_array_decimator_configure(c_ds_output, DECIMATOR_COUNT, dc);

All configuration options are described in the Microphone array library guide. Once configured then the
decimators require initialization via:

mic_array_init_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);

The decimators will start presenting samples in the form of frames that can be accessed with:

mic_array_frame_time_domain * current =
mic_array_get_next_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);

The return value of mic_array_get_next_time_domain_frame() is a pointer to the frame that the
application is allowed to access. The current frame contains the frame data in the data member. data
is a 2D array with the first index denoting the channel number and the second index denoting the frame
index. The frame index used 0 for the oldest samples and increasing indices for newer samples.

Copyright 2017 XMOS Ltd. 9 www.xmos.com
XM010100



AN00219 (1.0.3)

8 Delay taps

The delays on the microphones are calculated in a spread sheet included at the root folder of the applica-
tion, mic_array_das_beamformer_calcs.xls. The beam is focused to a point of one meter away at an
angle of thirty degrees from the plane of the microphone array in the direction indicated by the LEDs.

Copyright 2017 XMOS Ltd. 10 www.xmos.com
XM010100



AN00219 (1.0.3)

9 References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS Microphone Array Library

http://www.xmos.com/support/libraries/lib_mic_array

XMOS I2C Library

http://www.xmos.com/support/libraries/lib_i2c

XMOS I2S Library

http://www.xmos.com/support/libraries/lib_i2s

Copyright 2017 XMOS Ltd. 11 www.xmos.com
XM010100

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/support/libraries/lib_mic_array
http://www.xmos.com/support/libraries/lib_i2c
http://www.xmos.com/support/libraries/lib_i2s


AN00219 (1.0.3)

10 Full source code listing

10.1 Source code for app_lores_DAS_fixed.xc

// Copyright (c) 2015-2016, XMOS Ltd, All rights reserved
#include <platform.h>
#include <xs1.h>
#include <string.h>
#include <xclib.h>

#include "mic_array.h"
#include "mic_array_board_support.h"
#include "debug_print.h"

#include "i2c.h"
#include "i2s.h"

//If the decimation factor is changed the the coefs array of decimator_config must also be changed.
#define DECIMATION_FACTOR 2 //Corresponds to a 48kHz output sample rate
#define DECIMATOR_COUNT 2 //8 channels requires 2 decimators
#define FRAME_BUFFER_COUNT 2 //The minimum of 2 will suffice for this example

on tile[0]:mabs_led_ports_t leds = MIC_BOARD_SUPPORT_LED_PORTS;
on tile[0]:in port p_buttons = MIC_BOARD_SUPPORT_BUTTON_PORTS;

on tile[0]: out port p_pdm_clk = XS1_PORT_1E;
on tile[0]: in buffered port:32 p_pdm_mics = XS1_PORT_8B;
on tile[0]: in port p_mclk = XS1_PORT_1F;
on tile[0]: clock pdmclk = XS1_CLKBLK_1;

out buffered port:32 p_i2s_dout[1] = on tile[1]: {XS1_PORT_1P};
in port p_mclk_in1 = on tile[1]: XS1_PORT_1O;
out buffered port:32 p_bclk = on tile[1]: XS1_PORT_1M;
out buffered port:32 p_lrclk = on tile[1]: XS1_PORT_1N;
port p_i2c = on tile[1]: XS1_PORT_4E; // Bit 0: SCLK, Bit 1: SDA
port p_rst_shared = on tile[1]: XS1_PORT_4F; // Bit 0: DAC_RST_N, Bit 1: ETH_RST_N
clock mclk = on tile[1]: XS1_CLKBLK_3;
clock bclk = on tile[1]: XS1_CLKBLK_4;

