®
l MOS ANO00192 (1.0.0)

Application Note: AN00192
Getting Started with Timing Analysis in
XTIMEcomposer Studio

The XMOS architecture has predictable timing, which allows many interfaces to be performed in software.
This application note shows how to get started with timing analysis using the xTIMEcomposer studio. It
shows you how to add timing constraints to the parts of your program that must run within strict time
limits, enabling correct real-time behavior to be validated for your target device at compile-time.

To get started, simply double click on Getting Started with timing analysis in xTIMEcomposer Studio in the
Examples view, and click finish in the resulting import dialog. The sample project will then be imported
and you will be switched to the XMOS edit perspective. The getting started pdf is then accessable from
the doc/pdf folder at the top level of the imported project.

Required tools and libraries
e XTIMEcomposer Tools - Version 14.0
Required hardware

None

Prerequisites

None

Copyright 2015 XMOS Ltd. 1 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

1 Overview

1.1 Introduction

Our comprehensive development tools suite provides everything you need to write, debug and test ap-
plications based on xCORE multicore microcontrollers. The full xTIMEcomposer tool set includes unique
capabilities such as the xSCOPE logic analyzer and XMOS Timing Analyzer, that let you get the best per-
formance from the deterministic xCORE architecture. With our collection of libraries and examples, it’s
easy to create and deliver xCORE applications.

XTIMEcomposer features:

Eclipse graphical environment + plus command line tools
LLVM C, C++ and xC compilers

xDEBUG: GDB multicore debugger

xSIM: Cycle accurate simulator

xSCOPE: In-circuit instrumentation + real-time logic analyzer
XTA: Static timing analysis

Multiple platform support: Windows, OS X, Linux
Enterprise/Community editions: Tools support for everyone

The XMOS architecture has predictable timing, which allows many interfaces to be performed in software.
This application note shows how to get started with timing analysis using the xTIMEcomposer studio. It
shows you how to add timing constraints to the parts of your program that must run within strict time
limits, enabling correct real-time behavior to be validated for your target device at compile-time.

Copyright 2015 XMOS Ltd. 2 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

2 Examine the application code

Ensure you are in the edit perspective by clicking on the Edit perspective button on the left hand side
toolbar. Open the file src/main.xc in the editor.

This application implements a UART interface. The source code contains a transmitter thread and receiver
thread running concurrently. The UART is configured to operate at a data rate of 115200 bits/s, and the
transmitter outputs bytes of data as shown in the diagram below.

8.68ps 8.68us 8.68us 8.68pus 8.68us 8.68us 8.68us 8.68ps 8.68us 8.68ys

7x0 | [Bo) e e2) 3] Ba) 5| 6| 87

start stop
bit bit

The quiescent state of the wire is high.

A byte is sent by first driving a start bit (0), followed by the eight data bits and finally a stop bit (1). A
rate of 115200 bits/s means that each bit must be driven for a period of 1/115200 = 8.68us.

The transmitter source code has the following structure:

™ ->
TX-BYTE ->
Output start bit (Endpoint A)
Loop-8
Output data bit (Endpoint B)
Output stop bit (Endpoint C)

Wait for bit period (Endpoint D)

When compiled and run on a target device, the time taken to execute the code between the following
pairs of endpoints must always be less than 8.68us:

Route 1: From Endpoint A to Endpoint B (from the start bit to data bit)

Route 2: From Endpoint B to Endpoint B (between consecutive data bits)

Route 3: From Endpoint B to Endpoint C (from the last data bit to the stop bit)
Route 4: From Endpoint C to Endpoint D (holding the stop bit for the bit period)
Route 5: Between successive calls to the function txByte

If the constraint on the fifth route is not met, individual bytes will be transmitted correctly, but the UART
will operate at a lower data rate.

More generally, a route consists of the set of all paths through which control can flow between two
endpoints. Each route has a worst-case time, in which branches always follow the path that takes the
longest time to execute. This time must satisfy the constraint for the program to be guaranteed correct
under all possible executions.

Copyright 2015 XMOS Ltd. 3 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

3 Validate timing constraints interactively

3.1 Build the application

To build the application, select ‘Project -> Build Project’ in the menu, or click the Build button &| on the
toolbar. The output from the compilation process will be visible on the console.

