®
l MOS AN00127 (2.0.2)

Application Note: AN0O0127

USB Video Class Device

This application note shows how to create a USB device compliant to the standard USB Video Class (UVC)
on an XMOS multicore microcontroller.

The code associated with this application note provides an example of using the XMQOS USB Device Library
(XUD) and associated USB class descriptors to provide a framework for the creation of USB video devices
like webcam, video player, camcorders etc.

This example USB video class implementation provides a video camera device running over high speed
USB. It supports standard requests associated with the class. The application doesn’t connect a cam-
era sensor device but emulates it by creating simple video data which is streamed to the host PC. Any
host software that supports viewing UVC compliant video capture devices can be used to view the video
streamed out of the XMOS device. This demonstrates the simple way in which USB video devices can easily
be deployed using an xCORE-USB device.

Note: This application note provides a standard USB video class device and as a result does not require
external drivers to run on Windows, Mac or Linux.

Required tools and libraries

e XTIMEcomposer Tools - Version 14.0.0
e XMOS USB library - Version 3.1.0

Required hardware

This application note is designed to run on an XMOS xCORE-USB series device.

The example code provided with the application has been implemented and tested on the xCORE-USB
sliceKIT (XK-SK-U16-ST) but there is no dependency on this board and it can be modified to run on any
development board which uses an xCORE-USB series device.

Prerequisites

e This document assumes familiarity with the XMOS xCORE architecture, the Universal Serial Bus
2.0 Specification and related specifications, the XMOS tool chain and the xC language. Docu-
mentation related to these aspects which are not specific to this application note are linked to
in the references appendix.

e For descriptions of XMOS related terms found in this document please see the XMOS Glossary'.

e For the full API listing of the XMOS USB Device (XUD) Library please see the document XMOS USB
Device (XUD) Library?.

e For information on designing USB devices using the XUD library please see the XMOS USB Device
Design Guide for reference3.

Thttp://www.xmos.com/published/glossary
2http://www.xmos .com/publi shed/xuddg
3http://www.xmos.com/published/xmos-usb-device-design-guide

Copyright 2016 XMOS Ltd. 1 WWW.Xmos.com
XM007149

http://www.xmos.com/published/glossary
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide

®
l MOS AN00127 (2.0.2)

1 Overview

1.1 Introduction

USB Video Class (UVC) is a standard class specification that standardizes video streaming functionality on
the USB. It enables devices like webcams, digital camcorders, analog video converters, analog and digital
television tuners etc to connect seamlessly with host machines.

UVC supports streaming multiple video formats including YUV, MJPEG, MPEG-2 TS, H.264, DV etc. It
provides structures for describing the functionalities of the video device to the host and defines USB
requests to control different parameters of the device and characteristics of the video stream. It also
provides flexibility for a video device to support multiple video resolutions, formats and frame rates,
which highly influences the bandwidth negotiation between the device and the host.

Many OS platforms have native support for UVC drivers which greatly reduces the time required for
developers to create USB video devices.

In this application note, the UVC implementation for xCORE-USB device is explained in detail which will
help you to build your own USB video device. The demo example doesn’t interface a camera sensor but
you can easily extend it to add a camera.

The standard USB Video Class specification can be found in the USB-IF website.
(http://www.usb.org/developers/docs/devclass_docs/USB_Video_Class_1_1 090711.zip)

1.2 Block diagram

XMOS

XS1-U6A-64

Camera Sensor
Module

USB Video Device

Figure 1: Block diagram of USB video class application

The ‘Camera Sensor’ shown in the above figure is not interfaced in the demo example but it is emulated
by creating color video frames inside the device.

Copyright 2016 XMOS Ltd. 2 WWW.Xmos.com
XMO007149

http://www.usb.org/developers/docs/devclass_docs/USB_Video_Class_1_1_090711.zip

®
l MOS AN00127 (2.0.2)

2 USB Video Class application note

The example in this application note uses the XMOS USB device library and shows a simple program that
enumerates a USB Video Class device in a host machine and streams uncompressed video frames in YUV
format with thirty frames per second to a video capture host software.

For this USB Video device application example, the system comprises three tasks running on separate
logical cores of an xCORE-USB multicore microcontroller.

The tasks perform the following operations.

e A task containing the USB library functionality to communicate over USB.
e A task implementing EndpointO responding to both standard and video class-specific USB requests.
e A task implementing the application code to send video data over streaming endpoints.

These tasks communicate via the use of xCONNECT channels which allow data to be passed between
application code running on separate logical cores.

The following diagram shows the task and communication structure for this USB video class application
example.

c_ep_out[0] Endpoint 0

c_ep_in[0] Handler

XUD
Manager

c_ep_in[1] Video
. Endpoints
c_ep_in[2] Handler

XS1-UBA-64

Figure 2: Task diagram of the USB video device example

Copyright 2016 XMOS Ltd. 3 WWW.Xmos.com
XMO007149

®
l MOS AN00127 (2.0.2)

2.1 Makefile additions for this example

To start using the USB library, you need to add lib_usb to your makefile:

USED_MODULES = ... 1lib_usb ...

You can then access the USB functions in your source code via the usb.h header file:

#include <usb.h>

2.2 Source code files

The example application consists of multiple source code files and the following list provides an overview
of how the source code is organized.

e usb_video.xc, usb_video.h - Contains the USB video class descriptors and endpoint handler tasks
(functions).

e uvc_req.c, uvc_req.h - Contains functions and data structures to handle class-specific USB re-
quests.

e uvc_defs.h - This header file has defines that are used for USB descriptors, class-specific requests
and video details like resolution, payload size and frame rate etc.

e main.xc - Contains main() function and some USB related defines.

2.3 Declaring resource and setting up the USB components

main.xc has some defines in it that are used to configure the XMOS USB device library. These are displayed
below.

/% USB Endpoint Defines =/
#define XUD_EP_COUNT_OUT 1 // 1 OUT EPO
#define XUD_EP_COUNT_IN 3 // (1 IN EPO + 1 INTERRUPT IN EP + 1 ISO IN EP)

The above set of defines describe the endpoint configurations for this device.. This example has bi-
directional communication with the host machine via the standard endpoint0 and two other endpoints for
implementing the part of our video class.

All these defines are passed to the setup function for the USB library which is called from main().

Copyright 2016 XMOS Ltd. 4 WWW.Xmos.com
XM007149

4

®
MOS AN00127 (2.0.2)

2.4

The application main() function

Below is the source code for the main function of this application, which is taken from the source file
main.xc

int

}

main() {
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

/% 'Par' statement to run the following tasks in parallel =/

par
{
on USB_TILE: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, XUD_SPEED_HS, XUD_PWR_SELF);
on USB_TILE: EndpointO(c_ep_out[0], c_ep_in[0]);
on USB_TILE: VideoEndpointsHandler(c_ep_in[1l], c_ep_in[2]);
}
return 0;

Looking at this in a more detail you can see the following:

2.5

The par statement starts three separate tasks in parallel.

