
AN00130 (2.0.2)

Application Note: AN00130

USB HID Class - Extended on sliceKIT
This application note shows how to create a USB device compliant to the standard USB Human Interface
Device (HID) class on an XMOS multicore microcontroller.

The code associated with this application note provides an enhancement to AN00129 for extending the
USB HID device to interface with hardware which can provide input for a USB mouse.

This example uses the ADC on the XMOS xCORE-USB device to interface to a mixed signal sliceCARD and
provide a joystick interface which allows the USB HID to be controlled.

The application operates as a simple mouse which when running moves the mouse pointer on the host
machine. This demonstrates the simple way in which PC peripheral devices can easily be deployed using
an xCORE device.

Note: This application note provides a standard USB HID class device and as a result does not require
drivers to run on Windows, Mac or Linux.

This application note describes extending XMOS application note AN00129 for the xCORE-USB sliceKIT
platform.

Required tools and libraries

• xTIMEcomposer Tools - Version 14.0.0
• XMOS USB library - Version 3.1.0
• XMOS U series support library - Version 2.0.0

Required hardware

This application note is designed to run on an XMOS xCORE-USB series device.

The example code provided with the application has been implemented and tested on the xCORE-USB
sliceKIT (XK-SK-U16-ST) but there is no dependancy on this board and it can be modified to run on any
development board which uses an xCORE-USB series device.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the Universal Serial Bus
2.0 Specification (and related specifications, the XMOS tool chain and the xC language. Docu-
mentation related to these aspects which are not specific to this application note are linked to
in the references in the appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.
• Understanding of USB HID class implementation from application note AN00129
• For the full API listing of the XMOS USB Device (XUD) Library please see thedocument XMOS USB

Device (XUD) Library2.
• For information on designing USB devices using the XUD library please see the XMOS USB Device

Design Guide for reference3.

1http://www.xmos.com/published/glossary
2http://www.xmos.com/published/xuddg
3http://www.xmos.com/published/xmos-usb-device-design-guide

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006675

http://www.xmos.com/published/glossary
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide


AN00130 (2.0.2)

1 Overview

1.1 Introduction

The HID class consists primarily of devices that are used by humans to control the operation of computer
systems. Typical examples of HID class include:

• Keyboards and pointing devices, for example, standard mouse devices, trackballs, and joysticks.
• Front-panel controls, for example: knobs, switches, buttons, and sliders.
• Controls that might be found on devices such as telephones, VCR remote controls, games or simu-

lation devices, for example: data gloves, throttles, steering wheels, and rudder pedals.
• Devices that may not require human interaction but provide data in a similar format to HID class

devices, for example, bar-code readers, thermometers, or voltmeters.

Many typical HID class devices include indicators, specialized displays, audio feedback, and force or tactile
feedback. Therefore, the HID class definition includes support for various types of output directed to the
end user.

The USB specification provides a standard device class for the implementation of HID class devices.

(http://www.usb.org/developers/devclass_docs/HID1_11.pdf)

1.2 Block diagram

Figure 1: Block diagram of extended USB HID application example

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006675

http://www.usb.org/developers/devclass_docs/HID1_11.pdf


AN00130 (2.0.2)

2 USB HID Class - Application note AN00129

This application note takes the majority of its source code from AN00129 to implement the HID class
application used for the example. The details of this and the explanation of the associated source code
is provided in that application note. This example provides a simple description of how that application
note has been extended to support interfacing hardware to the host machine via a HID endpoint.

The original HID mouse application code has been replaced with a extended function which now uses the
ADC on the xCORE-USB device to read from a joystick and generate the HID control data.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006675



AN00130 (2.0.2)

3 USB HID Class Extended on sliceKIT - Application note

The example in this application note uses the XMOS USB device library and shows a simple program that
creates a basic mouse device which controls the mouse pointer on the host PC.

For the USB HID device class application example, the system comprises three tasks running on separate
logical cores of a xCORE-USB multicore microcontroller.

The tasks perform the following operations.

• A task containing the USB library functionality to communicate over USB
• A task implementing Endpoint0 responding both standard and HID class USB requests
• A task implementing the application code for the custom HID interface

These tasks communicate via the use of xCONNECT channels which allow data to be passed between
application code running on separate logical cores.

The following diagram shows the task and communication structure for this USB HID device class applica-
tion example.

