
AN00161 (1.0.1)

Application Note: AN00161

How to use the SPI library as SPI slave
This application note shows how to use the SPI library to make the xCORE use an SPI bus as SPI slave. The
application provides a register file that can be read and written by the internal application and by the SPI
master using a simple command set. The code is run in simulation with an SPI master output looped-back
onto the SPI slave input to show the bus functioning.

Required tools and libraries

• xTIMEcomposer Tools - Version 14.0
• XMOS SPI library - Version 3.0.0

Required hardware

This application note is designed to run in simulation so requires no XMOS hardware.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the SPI bus protocol, the
XMOS tool chain and the xC language. Documentation related to these aspects which are not
specific to this application note are linked to in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.
• For the full API listing of the XMOS SPI Device Library please see the library user guide2.

1http://www.xmos.com/published/glossary
2http://www.xmos.com/support/libraries/lib_spi

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM008529

http://www.xmos.com/published/glossary
http://www.xmos.com/support/libraries/lib_spi

AN00161 (1.0.1)

1 Overview

1.1 Introduction

The XMOS SPI library is a library that provides software defined, industry-standard, SPI (serial peripheral
interface) components that allows you to control an SPI bus via the xCORE GPIO hardware-response ports.
SPI is a four-wire hardware bi-directional serial interface.

The SPI bus can be used by multiple tasks within the xCORE device and (each addressing the same or
different slaves) and is compatible with other slave devices on the same bus.

The library includes features such as SPI master and SPI slave modes, supported speeds of up to 100 Mbit,
multiple slave device support and support for all configurations of clock polarity and phase.

1.2 Block diagram

SPI
Slave

Register
file

xCORE device

xCORE
Ports

Simulation

xCORE
Ports

Application

SPI
Master Tester

Simulated
loopback

Figure 1: Block diagram of SPI slave application example

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM008529

AN00161 (1.0.1)

2 SPI slave example

The example in this application note uses the XMOS SPI library to act as SPI slave. It maintains a register
file which can be read and written by the internal application or by the master on the SPI bus. To show
the bus functioning the demo application also has a tester component connected to an SPI master bus
which is connected (in simulation) to the the SPI slave. This allows the generation of traffic to show the
the communication functioning.

The application consists of five tasks:

• A task that controls the SPI slave ports
• A task that implements the register file handling calls from the SPI slave component and the appli-

cation
• An application task that connects to the register file task
• A task that controls the SPI master ports used for testing
• A tester task that outputs commands to the SPI master task

These tasks communicate via the use of xC interfaces.

The following diagram shows the task and communication structure of the application.

SPI
master
SPI

mastertestertester
spi_master_if

appapp SPI
slave
SPI

slave
reg
file
reg
file spi_slave_callback_ifreg_if

Figure 2: Task diagram of SPI slave example

The SPI slave task communicates via the spi_slave_callback_if which the SPI library defines as a set
of callbacks a slave will make to the application to handle communication occuring on the SPI bus.

The application also needs to communicate with the register file task to get or set register values. To do
this we define a custom communication software interface (reg_if).

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM008529

AN00161 (1.0.1)

2.1 Makefile additions for this example

To start using the SPI library, you need to add lib_spi to your Makefile:

USED_MODULES = ... lib_spi

You can then access the SPI functions in your source code via the spi.h header file:

#include <spi.h>

The example also uses the XMOS debug printing library (lib_logging). This provides handy debug
printing functions:

USED_MODULES = ... lib_logging

2.2 Declaring ports

The SPI library connects to external pins via xCORE ports. In main.xc these are declared as variables of
type port at the start of the file:

in port p_sclk = on tile[0]: XS1_PORT_1E;
in port p_ss = on tile[0]: XS1_PORT_1F;
out buffered port:32 p_miso = on tile[0]: XS1_PORT_1G;
in buffered port:32 p_mosi = on tile[0]: XS1_PORT_1H;
clock cb = on tile[0]: XS1_CLKBLK_1;

Note that there is also a clock declaration since the slave needs to use an internal clock as well as ports
inside the xCORE device.