There is a task to configure and execute the USB library: xud(). This library call runs in an infinite
loop and handles all the underlying USB communications and provides abstraction at the endpoints
level.

There is a task to startup and run the EndpointO code: Endpoint0(). It handles the control end-
point zero and must be run in a separate logical core inorder to provide timely response to control
requests from the host.

There is a task to handle two other endpoints required for the Video «class:
VideoEndpointsHandler(). This function handles one Isochronous IN endpoint for
video streaming and one interrupt IN endpoint for sending notifications to host.

The define USB_TILE describes the tile on which the individual tasks will run.

In this example all tasks run on the same tile as the USB PHY although this is only a requirement of
xud(Q).

The xCONNECT communication channels used for inter-task communication are setup at the begin-
ning of main() and passed on to respective tasks.

The USB defines discussed earlier are passed into the function xud().

Configuring the USB device ID

The USB ID values used for vendor ID, product ID and device version number are defined in the file

uvc_

defs.h. These are used by the host machine to determine the vendor of the device (in this case

XMOS) and the product plus the firmware version.

/* USB Video device product defines */
#define BCD_DEVICE 0x0100
#define VENDOR_ID 0x20B1
#define PRODUCT_ID Ox1DEO

Copyright 2016 XMOS Ltd. 5 WWW.Xmos.com

XMO007149

®
l MOS AN00127 (2.0.2)

2.6 Video device topology

This section provides a brief overview of the representation of video device in a topology. It introduces
you to the terms used in the video class specification, which helps you to understand the further sections
of this application note.

A video device is represented as an interconnection of multiple addressable entities. Each entity rep-
resents a functionality and has properties which are controlled by the USB host. The following are the
different entities:

e Units
- Selector Unit
- Processing Unit
- Extension Unit
e Terminals
- Input Terminal
- Output Terminal
- Special Terminals (extends the 1/0 terminal)
* Media Transport Terminal
+* Camera Terminal

These entities are interconnected by means of Input Pins and Output Pins. A Unit has one or more Input
Pins and a single Output Pin, where each Pin represents logical data streams inside the video device. A
Terminal has either a single Input Pin or a single Output Pin. An Input Terminal(IT) represents a starting
point for data streams of the video device. An Output Terminal(OT) represents an ending point for data
streams.

The functionality of a Unit or Terminal is further described through Video Controls. A Control typically
provides access to a specific video property. Video properties include brightness, contrast, sharpness,
digital zoom etc. Each Control has a set of attributes that can be manipulated or that provide additional
information, they are:

Current setting
Minimum setting
Maximum setting
Resolution

Size

Default

For example, the brightness of the video stream can be controlled by the USB host by changing the current
setting of the Brightness Control inside a Processing unit.

The following diagram shows the topology of the demo application

No Units are involved in the demo application example. More information on Units can be found from the
USB video class specification documents.

This video device topology is communicated to the host through USB descriptors which is discussed in
the following section.

2.7 USB Descriptors

USB Video class device has to support class-specific descriptors apart from the standard descriptors
defined in the USB specifications. The class specific descriptors are customized according to the need of
the USB Video device.

Copyright 2016 XMOS Ltd. 6 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

Video device

Input Terminal Output Terminal

Camera . . USB IN
Sensor T = — — OT | Endpoint

Output Pin Input Pin

Figure 3: Topology of the UVC example

The following figure shows the descriptors used in the example code.

The above figure is discussed in detail in the following sections.

Copyright 2016 XMOS Ltd. 7 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

2.7.1 USB Device Descriptor

usb_video.xc is where the standard USB device descriptor is declared for the Video class device. Below
is the structure which contains this descriptor. This will be requested by the host when the device is
enumerated on the USB bus.

/+* USB Device Descriptor =/
static unsigned char devDesc[] =

0x12, /% 0 bLength =/

USB_DESCTYPE_DEVICE, /#* 1 bdescriptorType - Devicex/

0x00, /* 2 bcdUSB version =/

0x02, /* 3 bcdUSB version =/

OxEF, /% 4 bDeviceClass - USB Miscellaneous Class =/
0x02, /* 5 bDeviceSubClass - Common Class */

0x01, /% 6 bDeviceProtocol - Interface Association Descriptor =/
0x40, /* 7 bMaxPacketSize for EPO - max = 64x/
(VENDOR_ID & OxFF), /* 8 idVendor =/

(VENDOR_ID >> 8), /* 9 idVendor =/

(PRODUCT_ID & OxFF), /* 10 idProduct */

(PRODUCT_ID >> 8), /% 11 idProduct =/

(BCD_DEVICE & OxFF), /* 12 bcdDevice */

(BCD_DEVICE >> 8), /* 13 bcdDevice =/

0x01, /% 14 iManufacturer - index of string=/

0x02, /% 15 iProduct - index of stringx/

0x00, /% 16 iSerialNumber - index of string=/

0x01 /#* 17 bNumConfigurations =/

I3

From this descriptor you can see that product, vendor and device firmware revision are all coded into this
structure. This will allow the host machine to recognise the video device when it is connected to the USB
bus.

For Video class device, it is mandatory to set the ‘bDeviceClass’, ‘bDeviceSubClass’ and ‘bDeviceProtocol’
fields to OXEF, 0x02 and 0x01 respectively.

Copyright 2016 XMOS Ltd. 8 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

2.7.2 USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device class and the end-
points setup. The hierarchy of descriptors under a configuration includes interface association descriptor,
interfaces descriptors, class-specific descriptors and endpoints descriptors.

When a host requests a configuration descriptor, the entire configuration hierarchy including all the
related descriptors are returned to the host. The following code shows the configuration hierarchy of the
demo application.

/* USB Configuration Descriptor =/

static unsigned char cfgDesc[] = {
0x09, /% 0 blLength =/
USB_DESCTYPE_CONFIGURATION, /+ 1 bDescriptorType - Configuration:/
OxAE, 00, /% 2 wTotalLength =/
0x02, /* 4 bNumInterfaces =/
0x01, /% 5 bConfigurationValue =/
0x03, /% 6 iConfiguration - index of string =/
0x80, /% 7 bmAttributes - Bus powered =/
OxFA, /% 8 bMaxPower (in 2mA units) - 500mA =/
/* Interface Association Descriptor =/
0x08, /* 0 bLength =/
USB_DESCTYPE_INTERFACE_ASSOCIATION, /= 1 bDescriptorType - Interface Association =/
0x00, /* 2 bFirstInterface - VideoControl i/f =/
0x02, /* 3 bInterfaceCount - 2 Interfaces x/
USB_CLASS_VIDEO, /* 4 bFunctionClass - Video Class =/
USB_VIDEO_INTERFACE_COLLECTION, /% 5 bFunctionSubClass - Video Interface Collection */
0x00, /% 6 bFunctionProtocol - No protocol =/
0x02, /% 7 iFunction - index of string =/