XUD
Manager

Endpoint0
Mouse

endpoint

c_ep_in[1]
c_ep_out[0]
c_ep_in[0]

Figure 2: Task diagram of USB HID application example

In this example we take the simple USB HID mouse endpoint and replace it with a version which interfaces
to a joystick on the XMOS mixed signal slice using the ADC on the xCORE-USB device.

This allows the example to be extended to produce a USB mouse where movement is controlled by user
input. This demonstrates how a USB HID can be customized to interface to the custom control required
by the application.

3.1 Makefile additions for this example

There are additions to the Makefile provided with AN00129, these relate to using the support library for
the xCORE-USB series to allow access to the ADC.

To start using the U series support library, you need to add lib_u_series_support to your Makefile:

USED_MODULES = ... lib_u_series_support ...

You can then access the ADC functions in your source code via the u_series_adc.h header file:

#include <u_series_adc.h>

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006675



AN00130 (2.0.2)

3.2 xCORE-USB ADC port declaration

In order to use the ADC on the xCORE-USB device a port resource needs to be declared to be used as the
trigger for the ADC. This is defined in the code below,

/* Port for ADC triggering */
on USB_TILE: out port p_adc_trig = PORT_ADC_TRIGGER;

3.3 HID mouse endpoint with joystick control

In order to replace the HID mouse endpoint in AN00129 using the ADC of the xCORE-USB device a re-
placement function has been written. This is contained within the file hid_mouse_extended.xc and is
prototyped as follows,

void hid_mouse_extended(chanend c_ep_hid, chanend c_adc)

In this function the ADC is configured, the following code uses the standard library support for configuring
the ADC on the xCORE-USB device. This sets up the inputs which are enabled, the required number of
samples per packet and the number of bits per sample. This configuration is passed to the adc_enable
function to start the ADC.

/* Configure and enable the ADC in the U device */
adc_config_t adc_config = { { 0, 0, 0, 0, 0, 0, 0, 0 }, 0, 0, 0 };

adc_config.input_enable[2] = 1;
adc_config.input_enable[3] = 1;
adc_config.samples_per_packet = 2;
adc_config.bits_per_sample = ADC_32_BPS;
adc_config.calibration_mode = 0;

adc_enable(usb_tile, c_adc, p_adc_trig, adc_config);

/* Unsafe region so we can use shared memory. */

As described in AN00129 there is a global buffer g_reportBuffer which is used to signal HID report
data to endpoint0. The code below initialises this buffer via a pointer for this USB mouse endpoint.

/* Initialise the HID report buffer */
p_reportBuffer[1] = 0;
p_reportBuffer[2] = 0;

Next it is possible to get samples from the ADC this is done by triggering the ADC using
adc_trigger_packet() and reading data back using adc_read_packet(). The data returned from the
ADC relates to the x and y coordinates of the joystick on the mixed signal slice. The code for performing
this operation is as follows,

/* Get ADC input */
adc_trigger_packet(p_adc_trig, adc_config);
adc_read_packet(c_adc, adc_config, data);
x = data[0];
y = data[1];

The data for the x coordinate is processed by the following code to transform the value so that it is
suitable for reporting back to the host as the HID device report.

This involves using the defines for the sensitivity and joystick dead zone that is defined at the top of the
file hid_mouse_extended.xc.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006675



AN00130 (2.0.2)

/* Move horizontal axis of pointer based on ADC val (absolute) */
x = ((x >> SHIFT) & MASK) - OFFSET - initialX;
if (x > DEAD_ZONE)

p_reportBuffer[1] = (x - DEAD_ZONE)/(10 - SENSITIVITY);
else if (x < -DEAD_ZONE)

p_reportBuffer[1] = (x + DEAD_ZONE)/(10 - SENSITIVITY);

The data for the y coordinate is processed by the following code to transform the value so that it is
suitable for reporting back to the host as the HID device report.

This involves using the defines for the sensitivity and joystick dead zone that is defined at the top of the
file hid_mouse_extended.xc.

/* Move vertical axis of pointer based on ADC val (absolute) */
y = ((y >> SHIFT) & MASK) - OFFSET - initialY;
if (y > DEAD_ZONE)

p_reportBuffer[2] = (y - DEAD_ZONE)/(10 - SENSITIVITY);
else if (y < -DEAD_ZONE)

p_reportBuffer[2] = (y + DEAD_ZONE)/(10 - SENSITIVITY);

Once the data processing is complete the HID report is sent back to the USB host using the XMOS USB
library function XUD_SetBuffer().