How the ports (e.g. XS1_PORT_1I) relate to external pins will depend on the exact device being used. See
the device datasheet for details.

This application also has an SPI master interface on different ports:

out buffered port:32 p_test_sclk = on tile[0]: XS1_PORT_1I;
out port p_test_ss[1] = on tile[0]: {XS1_PORT_1J};
in buffered port:32 p_test_miso = on tile[0]: XS1_PORT_1K;
out buffered port:32 p_test_mosi = on tile[0]: XS1_PORT_1L;

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM008529

AN00161 (1.0.1)

2.3 The application main() function

Below is the source code for the main function of this application, which is taken from the source file
main.xc

int main(void) {
interface spi_slave_callback_if i_spi;
interface reg_if i_reg;
interface spi_master_if i_spi_master[1];
par {
on tile[0]: spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, cb, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
on tile[0]: reg_file(i_spi, i_reg);
on tile[0]: app(i_reg);

// These tasks are not part of the application but a test harness to
// provide SPI master data which is expected to be looped back in
// simulation to the SPI slave ports.
on tile[0]: tester(i_spi_master[0]);
on tile[0]: spi_master(i_spi_master, 1,

p_test_sclk, p_test_mosi, p_test_miso, p_test_ss,
1, null);

}
return 0;

}

Looking at this in a more detail you can see the following:

• The par functionality describes running five separate tasks in parallel; three are for the main appli-
cation and two are for the tester.

• The spi_slave task controls the application SPI bus and takes the ports it will use as arguments.
• The reg_file task is connected to the app task and the spi_slave task.
• The spi_slave task has an argument for the mode is expects - in this case Mode 0 (see the SPI

library user guide for more details on modes)
• The spi_slave task also has an argument SPI_TRANSFER_SIZE_8 which specifies the size of data

chunk it will use when making callbacks to the application.
• The spi_master task controls the test SPI bus and takes different ports to the SPI slave bus as

arguments. For details on using SPI master see application note AN00160.

2.4 The reg_file() function

The reg_file function is the main logic of this example. It will respond to calls from the application and
the SPI slave bus whilst maintaining a set of register values.

The function is marked as [[distributable]] which means it only responds to calls from other tasks.
The main reason for this is so that the reg_file task itself does not need a logical core of its own it can
use the logical core of the task that calls it. See the XMOS programming guide for details of distributable
tasks.

The function takes two arguments, the interface connections to the application task and the SPI slave
task:

[[distributable]]
void reg_file(server spi_slave_callback_if i_spi,

server reg_if i_reg)
{

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM008529

AN00161 (1.0.1)

The reg_if interface has been defined in main.xc earlier. It defines the functions that the app may call
in the reg_file tasks:

typedef interface reg_if {
uint8_t get_reg(uint8_t regnum);
void set_reg(uint8_t regnum, uint8_t value);

} reg_if;

In this case we have two functions - one for reading a register value and one for writing a register value.

The reg_file function first declares its state - an array to hold register value, a state variable to hold
what stage of an SPI transaction it is in and the currently addressed register by the SPI bus.

/* This array holds the register values */
uint8_t reg_data[NUM_REG] = {0};

/* This variable holds the current state of the register file with respect

* to the SPI bus (i.e. what stage of the transaction over SPI it is at).

*/
enum reg_state_t state = IDLE;

/* This variable holds the current register being addressed over the SPI

* bus.