/* Video Control (VC) Interface Descriptor =/

0x09, /% 0 bLength =/

USB_DESCTYPE_INTERFACE, /% 1 bDescriptorType - Interface =/

0x00, /% 2 bInterfaceNumber - Interface 0 =*/

0x00, /% 3 bAlternateSetting =/

0x01, /* 4 bNumEndpoints =/

USB_CLASS_VIDEO, /% 5 bInterfaceClass - Video Class */

USB_VIDEO_CONTROL, /% 6 bInterfaceSubClass - VideoControl Interface =/

0x00, /% 7 bInterfaceProtocol - No protocol =/

0x02, /% 8 ilnterface - Index of string (same as iFunction of IAD) =/
/* Class-specific VC Interface Header Descriptor =/

0x0D, /% 0 bLength =/

USB_DESCTYPE_CS_INTERFACE, /% 1 bDescriptorType - Class-specific Interface =/
USB_VC_HEADER, /% 2 bDescriptorSubType - HEADER =/

0x10, 0x01, /* 3 bcdUVC - Video class revision 1.1 =/

0x28, 0x00, /% 5 wTotalLength - till output terminal =/

WORD_CHARS (100000000) , /% 7 dwClockFrequency - 100MHz (Deprecated) =/

0x01, /% 11 bInCollection - One Streaming Interface =/

0x01, /% 12 baInterfaceNr - Number of the Streaming interface =/
/% Input Terminal (Camera) Descriptor - Represents the CCD sensor (Simulated here in this demo) =/
0x12, /% 0 bLength =/

USB_DESCTYPE_CS_INTERFACE, /= 1 bDescriptorType - Class-specific Interface =/

USB_VC_INPUT_TERMINAL, /%

2 bDescriptorSubType - INPUT TERMINAL =/
0x01, /% 3 bTerminalID =/
0x01, 0x02, /% 4 wTerminalType - ITT_CAMERA type (CCD Sensor) =/
0x00, /* 6 bAssocTerminal - No association #*/
0x00, /* 7 iTerminal - Unused =/
0x00, 0x00, /% 8 wObjectiveFocallLengthMin - No optical zoom supported =/
0x00, 0x00, /* 10 wObjectiveFocallLengthMax - No optical zoom supported:/
0x00, 0x00, /% 12 wOcularFocalLength - No optical zoom supported =/
0x03, /% 14 bControlSize - 3 bytes =/
0x00, 0x00, 0x00, /% 15 bmControls - No controls are supported =/
/* Output Terminal Descriptor =/
0x09, /% 0 bLength =/
USB_DESCTYPE_CS_INTERFACE, /= 1 bDescriptorType - Class-specific Interface =/
USB_VC_OUPUT_TERMINAL, /* 2 bDescriptorSubType - OUTPUT TERMINAL =/
0x02, /% 3 bTerminalID =/
0x01, 0xO01, /* 4 wTerminalType - TT_STREAMING type =/

Copyright 2016 XMOS Ltd. 9 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

0x00, /* 6 bAssocTerminal - No association =/

0x01, /% 7 bSourceID - Source is Input terminal 1 =/
0x00, /* 8 iTerminal - Unused =/

/* Standard Interrupt Endpoint Descriptor =/

0x07, /% 0 bLength =/

USB_DESCTYPE_ENDPOINT, /% 1 bDescriptorType =/

(VIDEO_STATUS_EP_NUM | 0x80), /* 2 bEndpointAddress - IN endpoint#/

0x03, /* 3 bmAttributes - Interrupt transfer =/

0x40, 0x00, /% 4 wMaxPacketSize - 64 bytes x/

0x09, /% 6 bInterval - 2A(9-1) microframes = 32ms */
/% Class-specific Interrupt Endpoint Descriptor =/

0x05, /% 0 bLength =/

USB_DESCTYPE_CS_ENDPOINT, /% 1 bDescriptorType - Class-specific Endpoint */
0x03, /% 2 bDescriptorSubType - Interrupt Endpoint =/
0x40, 0x00, /* 3 wMaxTransferSize - 64 bytes =/

/* Video Streaming Interface Descriptor =/
/* Zero-bandwidth Alternate Setting 0 =/

0x09, /% 0 bLength =/

USB_DESCTYPE_INTERFACE, /% 1 bDescriptorType - Interface =/

0x01, /% 2 bInterfaceNumber - Interface 1 =/

0x00, /* 3 bAlternateSetting - 0 =/

0x00, /% 4 bNumEndpoints - No bandwidth used =/
USB_CLASS_VIDEO, /* 5 bInterfaceClass - Video Class */
USB_VIDEO_STREAMING, /* 6 bInterfaceSubClass - VideoStreaming Interface =/
0x00, /% 7 bInterfaceProtocol - No protocol x/

0x00, /* 8 iInterface - Unused =/

/% Class-specific VS Interface Input Header Descriptor =/

0xOE, /% 0 bLength =/

USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface =/
USB_VS_INPUT_HEADER, /% 2 bDescriptorSubType - INPUT HEADER =/

0x01, /% 3 bNumFormats - One format supported =/

0x47, 0x00, /% 4 wTotalLength - Size of class-specific VS descriptors =/
(VIDEO_DATA_EP_NUM | 0x80), /* 6 bEndpointAddress - Iso EP for video streaming =/
0x00, /% 7 bmInfo - No dynamic format change =/

0x02, /% 8 bTerminalLink - Denotes the Output Terminal =/
0x01, /% 9 bStillCaptureMethod - Method 1 supported =/
0x00, /% 10 bTriggerSupport - No Hardware Trigger =/

0x00, /% 11 bTriggerUsage =/

0x01, /% 12 bControlSize - 1 byte =/

0x00, /* 13 bmaControls - No Controls supported =/

/* Class-specific VS Format Descriptor x/

0x1B, /% 0 bLength =/

USB_DESCTYPE_CS_INTERFACE, /= 1 bDescriptorType - Class-specific Interface =/
USB_VS_FORMAT_UNCOMPRESSED, /% 2 bDescriptorSubType - FORMAT UNCOMPRESSED */

0x01, /* 3 bFormatIndex =/

0x01, /* 4 bNumFrameDescriptors - 1 Frame descriptor followed */
0x59,0x55,0x59,0x32,

0x00,0x00,0x10,0x00,

0x80,0x00,0x00,0xAA,

0x00,0x38,0x9B,0x71, /% 5 guidFormat - YUY2 Video format =/

BITS_PER_PIXEL, /* 21 bBitsPerPixel - 16 bits */

0x01, /* 22 bDefaultFrameIndex =/

0x00, /* 23 bAspectRatioX =/

0x00, /* 24 bAspectRatioY =/

0x00, /% 25 bmInterlaceFlags - No interlaced mode */

0x00, /% 26 bCopyProtect - No restrictions on duplication */

/* Class-specific VS Frame Descriptor =/
Ox1E, /* 0 bLength =/

USB_DESCTYPE_CS_INTERFACE, /% 1 bDescriptorType - Class-specific Interface =/
USB_VS_FRAME_UNCOMPRESSED, /= 2 bDescriptorSubType =/