/* Send the buffer off to the host. Note this will return when complete */
XUD_SetBuffer(ep_hid, (char *)p_reportBuffer, 4);

The function hid_mouse_extended continues to operate in an infinite loop reporting data values back to
the USB host as a HID report by reading from the joystick.

3.4 Changes to the main() function of AN00129

The code below shows the changes required to main() in application note AN00129 in order to enable the
new extended HID mouse endpoint. This is a small change which will enable the ADC and call the new
function provided with this application note.

int main()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
chan c_adc;

par
{
on tile[0]: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,

null, XUD_SPEED_HS, XUD_PWR_SELF);

on tile[0]: Endpoint0(c_ep_out[0], c_ep_in[0]);

on tile[0]: hid_mouse_extended(c_ep_in[1], c_adc);

xs1_su_adc_service(c_adc);
}

return 0;
}

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006675



AN00130 (2.0.2)

3.5 Setting up the ADC in the application main()

The ADC on the xCORE-USB tile is configured in main with the following code which creates an xCONNECT
channel which will be connected to the ADC.

chan c_adc;

This channel can then be connected to the ADC on the xCORE-USB device by using the following call in
main(),

xs1_su_adc_service(c_adc);

The other end of the xCONNECT channel c_adc is passed to the new extended hid mouse function in
main() as follows,

on tile[0]: hid_mouse_extended(c_ep_in[1], c_adc);

3.6 Adding the extended HID mouse endpoint to main()

In order to access the function hid_mouse_extended() from main() the following header file needs to be
added to main.xc of the application.

#include "hid_mouse_extended.h"

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006675



AN00130 (2.0.2)

4 Demo Hardware Setup

To run the demo, connect the xCORE-USB sliceKIT USB-B and xTAG-2 USB-A connectors to separate USB
connectors on your development PC.

Figure 3: XMOS xCORE-USB sliceKIT

The hardware should be configured as displayed above for this demo:

• The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB cable should
be connected to the host machine

• The xCORE-USB core board should have a USB cable connecting the device to the host machine
• The mixed signal sliceCARD is connected to the analog connector of the xCORE-USB sliceKIT
• The xCORE-USB core board should have the power cable connected

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006675



AN00130 (2.0.2)

5 Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the xCORE-USB sliceKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

5.1 Launching from the command line

From the command line we use the xrun tool to download code to both the xCORE devices. If we change
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> xrun app_hid_mouse_demo.xe <-- Download and execute the xCORE code

Once this command has executed the HID mouse device will have enumerated on your host machine.

5.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio we use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and then run as xCORE application will execute the code
on the xCORE device.

Once this command has executed the HID mouse device will have enumerated on your host machine.

5.3 Running the HID mouse demo

The USB mouse device once enumerated will start acting as if you have plugged a new USB mouse into
your host machine.

By moving the joystick on the mixed signal slice you will be able to control the mouse pointer on your
USB host machine.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006675



AN00130 (2.0.2)

6 References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS xCORE-USB Device Library:

http://www.xmos.com/published/xuddg

XMOS USB Device Design Guide:

http://www.xmos.com/published/xmos-usb-device-design-guide

USB HID Class Specification, USB.org:

http://www.usb.org/developers/devclass_docs/HID1_11.pdf

USB 2.0 Specification

http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006675

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide
http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip


AN00130 (2.0.2)

7 Full source code listing

7.1 Source code for main.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include "usb.h"
#include "u_series_adc.h"
#include "hid_mouse_extended.h"

/* Prototype for Endpoint0 function in endpoint0.xc */
void Endpoint0(chanend c_ep0_out, chanend c_ep0_in);

/* Global report buffer, global since used by Endpoint0 core */
unsigned char g_reportBuffer[4] = {0, 0, 0, 0};

#define XUD_EP_COUNT_OUT 1
#define XUD_EP_COUNT_IN 2

/* The main function runs three cores: the XUD manager, Endpoint 0, and a HID endpoint. An array of
* channels is used for both IN and OUT endpoints, endpoint zero requires both, HID requires just an
* IN endpoint to send HID reports to the host.
*/
int main()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
chan c_adc;

par
{
on tile[0]: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,

null, XUD_SPEED_HS, XUD_PWR_SELF);

on tile[0]: Endpoint0(c_ep_out[0], c_ep_in[0]);

on tile[0]: hid_mouse_extended(c_ep_in[1], c_adc);

xs1_su_adc_service(c_adc);
}

return 0;
}

7.2 Source code for hid_mouse_extended.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include "usb.h"
#include "u_series_adc.h"
#include "hid_mouse_extended.h"