*/
uint8_t addr = 0;

The state variable is just an integer from the following enum type defined earlier in the file:

enum reg_state_t {
WRITE_REG = 0,
READ_REG = 1,
WRITE_REG_DATA,
READ_REG_DATA,
IDLE

};

The implemented protocol on the SPI bus is as follows:

• The master will start a transaction (assert slave select)
• It will then send a byte of either a 0 for a write or a 1 for a read.
• It will then send the address of the register to read/write
• It will then send or receive the value of the register

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM008529

AN00161 (1.0.1)

To implement the protocol logic the reg_file tasks must continually react to events from the SPI slave
tasks keeping track of its state, updating registers and supplying the correct outputs. This is done via a
while (1) loop with an xC select statement inside it. A select statement will wait and then react to
various events or calls from different tasks - see the XMOS programming guide for more details.

The following cases in the main loop of the function handle this:

while (1) {
select {
/* These cases react to the SPI slave bus. A write from the bus will

* update the state of the transaction. A read from the bus will get

* sent the data from the currently addressed register. */
case i_spi.master_ends_transaction(void):

state = IDLE;
break;

case i_spi.master_requires_data(void) -> uint32_t data:
data = reg_data[addr];
break;

case i_spi.master_supplied_data(uint32_t datum, uint32_t valid_bits):
switch (state) {
case IDLE:

if (datum == WRITE_REG || datum == READ_REG)
state = datum;

break;
case READ_REG:

if (datum < NUM_REG) {
addr = datum;
state = READ_REG_DATA;

} else {
state = IDLE;

}
break;

case READ_REG_DATA:
// Do nothing with master data during a read data operation.
break;

case WRITE_REG:
if (datum < NUM_REG) {

addr = datum;
state = WRITE_REG_DATA;

} else {
state = IDLE;

}
break;

case WRITE_REG_DATA:
reg_data[addr] = datum;
break;

}
break;

We can see that the slave will always send the value of the currently addressed register on every data
transfer (this is allowable in the described protocol).

When the SPI master supplies some data to the slave then what happens depends on the current state
- either the state variable is updated, the currently addressed register is updated or a register value is
updated. This state machine will implement the previously described protocol.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM008529

AN00161 (1.0.1)

The main select also needs to react to request from the application. The following cases implement this:

/* The following cases respond to the application when it

* requests to get/set a register.

*/
case i_reg.get_reg(uint8_t regnum) -> uint8_t value:

value = reg_data[regnum];
break;

case i_reg.set_reg(uint8_t regnum, uint8_t value):
reg_data[regnum] = value;
break;

2.5 The app() function

The app task represents a sample application tasks that uses the register file. In this demo, it doesn’t
do much - it simple sets one register and repeatedly polls the value of another register and prints out its
value:

void app(client reg_if reg) {
reg.set_reg(0, 0xfe);
debug_printf("APP: Set register 1 to 0xFE\n");
while (1) {

delay_microseconds(20);
debug_printf("APP: Register 1 is 0x%x\n", reg.get_reg(1));

}
}

Note that the debug_printf function comes from the debug_print.h header supplied by lib_logging.
It is a low memory debug printing function that will print out messages to the console in the xTIMEcom-
poser (either using JTAG or xSCOPE to communicate to the host via the debug adaptor).

2.6 The tester() function

The tester function will send some test data to the SPI master bus. It does this using the SPI master
interface to communicate with the SPI master task:

void tester(client spi_master_if spi)
{

delay_microseconds(45);
uint8_t val;
spi.begin_transaction(0, 100, SPI_MODE_0);
spi.transfer8(READ_REG); // READ command
spi.transfer8(0); // REGISTER 0
val = spi.transfer8(0); // DATA
spi.end_transaction(100);
debug_printf("SPI MASTER: Read register 0: 0x%x\n", val);

spi.begin_transaction(0, 100, SPI_MODE_0);
spi.transfer8(WRITE_REG); // WRITE command
spi.transfer8(1); // REGISTER 1
spi.transfer8(0xac); // DATA
spi.end_transaction(100);
debug_printf("SPI MASTER: Set register 1 to 0xAC\n");

}

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM008529

AN00161 (1.0.1)

2.7 Setting up the run configuration for the application

To run the application binary in the simulator, first the application must be built by pressing the Build
button in the xTIMEcomposer. This will create the AN00161_using_SPI_slave.xe binary in the bin
folder of the project. The xTIMEcomposer may have to import the SPI library if you do not already have it
in your workspace; this will occur automatically on build.