0x01, /% 3 bFrameIndex =/

0x01, /% 4 bmCapabilities - Still image capture method 1 =/
SHORT_CHARS (WIDTH), /% 5 wWidth - 480 pixels =/

SHORT_CHARS (HEIGHT), /* 7 wHeight - 320 pixels =/

WORD_CHARS (MIN_BIT_RATE), /% 9 dwMinBitRate =/

WORD_CHARS (MAX_BIT_RATE), /* 13 dwMaxBitRate =/

WORD_CHARS (MAX_FRAME_SIZE), /* 17 dwMaxVideoFrameBufSize =/

WORD_CHARS (FRAME_INTERVAL), /* 21 dwDefaultFrameInterval (in 100ns units) =/
0x01, /% 25 bFrameIntervalType */

Copyright 2016 XMOS Ltd. 10 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

WORD_CHARS (FRAME_INTERVAL), /+ 26 dwFrameInterval (in 100ns units) =/

/% Video Streaming Interface Descriptor =/
/* Alternate Setting 1 =/

0x09, /% 0 bLength =/
USB_DESCTYPE_INTERFACE, /% 1 bDescriptorType - Interface =/
0x01, /% 2 bInterfaceNumber - Interface 1 */
0x01, /% 3 bAlternateSetting - 1 %/
0x01, /* 4 bNumEndpoints =/
USB_CLASS_VIDEO, /% 5 bInterfaceClass - Video Class =/
USB_VIDEO_STREAMING, /% 6 bInterfaceSubClass - VideoStreaming Interface */
0x00, /% 7 bInterfaceProtocol - No protocol =/
0x00, /* 8 iInterface - Unused =/
/* Standard VS Isochronous Video Data Endpoint Descriptor =/
0x07, /% 0 bLength =/
USB_DESCTYPE_ENDPOINT, /% 1 bDescriptorType =/
(VIDEO_DATA_EP_NUM | 0x80), /* 2 bEndpointAddress - IN Endpoint =/
0x05, /% 3 bmAttributes - Isochronous EP (Asynchronous) */
0x00, 0x04, /* 4 wMaxPacketSize 1x 1024 bytes=/
0x01, /* 6 bInterval =/
};

The configuration descriptor tells host about the power requirements of the device and the number of
interfaces it supports.

Multiple interfaces together provides the video functionality. This group of interfaces is called Video
Interface Collection. The Video Interface Collection is described by an interface association descriptor
(IAD). In the example application, the IAD defines that the interface zero and one groups to form the USB
Video device. These two interfaces are:

e Video Control Interface (VC Interface)
e Video Streaming Interface (VS Interface)

Note: A video function must have one VideoControl interface and zero or more VideoStreaming interfaces.
2.7.3 VideoControl Interface

This interface controls the functional behavior of the video device. It is described by both standard and
class-specific descriptors.

The Standard VC interface descriptor identifies the interface number and class and provides the number
of endpoints that belongs to this interface. The default Endpoint 0 is used by this interface for control
purpose through class-specific requests. Another optional endpoint called Status Interrupt Endpoint is
used to send asynchronous status notifications to the host. This interrupt endpoint is described by both
standard and class-specific endpoint descriptors.

The Class-Specific VC interface descriptor describes the whole topology of the video device. It includes
Unit descriptors and Terminal descriptors. The example application doesn’t include any Units and hence
only Terminal descriptors can be found in the descriptors hierarchy structure.

The Class-Specific descriptors starts with a header called VC Interface Header descriptor. This descriptor
mentions the version of UVC specification followed and the collection of streaming interfaces to which
this VideoControl interface belongs.

The Input Terminal descriptor provides information on the functional aspects of the input source of the
video device. Following code shows the fields of this descriptor:

USB_VC_INPUT_TERMINAL, /* 2 bDescriptorSubType - INPUT TERMINAL =/

0x01, /% 3 bTerminalID =/

0x01, 0x02, /% 4 wTerminalType - ITT_CAMERA type (CCD Sensor) =/
0x00, /* 6 bAssocTerminal - No association */

Copyright 2016 XMOS Ltd. 11 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

In the above code, the ‘bTerminallD’ is an unique identifier of this terminal and ‘bTerminalType’ declares
camera as the input type.

The Output Terminal descriptor is shown in the following code.

USB_VC_OUPUT_TERMINAL, /* 2 bDescriptorSubType - OUTPUT TERMINAL =/
0x02, /% 3 bTerminalID =/

0x01, 0x01, /% 4 wTerminalType - TT_STREAMING type =/
0x00, /* 6 bAssocTerminal - No association */

0x01, /% 7 bSourceID - Source is Input terminal 1 =/
0x00, /* 8 iTerminal - Unused =/

The above descriptor shows that the ‘bSourcelD’ is defined as 0x01 which is the ‘bTerminallD’ of the
input terminal. This information shows the interconnection between the entities, which the host uses to
identify the topology of the video device.

2.7.4 VideoStreaming Interface

VideoStreaming interfaces are used to interchange video data streams between the Host and the Video de-
vice. Each interface can have one isochronous or bulk data endpoint. Interfaces supporting isochronous
video transfer must have alternate settings which enables host to change the bandwidth requirements
imposed by an active isochronous pipe. It is also mandatory to provide a zero-bandwidth alternate set-
ting as the default alternate setting(alternate setting zero) that provides the host software the option to
temporarily relinquish USB bandwidth by switching to this alternate setting.

In the UVC example, the zero-bandwidth alternate setting of the VideoStreaming interface is described by
standard interface descriptor and class-specific VS interface descriptors.

The Standard VS interface descriptor provides the interface number, the number of endpoints that be-
longs to this interface etc. In case of zero-bandwidth alternate setting the number of endpoints is set to
zero.

The Class-Specific VS interface descriptors are used to describe the supported video stream formats, video
frame details, still image frame details, color profile of video data etc. The following is the list of these
class-specific descriptors:

Input Header descriptor
Output Header descriptor
Payload Format descriptor
Video Frame descriptor
Still Image frame descriptor
Color Matching descriptor

The Input Header descriptor is meant for interfaces that contain IN endpoint and Output Header is for
interfaces that contain OUT endpoint.

The following code shows the fields of Input Header descriptor:

USB_VS_INPUT_HEADER, /* 2 bDescriptorSubType - INPUT HEADER =/

0x01, /% 3 bNumFormats - One format supported =/

0x47, 0x00, /* 4 wTotalLength - Size of class-specific VS descriptors =/
(VIDEO_DATA_EP_NUM | 0x80), /* 6 bEndpointAddress - Iso EP for video streaming =/

0x00, /% 7 bmInfo - No dynamic format change =/

0x02, /% 8 bTerminalLink - Denotes the Output Terminal =/

The above code shows the number of formats supported, the address of endpoint which streams video
data and the output terminal ID which links to this streaming interface.

