
AN00185 (1.0.1)

Application Note: AN00185

Boot an xCORE-200 device from QuadSPI
flash memory
This applcation note shows how to program an application into QuadSPI flash memory and therefore boot
the application from QuadSPI flash memory on an XMOS xCORE-200 device.

Required tools and libraries

• xTIMEcomposer Tools Suite version 14.0 or later is required.

Required hardware

This application note is designed to run on an XMOS xCORE-200 series device.

The example code provided with the application has been implemented and tested on the xCORE-200
explorerKIT core module board but there is no dependancy on this board and it can be modified to run
on any development board which uses an xCORE-200 series device.

Prerequisites

• This document assumes familiarity with the XMOS xCORE-200 architecture, the XMOS tool chain and
the xC language. Documentation related to these aspects which are not specific to this application
note are linked to in the References appendix.

• This document assumes familiarity with QuadSPI flash memory, the xCORE quadflash library and the
XMOS tool XFLASH.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.
• The XMOS tools manual contains information regarding the use of xCORE devices2.

1http://www.xmos.com/published/glossary
2http://www.xmos.com/published/xtimecomposer-user-guide

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM007865

http://www.xmos.com/published/glossary
http://www.xmos.com/published/xtimecomposer-user-guide

AN00185 (1.0.1)

1 Introduction

xCORE-200 explorerKIT contains everything you need to start developing applications on the powerful
xCORE-200 multicore microcontroller products from XMOS. It’s easy to use and provides lots of advanced
features on a small, low cost platform.

The xCORE-200 explorerKIT features our XE216-512 xCORE-200 multicore microcontroller. This device
has sixteen 32bit logical cores that deliver up to 2000MIPS completely deterministically. The combina-
tion of 100/1000 Mbps Ethernet, high speed USB and 53 high performance GPIO make the xCORE-200
explorerKIT an ideal platform for functions ranging from robotics and motion control to networking and
digital audio.

1.1 Block diagram

Figure 1: Block diagram of XE216-512 device on xCORE-200 explorerKIT

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM007865

AN00185 (1.0.1)

1.2 QuadSPI flash memory

The xCORE-200 explorerKIT features a QuadSPI flash device providing a 4-bit multiplexed I/O serial in-
terface to boost performance while maintaining the compact form factor of standard serial flash devices.
This allows the xCORE-200 device to load data from the data partition of flash memory significantly faster
than with traditional SPI flash memory devices.

The QuadSPI flash memory is logically split between a boot and data partition.

The boot partition consists of a flash loader followed by a factory image and zero or more optional
upgrade images. Each image starts with a descriptor that contains a unique version number and a header
that contains a table of code/data segments for each tile used by the program and a CRC.

This application note demonstrates

• How to configure an XN file so that an xCORE-200 device can boot from QuadSPI flash memory.
• How to set the boot mode of the xCORE-200 device so that the boot ROM will boot from QuadSPI

flash memory.
• How to use the XFLASH to program an application to QuadSPI flash memory.

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

Figure 2: Flash format diagram

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM007865

AN00185 (1.0.1)

2 Booting the xCORE-200 from QuadSPI flash memory

2.1 Source code structure for this application note

This application note example is stored in the following directory structure:

src <-- top level project source directory
boot_xcore_200_qspi.xc <-- source file for project
XCORE-200-EXPLORER.xn <-- xn file for project

Makefile <-- make file for project

2.2 xCORE-200 Boot Mode Selection

The 4-bit port XS1_PORT_4B is used to decide on how to boot an xCORE-200 series device. This port has
pull downs enabled, so its default state is 0b0000. Bits can be pulled high by strapping a 10K resistor to
3V3. The boot modes are encoded as follows:

2 1 0 Core 0 Core 1 Switch

0 0 0 QSPI Channel End

0 0 1 SPI Master Channel End

0 1 0 SPI Slave Channel End

0 1 1 SPI Slave SPI Slave

1 0 0 Channel End Channel End link 0 enabled in 2W

1 0 1 Channel End Channel End links 4..7 enabled in 5W

1 1 0 Channel End Channel End links 1,2,5,6 enabled in 5W

1 1 1 Channel End Channel End links 0..3 enabled in 5W

Table 1: Boot Modes for xCORE-200 series devices

In this application note the default state 0b0000 on the 4-bit port XS1_PORT_4B is used to boot from
QuadSPI.

2.3 XN support for QuadSPI flash memory

The example code in this application note uses the XCORE-200-EXPLORER.xn target XN file.

Looking at this XN file in more detail you can see that the xCORE-200 Node element with attribute Id
value of “0” has a Boot->Source element defined, where the Location attribute of Source has a value
of “bootFlash”.

The Location attribute value instructs that this Node will boot from a Device element with a Name
attribute also set to “bootFlash”. Note that only one Node element can boot from each defined Device
element.

In this XN file it can be seen that a Device element has been added inside the element ExternalDevices
with a Name attribute value of “bootFlash”.

The Device element uses the attribute Class with the value “SQIFlash” to indicate that this is a QuadSPI
device. Based on this Class attribute value all tools within xTIMEcomposer will now expect this Node to
boot from QuadSPI.

It can also be seen in this XN example that three ports are required to communicate with the QuadSPI

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM007865

AN00185 (1.0.1)

device. These three ports are defined in the xCORE-200 Node element with Id attribute value of “0” and
Tile element with Number attribute value of “0”. The equivalent names must also be defined within the
Device element, tying the xCORE-200 to the QuadSPI device.

The Port element Location attribute with value of “XS1_PORT_1B” has a Name attribute with the value of
“PORT_SQI_CS”. This describes that the 1-bit port “XS1_PORT_1B” will be used to control the Chip Select
pin of the QuadSPI device. An Attribute element is also defined within the Device element with a
matching Name attribute with the valie of “PORT_SQI_CS”.