Then a Run Configuration needs to be set up. This can be done by selecting the Run · Run Configura-
tions.. menu. You can create a new run configuration by right clicking on the xCORE application group
in the left hand pane and new. However, in this example a run configuration has already been created for
you.

Looking at this run configuration, you can see the simulator has been selected under Device Options::

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM008529

AN00161 (1.0.1)

In the Loopback tab of the Simulator tab of the run configuration. The Enable pin connections check
box has been enabled and four loopback connections have been added connecting the SPI master ports
to the corresponding SPI slave ports:

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM008529

AN00161 (1.0.1)

2.8 Running the application

By clicking on the Run icon (a green arrow) in the Edit Perspective of the xTIMEcomposer or by clicking
the Run button in the run configuration dialog, the program will run. In the console window you will get
this output:

APP: Set register 1 to 0xFE
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
SPI MASTER: Read register 0: 0xFE
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
APP: Register 1 is 0x0
SPI MASTER: Set register 1 to 0xAC
APP: Register 1 is 0xAC
APP: Register 1 is 0xAC
APP: Register 1 is 0xAC
...

You can terminate the program by clicking the Terminate button in the Console window (the red square).

The console shows the debug print output from the application and tester. You can see that the SPI bus
can read registers that the application has set and the application can read registers that the SPI bus has
set.

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM008529

AN00161 (1.0.1)

APPENDIX A - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS SPI Library

http://www.xmos.com/support/libraries/lib_spi

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM008529

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/support/libraries/lib_spi

AN00161 (1.0.1)

APPENDIX B - Full source code listing

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <spi.h>
#include <stdint.h>
#include <timer.h>
#include <debug_print.h>
#include <platform.h>

/* These ports are used for the SPI slave task */
in port p_sclk = on tile[0]: XS1_PORT_1E;
in port p_ss = on tile[0]: XS1_PORT_1F;
out buffered port:32 p_miso = on tile[0]: XS1_PORT_1G;
in buffered port:32 p_mosi = on tile[0]: XS1_PORT_1H;
clock cb = on tile[0]: XS1_CLKBLK_1;

/* These ports are used for the SPI master task which is
used to test the SPI slave (via simulator loopback). */

out buffered port:32 p_test_sclk = on tile[0]: XS1_PORT_1I;
out port p_test_ss[1] = on tile[0]: {XS1_PORT_1J};
in buffered port:32 p_test_miso = on tile[0]: XS1_PORT_1K;
out buffered port:32 p_test_mosi = on tile[0]: XS1_PORT_1L;

/* Interface to communicate between the register file tasks
and the application. */

typedef interface reg_if {
uint8_t get_reg(uint8_t regnum);
void set_reg(uint8_t regnum, uint8_t value);

} reg_if;

#define NUM_REG 5

enum reg_state_t {
WRITE_REG = 0,
READ_REG = 1,
WRITE_REG_DATA,
READ_REG_DATA,
IDLE

};

/* This application implements a register file which can be accessed by

* the application on chip as well as over the SPI bus.

*
* To do this, the reg_file task reacts to both the SPI slave component or

* requests from the application.

*
* Over SPI, the master is expected to assert the slave select line and

* then send either a 0 for writing a register or a 1 for reading a register in

* the first byte. The next byte is expected to contain the register number

* to read/write. The final byte either receives or transmits the register

* value.

*/
[[distributable]]
void reg_file(server spi_slave_callback_if i_spi,

server reg_if i_reg)
{
/* This array holds the register values */

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM008529

AN00161 (1.0.1)

uint8_t reg_data[NUM_REG] = {0};

/* This variable holds the current state of the register file with respect

* to the SPI bus (i.e. what stage of the transaction over SPI it is at).