The Payload Format descriptor describes the video format. The fields of this descriptor is shown below:

Copyright 2016 XMOS Ltd. 12 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

USB_VS_FORMAT_UNCOMPRESSED, /* 2 bDescriptorSubType - FORMAT UNCOMPRESSED =/
0x01, /* 3 bFormatIndex =/
0x01, /% 4 bNumFrameDescriptors - 1 Frame descriptor followed */

0x59,0x55,0x59,0x32,
0x00,0x00,0x10,0x00,
0x80,0x00,0x00,0xAA,

0x00,0x38,0x9B,0x71, /% 5 guidFormat - YUY2 Video format =/
BITS_PER_PIXEL, /% 21 bBitsPerPixel - 16 bits =/
0x01, /% 22 bDefaultFrameIndex =/

The above code shows that the video stream is of uncompressed YUY2 format and uses 16-bits per pixel.

The Video Frame descriptor mentions the frame resolution, frame rate, video buffer size etc. The follow-
ing code shows the fields of this descriptor:

USB_VS_FRAME_UNCOMPRESSED, /* 2 bDescriptorSubType =/

0x01, /* 3 bFrameIndex =/

0x01, /% 4 bmCapabilities - Still image capture method 1 =/
SHORT_CHARS (WIDTH), /% 5 wWidth - 480 pixels x/

SHORT_CHARS (HEIGHT) , /% 7 wHeight - 320 pixels =/

WORD_CHARS (MIN_BIT_RATE), /* 9 dwMinBitRate =/

WORD_CHARS (MAX_BIT_RATE), /* 13 dwMaxBitRate =/

WORD_CHARS (MAX_FRAME_SIZE), /+* 17 dwMaxVideoFrameBufSize =/

WORD_CHARS (FRAME_INTERVAL), /* 21 dwDefaultFrameInterval (in 100ns units) =/
0x01, /% 25 bFrameIntervalType x/

WORD_CHARS (FRAME_INTERVAL), /% 26 dwFrameInterval (in 100ns units) =/

The defines used in the above code are present in the uvc_defs.h file and they are shown below:

/% USB Video resolution */
#define BITS_PER_PIXEL 16
#define WIDTH 480
#define HEIGHT 320

/% Frame rate =*/
#define FPS 30

#define MAX_FRAME_SIZE (WIDTH = HEIGHT = BITS_PER_PIXEL / 8)
#define MIN_BIT_RATE (MAX_FRAME_SIZE = FPS = 8)

#define MAX_BIT_RATE (MIN_BIT_RATE)

#define PAYLOAD_SIZE (1 = 1024)

/% Interval defined in 100ns units =/
#define FRAME_INTERVAL (10000000/FPS)

The other alternate setting of this interface has the data streaming isochronous endpoint and it is the
operational alternate setting. The class-specific descriptors are not repeated in this alternate setting.

The Standard VS Isochronous Endpoint descriptor of the alternate setting 1 of the UVC example is shown
below:

/% Standard VS Isochronous Video Data Endpoint Descriptor =/

0x07, /% 0 bLength =/

USB_DESCTYPE_ENDPOINT, /% 1 bDescriptorType =/

(VIDEO_DATA_EP_NUM | 0x80), /#* 2 bEndpointAddress - IN Endpoint =/

0x05, /* 3 bmAttributes - Isochronous EP (Asynchronous) =/
0x00, 0x04, /* 4 wMaxPacketSize 1x 1024 bytesx/

0x01, /* 6 bInterval =/

The above code shows that the maximum packet size of the endpoint is 1024 bytes and the ‘binterval’ of
0x01 requests host to poll the endpoint every microframe(125us).

Copyright 2016 XMOS Ltd. 13 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

In general, USB video devices supports a set of video parameter combinations(including video format,
frame size and frame rate) and multiple alternate settings with different maximum packet size endpoints.
This enables the host to select the appropriate alternate setting that provides only the required bandwidth
for a given video parameter combination.

2.7.5 USB String Descriptors

String descriptors provide human readable information for your device and you can configure them with
your USB product information. The descriptors are placed in an array as shown in the below code.

/% String table - unsafe as accessed via shared memory =/
static char * unsafe stringDescriptors[]=

{
"\x09\x04", /% Language ID string (US English) =/
"XMOS", /* iManufacturer =/
""XMOS USB Video Device",/* iProduct =*/
"Config", /% iConfiguration string =/
3

The XMOS USB library will take care of encoding the strings into Unicode and structures the content into
USB string descriptor format.

Copyright 2016 XMOS Ltd. 14 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

2.8 USB Standard and Class-Specific requests

In usb_video.xc there is a function Endpoint0() which handles all the USB control requests sent by host
to the control endpoint 0. USB control requests includes both standard USB requests and the UVC class-
specific requests.

In Endpoint0() function, a USB request is received as a setup packet by calling USB_GetSetupPacket() library
function. The setup packet structure is then examined to distinguish between standard and class-specific
requests.

The XMOS USB library provides a function USB_StandardRequests() to handle the standard USB requests.
This function is called with setup packet and descriptors structures as shown below

/% Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset */
unsafe{
result = USB_StandardRequests(epO_out, epO_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0, null, 0, stringDescriptors, sizeof(stringDescriptors)/sizeof(stringDescriptors[0]),
sp, usbBusSpeed);
}

The video class interfaces use endpoint 0 as the control element and receives all class-specific requests
on it. The class-specific requests are used to set and get video related controls. These request are divided
into:

e VideoControl requests
e VideoStreaming requests

The function UVC_InterfaceClassRequests() present in uvc_req.c handles the class-specific requests. The
defines corresponding to the class-specific request codes are present in uvc_defs.h as shown below.

/% Video Class-specific Request codes =/

#define SET_CUR 0x01

#define GET_CUR 0x81

#define GET_MIN 0x82

#define GET_MAX 0x83

#define GET_RES 0x84

#define GET_LEN 0x85

#define GET_INFO 0x86

#define GET_DEF 0x87

/% Video Streaming Interface Control selectors =/
#define VS_PROBE_CONTROL 0x01
#define VS_COMMIT_CONTROL 0x02

In the UVC example, the SET and GET requests for Video Probe and Commit Controls are handled. The
Video Probe and Commit Controls are involved in the negotiation of streaming parameters between the
host and the device. The following code shows the structure of the streaming parameters that are nego-
tiated with those Controls.