3.2 Load the binary into the timing analysis perspective

In the project explorer view, expand the Binaries node and double click on the binary (*.xe) file. This
will load the binary into the analysis tools and switch perspective to the most recently used tool. For the
purposes of this tutorial, ensure that the Analyze Timing button in the toolbar is selected.

Alternatively, click on the Analyze button in the left-hand toolbar, then ensure that the Analyze Timing
button in the toolbar is selected. The Load binary into XTA toolbar button can then be used to load the
required binary.

3.3 Validate Route 1

To check that the first route meets its timing constraint, follow these steps:

1. In the editor, locate the first output statement (Endpoint A), right-click on the endpoint marker in
the left margin to bring up a menu, and choose Set from endpoint. A green dot ™ is displayed in
the top-right quarter of the marker.

2. Locate the second output statement (Endpoint B), right-click on its endpoint marker and choose Set
to endpoint. A red dot is By displayed in the bottom-right quarter of the marker.

3. Click the Analyze Endpoints button @] in the main toolbar. The timing analyzer identifies a single
path between Endpoints A and B, which it times. The analyzed route is added to the Routes list in the
top panel of the Routes view. The bottom panel of the Routes view shows a textual representation

of the structure and timing for the selected route. The Structure panel in the Visualizations view

shows a graphical visualization of the structure and timing for the selected route. In the Routes list,

a red question mark icon ? is displayed next to the route name, indicating that no timing constraint

is set. .

& Routes 23\\;_(’_7 Project Explorer\] = 0)

?, endpoints: ftiming/src/ftiming.xc:54 to #

Vv i3 block :70.0ns(x1)/70.0ns (x 1)
* 3 instruction 0x1013c: out (r2r) res([rl

4. Right-click on the route in the Routes list to bring up a menu and choose Set timing requirement
to open the Requirement box.

5. Enter a value of 8.68, select the unit us and click OK. The red question mark is replaced by a green
tick ¢, indicating that the route meets the specified timing constraint.

6. Hover over the route to view information such as the number of paths and worst-case timing.

3.4 Validate Route 2

To check that the second route meets its timing constraint, follow these steps:

1. Right-click on the marker for Endpoint B to bring up a menu, and choose Set from endpoint. The
warning triangle generated by the previous Analyze endpoints action obscures the endpoint marker,
but you can still set a new endpoint by right-clicking on the marker. This statement is now set as
both the from and to endpoints .

Copyright 2015 XMOS Ltd. 4 WWW.Xmos.com
XM008356

4

®
MOS ANO00192 (1.0.0)

2.

3.5

Click Analyze Endpoints [@]. The timing analyzer identifies the path around the loop. However, in
this case, as optimisations are enabled, the compiler has unrolled the loop. For this reason, 8 routes
are created, each corresponding to an iteration of the loop. However, as the final route corresponds
to the path that attempts to exit the loop and then later re-enter it, this can be ignored. Simply right
click on this route and select delete.

. In the Routes view, select all the routes and set a timing constraint of 8.68us on each. The status of

the routes are updated, indicating that the routes now all meet thier timing constraints.

Validate Routes 3 and 4

Use the techniques introduced in the previous two sections to check that Route 3 (Endpoint B to Endpoint
C) and Route 4 (Endpoint C to Endpoint D) meet their timing constraints. Once completed, a total of four
routes should be displayed in the Routes list.

3.6

Validate Route 5

To check that route 5 meets its timing constraint (between consecutive byte transmissions), follow these
steps:

1.
2.

Set the endpoints for a route from Endpoint D to A.
In the function txBytes, right-click on the endpoint marker following the loop and choose Add to
exclusion list. The timing analyzer will not attempt to analyze paths outside of the loop.

. Click Analyze Endpoints Q| in the main toolbar to create the route.
. In the Routes view, set a timing constraint of 8.68us. The status of the route is updated, indicating

that the route meets its timing constraint. You should have a total of five routes in the Routes list.

Copyright 2015 XMOS Ltd. 5 WWW.Xmos.com

XM008356

®
l MOS ANO00192 (1.0.0)

4 Validate the timing constraints during compilation

Having checked that all of the UART timing constraints are met, you can create a script that performs the
same checks every time the program is compiled.