*/
enum reg_state_t state = IDLE;

/* This variable holds the current register being addressed over the SPI

* bus.

*/
uint8_t addr = 0;

while (1) {
select {
/* These cases react to the SPI slave bus. A write from the bus will

* update the state of the transaction. A read from the bus will get

* sent the data from the currently addressed register. */
case i_spi.master_ends_transaction(void):

state = IDLE;
break;

case i_spi.master_requires_data(void) -> uint32_t data:
data = reg_data[addr];
break;

case i_spi.master_supplied_data(uint32_t datum, uint32_t valid_bits):
switch (state) {
case IDLE:

if (datum == WRITE_REG || datum == READ_REG)
state = datum;

break;
case READ_REG:

if (datum < NUM_REG) {
addr = datum;
state = READ_REG_DATA;

} else {
state = IDLE;

}
break;

case READ_REG_DATA:
// Do nothing with master data during a read data operation.
break;

case WRITE_REG:
if (datum < NUM_REG) {

addr = datum;
state = WRITE_REG_DATA;

} else {
state = IDLE;

}
break;

case WRITE_REG_DATA:
reg_data[addr] = datum;
break;

}
break;

/* The following cases respond to the application when it

* requests to get/set a register.

*/
case i_reg.get_reg(uint8_t regnum) -> uint8_t value:

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM008529

AN00161 (1.0.1)

value = reg_data[regnum];
break;

case i_reg.set_reg(uint8_t regnum, uint8_t value):
reg_data[regnum] = value;
break;

}
}

}

/* This dummy application just sets a register value and then continually

* polls and prints out another register value. It uses an interface connection

* to the reg_file tasks to get/set registers.

*/
void app(client reg_if reg) {

reg.set_reg(0, 0xfe);
debug_printf("APP: Set register 1 to 0xFE\n");
while (1) {

delay_microseconds(20);
debug_printf("APP: Register 1 is 0x%x\n", reg.get_reg(1));

}
}

/* The tester task is not part of the application but just sends commands

* over an SPI master bus on the same chip. The simulation can then loopback

* the SPI ports onto the SPI slave bus to provide test traffic. This loopback

* needs to be set up in the run configuration of the application.

*/
void tester(client spi_master_if spi)
{

delay_microseconds(45);
uint8_t val;
spi.begin_transaction(0, 100, SPI_MODE_0);
spi.transfer8(READ_REG); // READ command
spi.transfer8(0); // REGISTER 0
val = spi.transfer8(0); // DATA
spi.end_transaction(100);
debug_printf("SPI MASTER: Read register 0: 0x%x\n", val);

spi.begin_transaction(0, 100, SPI_MODE_0);
spi.transfer8(WRITE_REG); // WRITE command
spi.transfer8(1); // REGISTER 1
spi.transfer8(0xac); // DATA
spi.end_transaction(100);
debug_printf("SPI MASTER: Set register 1 to 0xAC\n");

}

int main(void) {
interface spi_slave_callback_if i_spi;
interface reg_if i_reg;
interface spi_master_if i_spi_master[1];
par {
on tile[0]: spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, cb, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
on tile[0]: reg_file(i_spi, i_reg);
on tile[0]: app(i_reg);

// These tasks are not part of the application but a test harness to
// provide SPI master data which is expected to be looped back in

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM008529

AN00161 (1.0.1)

// simulation to the SPI slave ports.
on tile[0]: tester(i_spi_master[0]);
on tile[0]: spi_master(i_spi_master, 1,

p_test_sclk, p_test_mosi, p_test_miso, p_test_ss,
1, null);

}
return 0;

}

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM008529

AN00161 (1.0.1)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM008529

	How to use the SPI library as SPI slave
	Overview
	Introduction
	Block diagram

	SPI slave example
	Makefile additions for this example
	Declaring ports
	The application main() function
	The reg_file() function
	The app() function
	The tester() function
	Setting up the run configuration for the application
	Running the application

	References
	Full source code listing