The Port element Location attribute with value of “XS1_PORT_1C” has a Name attribute with the value of
“PORT_SQI_SCLK”. This describes that the 1-bit port “XS1_PORT_1C” will be used to control the clock pin
of the QuadSPI device. An Attribute element is also defined within the Device element with a matching
Name attribute with the valie of “PORT_SQI_SCLK”.

The Port element Location attribute with value of “XS1_PORT_4B” has a Name attribute with the value of
“PORT_SQI_SIO”. This describes that the 4-bit port “XS1_PORT_4B” will be used to send data too and read
data from the QuadSPI device. An Attribute element is also defined within the Device element with a
matching Name attribute with the valie of “PORT_SQI_SIO”.

2.4 Driving LED patterns on the xCORE-200-EXPLORER board

The example code in this application note example is used to drive LED patterns on the xCORE-200
explorerKIT core module board. Upon reset, the application will be booted from the QuadSPI device.

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <platform.h>
#include <stdio.h>

#define DELAY 25000000

on tile[0] : port led_ports = XS1_PORT_4F;

int main(void)
{
par
{
on tile[0]:
{
char led_pattern[8];
int time;
int i = 0;
timer t;

char red = 8;
char green = 4;
char blue = 2;

char single = 1;

led_pattern[0] = red;
led_pattern[1] = single | red | green;
led_pattern[2] = green;
led_pattern[3] = single | green | blue;
led_pattern[4] = blue;
led_pattern[5] = single | red | blue;
led_pattern[6] = red | green | blue;
led_pattern[7] = single;

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM007865

AN00185 (1.0.1)

t :> time;

while (1) {
led_ports <: led_pattern[i];
i++;
if (i == 8) {
i = 0;

}

t when timerafter(time + DELAY) :> time;
}

}

on tile[1]:
{
while(1);

}
}

return 0;
}

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM007865

AN00185 (1.0.1)

APPENDIX A - Example Hardware Setup

This application example is designed to run on the xCORE-200 explorerKIT core module board. The
xCORE-200 explorerKIT core module board should be connected to both power and have the development
adapters connected to a host machine to allow program download. This can be seen in the following
image.

Figure 3: XMOS xCORE-200 explorerKIT

The hardware should be configured as displayed above for this example:

• The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB cable should
be connected to the host machine

• The xCORE-200 explorerKIT should have the power cable connected
• The RESET button can be used to repeatedly boot the xCORE-200 device from QuadSPI

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM007865

AN00185 (1.0.1)

APPENDIX B - Launching the example application

Once the example has been built either from the command line using xmake or via the build mechanism
of xTIMEcomposer Studio the application can be written to the QuadSPI flash memory of the xCORE-200
explorerKIT module board.

Once built there will be a bin directory within the project which contains the binary for the xCORE-200
tile. The xCORE-200 binary has a XMOS standard .xe extension.

B.1 Writing to flash memory from the command line

From the command line the XFLASH tool is used to download the code to the QuadSPI flash device on the
xCORE-200 explorerKIT core module board. The complete XFLASH command line is as follows:

> xflash --boot-partition-size 0x80000 bin/boot_xcore_200_qspi.xe

B.2 Writing to flash memory from xTIMEcomposer Studio

From xTIMEcomposer Studio there is the Flash As mechanism to edit the flash configuration and down-
load the code to the flash device on the xCORE-200 explorerKIT core module board. Within the flash con-
figuration editor the XFLASH options can be explicitly set. In this example, the Boot Partition Size
checkbox is ticked and a corresponding value of 0x80000 is inserted.

Once the XFLASH command has been executed successfully, the application note example will have been
written to QuadSPI flash memory. XFLASH will automatically reset the xCORE-200 device and subsequently
boot the application note example application from QuadSPI.

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM007865

AN00185 (1.0.1)

Figure 4: xTIMEcomposer studio flash configuration editor

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM007865

AN00185 (1.0.1)

APPENDIX C - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM007865

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide

AN00185 (1.0.1)

APPENDIX D - Full source code listing

D.1 XN for XCORE-200-EXPLORER.xn

D.2 Source code for boot_xcore_200_qspi.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <platform.h>
#include <stdio.h>

#define DELAY 25000000

on tile[0] : port led_ports = XS1_PORT_4F;

int main(void)
{
par
{
on tile[0]:
{
char led_pattern[8];
int time;
int i = 0;
timer t;

char red = 8;
char green = 4;
char blue = 2;

char single = 1;

led_pattern[0] = red;
led_pattern[1] = single | red | green;
led_pattern[2] = green;
led_pattern[3] = single | green | blue;
led_pattern[4] = blue;
led_pattern[5] = single | red | blue;
led_pattern[6] = red | green | blue;
led_pattern[7] = single;

t :> time;

while (1) {
led_ports <: led_pattern[i];
i++;
if (i == 8) {
i = 0;

}

t when timerafter(time + DELAY) :> time;
}

}

on tile[1]:
{
while(1);

}

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM007865

AN00185 (1.0.1)

}

return 0;
}

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM007865

	Boot an xCORE-200 device from QuadSPI flash memory
	Introduction
	Block diagram
	QuadSPI flash memory

	Booting the xCORE-200 from QuadSPI flash memory
	Source code structure for this application note
	xCORE-200 Boot Mode Selection
	XN support for QuadSPI flash memory
	Driving LED patterns on the xCORE-200-EXPLORER board

	Example Hardware Setup
	Launching the example application
	Writing to flash memory from the command line
	Writing to flash memory from xTIMEcomposer Studio

	References
	Full source code listing
	XN for XCORE-200-EXPLORER.xn
	Source code for boot_xcore_200_qspi.xc