4.1 Generate a timing script

To create a timing script and update the source file with the pragmas required to make the script portable,
follow these steps:

1. Click Generate Script button)| in the main toolbar. The Script Options dialog opens.

2. Enter a name for the script (with a .xta extension) in the Script location text box.

3. To change the names of the pragmas added to the source file, click the values in the Pragma name
fields and edit.

4. Click OK to save the script and update your source code. xTIMEcomposer Studio adds the script to
your project and opens it in the editor.

|4 Routes ([Project Explorer £3 O\ il
‘f~ A~ d

=}

v [Dc UART-loopback-example
> 1;;& Binaries
P B Includes
b (2 src
P (= Release
b2 XC-1.xn
s UART-loopback.xta

The next time you compile your program, the timing constraints are checked and any failures are reported
as compilation errors.

Copyright 2015 XMOS Ltd. 6 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

5 References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide
XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

Copyright 2015 XMOS Ltd. 7 WWW.Xmos.com
XM008356

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide

®
l MOS ANO00192 (1.0.0)

6 Full source code listing

6.1 Source code for main.xc

// Copyright (c) 2015, XMOS Ltd, All rights reserved

#include <xsl.h>
#include <print.h>
#include <platform.h>

#define NUM_BYTES 3
#define BIT_RATE 115200
#define BIT_TIME XS1_TIMER_HZ / BIT_RATE

void txBytes(out port txd, char bytes[], int numBytes);
void txByte(out port txd, int byte);

void rxBytes(in port rxd, char bytes[], int numBytes);
char rxByte(in port rxd);

out port txd = XS1_PORT_1H;
in port rxd = XS1_PORT_1I;

int main() {
char transmit[] = { 0b00110101, 0b10101100, Ob11110001 };
char receive[]l] = { 0, 0, 0 };

// Drive port high (inactive) to begin
txd <: 1;

par {
txBytes(txd, transmit, NUM_BYTES);
rxBytes(rxd, receive, NUM_BYTES);
}

return 0;

3

void txBytes(out port txd, char bytes[], int numBytes) {
for (int i = 0; i < numBytes; i += 1) {
txByte(txd, bytes[il);
}

printstrin("txDone"); // Transmit_Done

3

void txByte(out port txd, int byte) {
unsigned time;

// Output start bit
txd <: 0 e time; // Endpoint A

// Output data bits
for (int i =0; i < 8; i++) {

time += BIT_TIME;

txd e time <: >> byte; // Endpoint B
}

// Output stop bit

Copyright 2015 XMOS Ltd. 8 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

time += BIT_TIME;
txd e time <: 1; // Endpoint C

// Hold stop bit

time += BIT_TIME;

txd e time <: 1; // Endpoint D
}

void rxBytes(in port rxd, char bytes[], int numBytes) {
for (int i = 0; i < numBytes; i += 1) {
bytes[i] = rxByte(rxd);
}

printstrin("rxDone");
for (int i = 0; i < NUM_BYTES; i++) {
printhexIn(bytes[i]);
}
}

char rxByte(in port rxd) {
unsigned byte, time;

// Wait for start bit
rxd when pinseq (0) :> void e time;
time += BIT_TIME / 2;

// Input data bits

for (Gint i = 0; i < 8; i++) {
time += BIT_TIME;
rxd e time :> >> byte;

}

// Input stop bit
time += BIT_TIME;
rxd e time :> void;

return (byte >> 24);

Copyright 2015 XMOS Ltd. 9 WWW.Xmos.com
XM008356

®
l MOS ANO00192 (1.0.0)

XMOS

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 10 WWW.Xmos.com
XM008356

	Getting Started with Timing Analysis in xTIMEcomposer Studio
	Overview
	Introduction

	Examine the application code
	Validate timing constraints interactively
	Build the application
	Load the binary into the timing analysis perspective
	Validate Route 1
	Validate Route 2
	Validate Routes 3 and 4
	Validate Route 5

	Validate the timing constraints during compilation
	Generate a timing script

	References
	Full source code listing
	Source code for main.xc