/* Global report buffer, global since used by Endpoint0 core */
extern unsigned char g_reportBuffer[4];

/* Port for ADC triggering */
on USB_TILE: out port p_adc_trig = PORT_ADC_TRIGGER;

#define BITS 5 // Overall precision
#define DEAD_ZONE 2 // Ensure that the mouse is stable when the joystick is not used
#define SENSITIVITY 0 // Sensitivity range 0 - 9
#define SHIFT (32 - BITS)
#define MASK ((1 << BITS) - 1)
#define OFFSET (1 << (BITS - 1))

/*
* This function responds to the HID requests - it moves the pointers x axis based on ADC input
*/
void hid_mouse_extended(chanend c_ep_hid, chanend c_adc)
{

int initialDone = 0;
int initialX = 0;
int initialY = 0;

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM006675



AN00130 (2.0.2)

/* Initialise the XUD endpoint */
XUD_ep ep_hid = XUD_InitEp(c_ep_hid, XUD_EPTYPE_BUL);

/* Configure and enable the ADC in the U device */
adc_config_t adc_config = { { 0, 0, 0, 0, 0, 0, 0, 0 }, 0, 0, 0 };

adc_config.input_enable[2] = 1;
adc_config.input_enable[3] = 1;
adc_config.samples_per_packet = 2;
adc_config.bits_per_sample = ADC_32_BPS;
adc_config.calibration_mode = 0;

adc_enable(usb_tile, c_adc, p_adc_trig, adc_config);

/* Unsafe region so we can use shared memory. */
while (1)
{
unsafe {
char * unsafe p_reportBuffer = g_reportBuffer;
unsigned data[2];
int x;
int y;

/* Initialise the HID report buffer */
p_reportBuffer[1] = 0;
p_reportBuffer[2] = 0;

/* Get ADC input */
adc_trigger_packet(p_adc_trig, adc_config);
adc_read_packet(c_adc, adc_config, data);
x = data[0];
y = data[1];

/* Move horizontal axis of pointer based on ADC val (absolute) */
x = ((x >> SHIFT) & MASK) - OFFSET - initialX;
if (x > DEAD_ZONE)

p_reportBuffer[1] = (x - DEAD_ZONE)/(10 - SENSITIVITY);
else if (x < -DEAD_ZONE)

p_reportBuffer[1] = (x + DEAD_ZONE)/(10 - SENSITIVITY);

/* Move vertical axis of pointer based on ADC val (absolute) */
y = ((y >> SHIFT) & MASK) - OFFSET - initialY;
if (y > DEAD_ZONE)

p_reportBuffer[2] = (y - DEAD_ZONE)/(10 - SENSITIVITY);
else if (y < -DEAD_ZONE)

p_reportBuffer[2] = (y + DEAD_ZONE)/(10 - SENSITIVITY);

if (!initialDone)
{

initialX = x;
initialY = y;
initialDone = 1;

}

/* Send the buffer off to the host. Note this will return when complete */
XUD_SetBuffer(ep_hid, (char *)p_reportBuffer, 4);

}
}
// End

}

7.3 Source code for hid_mouse_extended.h

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#ifndef HID_MOUSE_EXTENDED_H
#define HID_MOUSE_EXTENDED_H
void hid_mouse_extended(chanend c_ep_hid, chanend c_adc);
#endif

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM006675



AN00130 (2.0.2)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM006675


	USB HID Class - Extended on sliceKIT
	Overview
	Introduction
	Block diagram

	USB HID Class - Application note AN00129
	USB HID Class Extended on sliceKIT - Application note
	Makefile additions for this example
	xCORE-USB ADC port declaration
	HID mouse endpoint with joystick control
	Changes to the main() function of AN00129
	Setting up the ADC in the application main()
	Adding the extended HID mouse endpoint to main()

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the HID mouse demo

	References
	Full source code listing
	Source code for main.xc
	Source code for hid_mouse_extended.xc
	Source code for hid_mouse_extended.h