Copyright 2016 XMOS Ltd. 15 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

/% Video Probe and Commit Controls (Table 4-47 , UVC 1.1) =/
typedef struct
{

unsigned short bmHint;
unsigned char bFormatIndex;
unsigned char bFramelIndex;
unsigned int dwFrameInterval;
unsigned short wKeyFrameRate;
unsigned short wPFrameRate;
unsigned short wCompQuality;
unsigned short wCompWindowSize;
unsigned short wDelay;
unsigned int dwMaxVideoFrameSize;
unsigned int dwMaxPayloadTransferSize;
unsigned int dwClockFrequency;
unsigned char bmFramingInfo;
unsigned char bPreferedVersion;
unsigned char bMinVersion;
unsigned char bMaxVersion;

} __attribute__((packed)) UVC_ProbeCommit_Ctrl_t;

The demo application doesn’t have multiple set of streaming parameters and therefore the GET_DEF,
GET_MIN, GET_MAX and GET_CUR requests are handled similarly and return same values to the host.

This source code can be easily extended to support more class-specific requests.

2.9 Video data streaming

Streaming video data between device and host takes place through the streaming endpoint of the
VideoStreaming interface. The video is streamed by continuously transmitting the video samples at a
particular rate. A video sample refers to an encoded block of video data that the format-specific decoder
is able to accept and interpret in a single transmission.

In the UVC example, the video data is in packed 4:2:2 YUV format (YUY2) and a video sample corresponds
to a single video frame of 480x320 pixels. Each video sample is split into multiple class-defined Payload
Transfers. A Payload Transfer is composed of the class-defined payload header followed by the video
payload data. The payload format is as shown below:

For an isochronous endpoint, each (micro)frame will contain a single payload transfer. The maximum
packet size of the isochronous endpoint in the example code is 1024 bytes, therefore excluding the
payload header length 1012 bytes are available for the video data in a single payload transfer.

The function VideoEndpointsHandler() present in usb_video.xc handles the isochronous video data end-
point. Each payload transfer is carried out by using the XUD_SetBuffer() API of the USB library.

For demonstartion, video data is generated in the device by filling up the buffers with red, green and blue
color values (YUV format) as shown in the following code.

/% Fi11l video buffers with different color data =/
for(int i = 0; i < (PAYLOAD_SIZE/4); i++) {
/* Set RED color =/

gVideoBuffer[0][i] = 0x7010D010;
/% Set GREEN color =/
gVideoBuffer[2][i] = 0x00000000;
/* Set BLUE color =/
gVideoBuffer[1][i] = 0xDC206020;

Copyright 2016 XMOS Ltd. 16 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

These buffers are used together to create a video frame. The following code from VideoEndpointsHandler()
shows the transmission of a single frame.

/% Transmits single frame =/
while(expectedPixels > 0)

if(expectedPixels < (PAYLOAD_SIZE - PAYLOAD_HEADER_LENGTH)) {
/* Payload transfer =/
result = XUD_SetBuffer(episo_in, (gVideoBuffer[index], unsigned char[]), expectedPixels+
< PAYLOAD_HEADER_LENGTH) ;
} else {
/* Payload transfer =/
result = XUD_SetBuffer(episo_in, (gVideoBuffer[index], unsigned char[]), 1024);

/* Note down the SOF counts */
sofCounts++;

expectedPixels -= ((PAYLOAD_SIZE)- PAYLOAD_HEADER_LENGTH) ;
if(expectedPixels <= (MAX_FRAME_SIZE - split)) {

index = (index + 1) % 3;

split += (MAX_FRAME_SIZE / 6);

}

The above code shows that ‘gVideoBuffer[]’ holds the payload data and is sent continuously to the host
till the expected number of pixels per frame is over. These payload buffers are populated with payload
header as shown in the following code.

/* Fill the buffers with payload header =/
for(int i=0; i<3; i++)

{
/* Make the Payload header =/
(gVideoBuffer[i], unsigned char[])[0] = PAYLOAD_HEADER_LENGTH;
(gVideoBuffer[i], unsigned char[])[1] = frame;
/% Set dwPresentationTime =/
(gVideoBuffer[i], unsigned short[])[1] = pts;
(gVideoBuffer[i], unsigned short[])[2] = pts>>16;
/% Set scrSourceClock =/
(gVideoBuffer[i], unsigned short[])[3] = pts;
(gVideoBuffer[i], unsigned short[])[4] = pts>>16;
(gVideoBuffer[i], unsigned short[])[5] = (sofCounts>>3) & 2047;
}

In the above code, the ‘pts’ is Presentation timestamp and it is obtained from a timer running in the
XCORE device at 100MHz. The ‘pts’ and start of frame counter (count of USB SOF) are used to arrive at
the Source Clock reference field.

Copyright 2016 XMOS Ltd. 17 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

‘ Device

‘ Configuration 0

Interface Association
(Video Interface Collection)

Video Control (VC) Video Streaming (VS) Video Streaming
Interface Interface Interface
(Interface 0) (Interface 1, Alt setting 0) (Interface 1, Alt setting 1)
VC Header VS Input Header
Standard
Isochronous
Endpoint
Input Terminal VS Format
Output Terminal VS Frame

Standard Interrupt
Endpoint

Class-specific
Interrupt Endpoint

\ - Standard descriptor

\ - Class-specific descriptor

Figure 4: Hierarchical structure of USB descriptors of UVC example

Copyright 2016 XMOS Ltd. 18 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

Payload Header Payload Data
(12 bytes) (Video Frame Data)

Header Length | Bit Field Header | Presentation Timestamp (PTS) Source Clock Reference (SCR)
(1 byte) (1 byte) (4 bytes) (6 bytes)

Figure 5: Payload format for uncompressed streams

Copyright 2016 XMOS Ltd. 19 WWW.Xmos.com
XM007149

XMOS

AN00127 (2.0.2)

APPENDIX A - Demo Hardware Setup

To setup the demo hardware the following boards are required.

e XCORE-USB slicekKIT (XK-SK-U16-ST)
- XCORE-USB Core board.
- USB A/B sliceCARD.
- XTAG-2 debug adaptor
- Power supply

Connect xCORE-

USB board
power cable

Connect xCORE-

USB board to host

machine with a
USB cable

Figure 6: XMOS xCORE-USB sliceKIT

Set xSCOPE
Switch to ON
position

Connect XTAG
to XSYS
connector

Connect
XTAG USB to
host PC

Copyright 2016 XMOS Ltd. 20

WWW.XmMOos.com
XM007149

®
l MOS AN00127 (2.0.2)

The hardware should be configured as displayed above for this demo:

e The XTAG debug adapter should be connected to the XSYS connector and the XTAG USB should be
connected to the host machine.

e The USB sliceCARD should be connected to the U slot (J4 header) of the xCORE-USB Core board and
the other end of USB sliceCARD should be connected to host machine using a USB cable.

e The XLINK switch on the core board should be set to the ON position.

e The xCORE-USB core board should have the power cable connected.