// Based on the spreadsheet mic_array_das_beamformer_calcs.xls,
// which can be found in the root directory of this app
static const one_meter_thirty_degrees[6] = {0, 3, 8, 11, 8, 3};

static void set_dir(client interface mabs_led_button_if lb,
unsigned dir, unsigned delay[]) {

for(unsigned i=0;i<MIC_BOARD_SUPPORT_LED_COUNT;i++)
lb.set_led_brightness(i, 0);

delay[0] = 43;
for(unsigned i=0;i<6;i++)

delay[i+1] = one_meter_thirty_degrees[(i - dir + 3 +6)%6];

switch(dir){
case 0:

lb.set_led_brightness(0, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(1, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

case 1:
lb.set_led_brightness(2, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(3, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

case 2:
lb.set_led_brightness(4, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(5, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

case 3:
lb.set_led_brightness(6, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(7, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

case 4:
lb.set_led_brightness(8, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(9, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

Copyright 2017 XMOS Ltd. 12 www.xmos.com
XM010100



AN00219 (1.0.3)

case 5:
lb.set_led_brightness(10, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
lb.set_led_brightness(11, MIC_BOARD_SUPPORT_MAX_LED_BRIGHTNESS);
break;

}
}

int data[8][THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR];

void lores_DAS_fixed(streaming chanend c_ds_output[DECIMATOR_COUNT],
client interface mabs_led_button_if lb, chanend c_audio) {

unsafe{
unsigned buffer;
memset(data, 0, 8*THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR*sizeof(int));

mic_array_frame_time_domain audio[FRAME_BUFFER_COUNT];

#define MAX_DELAY 16
unsigned gain = (1<<16);
unsigned delay[7];
int delay_buffer[MAX_DELAY][7];
memset(delay_buffer, 0, sizeof(int)*MAX_DELAY*7);
unsigned delay_head = 0;
unsigned dir = 0;
set_dir(lb, dir, delay);

mic_array_decimator_conf_common_t dcc = {0, 1, 0, 0, DECIMATION_FACTOR,
g_third_stage_div_2_fir, 0, FIR_COMPENSATOR_DIV_2,
DECIMATOR_NO_FRAME_OVERLAP, FRAME_BUFFER_COUNT};

mic_array_decimator_config_t dc[2] = {
{&dcc, data[0], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4},
{&dcc, data[4], {INT_MAX, INT_MAX, INT_MAX, INT_MAX}, 4}

};

mic_array_decimator_configure(c_ds_output, DECIMATOR_COUNT, dc);

mic_array_init_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer, audio, dc);

while(1){

mic_array_frame_time_domain * current =
mic_array_get_next_time_domain_frame(c_ds_output, DECIMATOR_COUNT, buffer,
↪→ audio, dc);

// Copy the current sample to the delay buffer
for(unsigned i=0;i<7;i++)

delay_buffer[delay_head][i] = current->data[i][0];

// light the LED for the current direction
int t;
select {

case lb.button_event():{
unsigned button;
mabs_button_state_t pressed;
lb.get_button_event(button, pressed);
if(pressed == BUTTON_PRESSED){

switch(button){
case 0:

dir--;
if(dir == -1)

dir = 5;
set_dir(lb, dir, delay);
debug_printf("dir %d\n", dir+1);
for(unsigned i=0;i<7;i++)

debug_printf("delay[%d] = %d\n", i, delay[i]);
debug_printf("\n");
break;

case 1:
gain = ((gain<<3) - gain)>>3;
debug_printf("gain: %d\n", gain);
break;

Copyright 2017 XMOS Ltd. 13 www.xmos.com
XM010100



AN00219 (1.0.3)

case 2:
if (gain < 1)

gain = 1;
int new_gain = ((gain<<1) + gain)>>1;
if (new_gain - gain == 0)

new_gain++;
gain = new_gain;
debug_printf("gain: %d\n", gain);
break;

case 3:
dir++;
if(dir == 6)

dir = 0;
set_dir(lb, dir, delay);
debug_printf("dir %d\n", dir+1);
for(unsigned i=0;i<7;i++)

debug_printf("delay[%d] = %d\n", i, delay[i]);
debug_printf("\n");
break;

}
}
break;

}
default:break;

}
int output = 0;
for(unsigned i=0;i<7;i++)

output += (delay_buffer[(delay_head - delay[i])%MAX_DELAY][i]>>3);

output = ((int64_t)output * (int64_t)gain)>>16;

// Update the center LED with a volume indicator
unsigned value = output >> 20;
unsigned magnitude = (value * value) >> 8;
lb.set_led_brightness(12, magnitude);

c_audio <: output;
c_audio <: output;
delay_head++;
delay_head%=MAX_DELAY;