Copyright 2016 XMOS Ltd. 21 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

APPENDIX B - Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the xCORE-USB sliceKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

B.1 Launching from the command line

From the command line the xrun tool is used to download code to the xCORE device. Changing into the
bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> Xrun --xscope app_usb_video.xe <-- Download and execute the xCORE code

Once this command has executed the USB video device should have enumerated on your machine.

B.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio the run mechanism is used to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and then ‘Run As’-> ‘xCORE application’ to execute the
code on the xCORE device.

Once this command has executed the USB video device should have enumerated on your machine.

Copyright 2016 XMOS Ltd. 22 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

B.3 Running the demo

The demo can be run on any OS that has support for USB Video class driver. Windows, Linux and Mac OS
have native support for UVC driver. The following sections describe in detail on how to run the demo on
those OS platforms.

B.3.1 Running on Windows

e |In Microsoft Windows, When the USB Video device enumerates the host driver will be installed
to get the device ready for operation. The following figure shows the dialog that completes
installation of driver for the XMOS USB Video Device.

:_J Driver Software Installation “ ‘ ﬁ

Your device is ready to use

USB Compuosite Device + Ready to use
KMOS5 USB Video Device + Ready to use

Figure 7: Driver installation for the Video device

e After the driver is installed properly, you can use any video capture softwares like VLC Media
player, AmCap etc to open the XMOS USB Video Device.

e Open VLC Media player, select Media menu and click Open Capture Device.... This will open a
dialog window on which you can select the Video device as shown in the following picture.

| 3 File | (EJ Disc | 52 Network | Capture Device

Capture mode [DirectShow ']

Device Selection

Video device name I Refresh list] I Configure] IXMDS USB Video De ']

Audio device name I Refresh list] I Configure] lDefauIt ']

Options

Video size

Advanced options...

[] show mare options

ooy o) [o]

Figure 8: Open Video device in VLC Media player

Copyright 2016 XMOS Ltd. 23 WWW.Xmos.com
XMO007149

®
l MOS AN00127 (2.0.2)

e Click Play to see the demo video streamed out of the Video device. The video is a sequence of
colored rows that scroll upwards. The following figure shows a snapshot of the video.

© dshow:// - VI

Media Playback Audio Video Tools View Help

Figure 9: Video streamed from the XMOS USB Video device

B.3.2 Running on Mac OSX

e In Mac OSX, once the USB Video device is enumerated the UVC driver will be loaded by the host to
get the device ready for operation. The device will have enumerated as XMOS USB Video Device.

e Now you can open this Video device using any video capture software. Photo Booth is one such
application that comes by default with Mac. Open Photo Booth application, click on ‘Camera’ menu
and then select XMOS USB Video Device. The application will then show the video streamed out of
the USB device. The video is a sequence of colored rows that scroll upwards.

B.3.3 Running on Linux

e Under linux, when the device enumerates the native UVC driver will be loaded and the device will be
mounted as /dev/videoX where ‘X’ is a number.

e Now you can use any video capture software like VLC Media player, Cheese, luvcview etc to open the
Video device.

e Open VLC Media player, select Media menu and click Open Capture Device.... This will open a dialog
window on which you can select the Video device as shown in the following picture.

Copyright 2016 XMOS Ltd. 24 WWW.Xmos.com
XMO007149

XMOS

(3 File |) Disc | % Network Capture Device

AN00127 (2.0.2)

Capture mode Video for Linux 2 =

1

Device Selection

Video device name [fdev,fuideoﬂ

Audio device name

Options
Video standard Undefined

3

Advanced options...

| show more options

1R’§y & Cancel

Figure 10: Open Video device in VLC Media player

e Click Play to see the demo video streamed out of the XMOS USB Video Device. The demo video
looks like sequence of colored rows scrolling up.

Copyright 2016 XMOS Ltd. 25

WWW.XmMOos.com
XM007149

®
l MOS AN00127 (2.0.2)

APPENDIX C - References

XMOS Tools User Guide
http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide
http://www.xmos.com/published/xmos-programming-guide

XMOS xCORE-USB Device Library

http://www.xmos.com/published/xuddg

XMOS USB Device Design Guide
http://www.xmos.com/published/xmos-usb-device-design-guide

USB Video Class Specification, USB.org:
http://www.usb.org/developers/docs/devclass_docs/

USB 2.0 Specification
http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip
YUV Video Format

http://en.wikipedia.org/wiki/YUV
http://1linuxtv.org/downloads/v41-dvb-apis/V4L2-PIX-FMT-YUYV.htm]

Copyright 2016 XMOS Ltd. 26 WWW.Xmos.com
XMO007149

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xmos-usb-device-design-guide
http://www.usb.org/developers/docs/devclass_docs/
http://www.usb.org/developers/docs/usb20_docs/usb_20_081114.zip
http://en.wikipedia.org/wiki/YUV
http://linuxtv.org/downloads/v4l-dvb-apis/V4L2-PIX-FMT-YUYV.html

®
l MOS AN00127 (2.0.2)

APPENDIX D - Full source code listing

D.1 Source code for main.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved

/% Includes =/
#include <platform.h>
#include <xsl.h>
#include <xscope.h>
#include <xccompat.h>

#include "usb_video.h"

/* XSCOPE Setup Function */
#if (USE_XSCOPE == 1)
void xscope_user_init(void) {
xscope_register(0, 0, "", 0, "");
xscope_config_io(XSCOPE_IO_BASIC); /* Enable fast printing over XTAG =/
}
#endif

/* USB Endpoint Defines =/
#define XUD_EP_COUNT_OUT 1 // 1 OUT EPO
#define XUD_EP_COUNT_IN 3 // (1 IN EPO + 1 INTERRUPT IN EP + 1 ISO IN EP)

int main() {
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

/% '"Par' statement to run the following tasks in parallel =/
par
{
on USB_TILE: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, XUD_SPEED_HS, XUD_PWR_SELF);

on USB_TILE: EndpointO(c_ep_out[0], c_ep_in[0]);

on USB_TILE: VideoEndpointsHandler(c_ep_in[1l], c_ep_in[2]);
}

return 0;

D.2 Source code for usb_video.xc

// Copyright (c) 2016, XMOS Ltd, A1l rights reserved

#include "string.h"
#include "usb.h"
#include "usb_video.h"

/* Definition of Descriptors =/
/% USB Device Descriptor =/
static unsigned char devDesc[] =

{

0x12, /% 0 bLength x/

USB_DESCTYPE_DEVICE, /#* 1 bdescriptorType - Devicex/

0x00, /% 2 bcdUSB version */

0x02, /* 3 bcdUSB version =/

OxEF, /% 4 bDeviceClass - USB Miscellaneous Class =/
. __|
Copyright 2016 XMOS Ltd. 27 WWW.Xmos.com

XM007149

®
l MOS AN00127 (2.0.2)

0x02, /* 5 bDeviceSubClass - Common Class =/

0x01, /% 6 bDeviceProtocol - Interface Association Descriptor =/
0x40, % 7 bMaxPacketSize for EPO - max = 64x/
x 8
9