}
}

}

#define MASTER_TO_PDM_CLOCK_DIVIDER 4
#define MASTER_CLOCK_FREQUENCY 24576000
#define PDM_CLOCK_FREQUENCY (MASTER_CLOCK_FREQUENCY/(2*MASTER_TO_PDM_CLOCK_DIVIDER))
#define OUTPUT_SAMPLE_RATE (PDM_CLOCK_FREQUENCY/(32*DECIMATION_FACTOR))

[[distributable]]
void i2s_handler(server i2s_callback_if i2s,

client i2c_master_if i2c, chanend c_audio) {
p_rst_shared <: 0xF;

mabs_init_pll(i2c, ETH_MIC_ARRAY);
i2c_regop_res_t res;
int i = 0x4A;
uint8_t data = i2c.read_reg(i, 1, res);

data = i2c.read_reg(i, 0x02, res);
data |= 1;
res = i2c.write_reg(i, 0x02, data); // Power down

// Setting MCLKDIV2 high if using 24.576MHz.
data = i2c.read_reg(i, 0x03, res);
data |= 1;
res = i2c.write_reg(i, 0x03, data);

data = 0b01110000;
res = i2c.write_reg(i, 0x10, data);

data = i2c.read_reg(i, 0x02, res);
data &= ~1;

Copyright 2017 XMOS Ltd. 14 www.xmos.com
XM010100



AN00219 (1.0.3)

res = i2c.write_reg(i, 0x02, data); // Power up

#define CS2100_I2C_DEVICE_ADDR (0x9c>>1)
res = i2c.write_reg(CS2100_I2C_DEVICE_ADDR, 0x3, 0); // Reset the PLL to use the aux out

while (1) {
select {
case i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_LEFT_JUSTIFIED;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY/OUTPUT_SAMPLE_RATE)/64;
break;

case i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART;
break;

case i2s.receive(size_t index, int32_t sample):
break;

case i2s.send(size_t index) -> int32_t sample:
c_audio:> sample;
break;

}
}

}

int main() {

i2s_callback_if i_i2s;
i2c_master_if i_i2c[1];
chan c_audio;
par{

on tile[1]: {
configure_clock_src(mclk, p_mclk_in1);
start_clock(mclk);
i2s_master(i_i2s, p_i2s_dout, 1, null, 0, p_bclk, p_lrclk, bclk, mclk);

}

on tile[1]: [[distribute]]i2c_master_single_port(i_i2c, 1, p_i2c, 100, 0, 1, 0);
on tile[1]: [[distribute]]i2s_handler(i_i2s, i_i2c[0], c_audio);

on tile[0]: {
configure_clock_src_divide(pdmclk, p_mclk, MASTER_TO_PDM_CLOCK_DIVIDER);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

streaming chan c_4x_pdm_mic[DECIMATOR_COUNT];
streaming chan c_ds_output[DECIMATOR_COUNT];

interface mabs_led_button_if lb[1];

par {
mabs_button_and_led_server(lb, 1, leds, p_buttons);
mic_array_pdm_rx(p_pdm_mics, c_4x_pdm_mic[0], c_4x_pdm_mic[1]);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic[0], c_ds_output[0], MIC_ARRAY_NO_INTERNAL_CHANS);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic[1], c_ds_output[1], MIC_ARRAY_NO_INTERNAL_CHANS);
lores_DAS_fixed(c_ds_output, lb[0], c_audio);
par(int i=0;i<3;i++)while(1);

}
}

}
return 0;

}

Copyright 2017 XMOS Ltd. 15 www.xmos.com
XM010100



AN00219 (1.0.3)

Copyright © 2017, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2017 XMOS Ltd. 16 www.xmos.com
XM010100


	Low Resolution Delay and Sum
	Overview
	Introduction
	Block diagram

	How to use lib_mic_array
	The Makefile
	Includes
	Allocating hardware resources

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the application

	Task setup
	Frame memory
	Configuration
	Delay taps
	References
	Full source code listing
	Source code for app_lores_DAS_fixed.xc