/
(VENDOR_ID & OxFF), / idVendor =/
(VENDOR_ID >> 8), / idVendor =/
(PRODUCT_ID & OxFF), /# 10 idProduct =/
(PRODUCT_ID >> 8), /% 11 idProduct =/
(BCD_DEVICE & OxFF), /% 12 bcdDevice =/

/

/

/

/

/

(BCD_DEVICE >> 8), % 13 bcdDevice */

0x01, % 14 iManufacturer - index of string=/
0x02, % 15 iProduct - index of string=/
0x00, % 16 iSerialNumber - index of stringx/
0x01 % 17 bNumConfigurations =/
};
/% USB Configuration Descriptor =/
static unsigned char cfgDesc[] = {
0x09, /% 0 blLength =/
USB_DESCTYPE_CONFIGURATION, /+ 1 bDescriptorType - Configuration:/
0xAE, 00, /% 2 wTotallLength =/
0x02, /* 4 bNumInterfaces =/
0x01, /% 5 bConfigurationValue =/
0x03, /% 6 iConfiguration - index of string =/
0x80, /% 7 bmAttributes - Bus powered =/
OxFA, /* 8 bMaxPower (in 2mA units) - 500mA =/
/* Interface Association Descriptor =/
0x08, /% 0 bLength =/
USB_DESCTYPE_INTERFACE_ASSOCIATION, /* 1 bDescriptorType - Interface Association =/
0x00, /* 2 bFirstInterface - VideoControl i/f =/
0x02, /% 3 bInterfaceCount - 2 Interfaces =/
USB_CLASS_VIDEO, /* 4 bFunctionClass - Video Class */
USB_VIDEO_INTERFACE_COLLECTION, /* 5 bFunctionSubClass - Video Interface Collection =/
0x00, /% 6 bFunctionProtocol - No protocol =/
0x02, /* 7 iFunction - index of string =/
/% Video Control (VC) Interface Descriptor =/
0x09, /% 0 bLength =/
USB_DESCTYPE_INTERFACE, /% 1 bDescriptorType - Interface =/
0x00, /* 2 bInterfaceNumber - Interface 0 =/
0x00, /% 3 bAlternateSetting */
0x01, /% 4 bNumEndpoints =/
USB_CLASS_VIDEO, /% 5 bInterfaceClass - Video Class =/
USB_VIDEO_CONTROL, /* 6 bInterfaceSubClass - VideoControl Interface =/
0x00, /% 7 bInterfaceProtocol - No protocol x/
0x02, /% 8 ilnterface - Index of string (same as iFunction of IAD) =/
/% Class-specific VC Interface Header Descriptor =/
0x0D, /% 0 bLength =/
USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface =/
USB_VC_HEADER, /% 2 bDescriptorSubType - HEADER =/
0x10, 0xO01, /* 3 bcdUVC - Video class revision 1.1 =/
0x28, 0x00, /% 5 wTotalLength - till output terminal =/
WORD_CHARS (100000000) , /% 7 dwClockFrequency - 100MHz (Deprecated) =/
0x01, /% 11 bInCollection - One Streaming Interface =/
0x01, /% 12 baInterfaceNr - Number of the Streaming interface =/

/% Input Terminal (Camera) Descriptor - Represents the CCD sensor (Simulated here in this demo) =/
0x12, /% 0 bLength =/
USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface =/

USB_VC_INPUT_TERMINAL, /* 2 bDescriptorSubType - INPUT TERMINAL =/

0x01, /* 3 bTerminalID =/

0x01, 0x02, /% 4 wTerminalType - ITT_CAMERA type (CCD Sensor) =/

0x00, /% 6 bAssocTerminal - No association =/

0x00, /* 7 iTerminal - Unused =/

0x00, 0x00, /% 8 wObjectiveFocallLengthMin - No optical zoom supported */
0x00, 0x00, /* 10 wObjectiveFocalLengthMax - No optical zoom supported+/
0x00, 0x00, /% 12 wOcularFocallLength - No optical zoom supported =/
0x03, /% 14 bControlSize - 3 bytes =/

0x00, 0x00, 0x00, /% 15 bmControls - No controls are supported =/

/# Output Terminal Descriptor =/
0x09, /% 0 bLength =/
USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface =/

Copyright 2016 XMOS Ltd. 28 WWW.Xmos.com
XM007149

XMOS

AN00127 (2.0.2)

USB_VC_OUPUT_TERMINAL,
0x02,

0x01, 0x01,

0x00,

0x01,

0x00,

/*
/*
/%
/*
/*
/*

bDescriptorSubType - OUTPUT TERMINAL

bTerminalID =/

wTerminalType - TT_STREAMING type =/

bSourceID - Source is Input terminal 1 x/

2
3
4
6 bAssocTerminal - No association */
7
8

iTerminal - Unused =/

/% Standard Interrupt Endpoint Descriptor =/

0x07,
USB_DESCTYPE_ENDPOINT,

/*
/%

0 bLength =/

1 bDescriptorType =/

(VIDEO_STATUS_EP_NUM | 0x80), /* 2 bEndpointAddress - IN endpoint#/

0x03,
0x40, 0x00,
0x09,

/% 3 bmAttributes - Interrupt transfer =/
/* 4 wMaxPacketSize - 64 bytes =/
/% 6 bInterval - 2A(9-1) microframes

/% Class-specific Interrupt Endpoint Descriptor =/

0x05,
USB_DESCTYPE_CS_ENDPOINT,
0x03,

0x40, 0x00,

/%

/% 1 bDescriptorType - Class-specific Endpoint =/
/% 2 bDescriptorSubType - Interrupt Endpoint =/
/* 3 wMaxTransferSize - 64 bytes =/

0 bLength =/

/% Video Streaming Interface Descriptor =/
/* Zero-bandwidth Alternate Setting 0 =/

0 bLength =/

1 bDescriptorType - Interface =/

bInterfaceNumber - Interface 1 */
bAlternateSetting - 0 =/

bNumEndpoints - No bandwidth used */
bInterfaceClass - Video Class =*/
bInterfaceSubClass - VideoStreaming Interface =*/
bInterfaceProtocol - No protocol
iInterface - Unused =/

O NOYUT A WN

Input Header Descriptor =

bLength =/

OCoONO DA WNREO

11 bTriggerUsage */

12 bControlSize - 1 byte =/

32ms =/

*/

%/

bDescriptorType - Class-specific Interface
bDescriptorSubType - INPUT HEADER */
bNumFormats - One format supported =/
wTotallLength - Size of class-specific VS descriptors =/
bEndpointAddress - Iso EP for video streaming =/

bmInfo - No dynamic format change =/

bTerminalLink - Denotes the Output Terminal =/
bStillCaptureMethod - Method 1 supported =/

10 bTriggerSupport - No Hardware Trigger =/

13 bmaControls - No Controls supported =/

Descriptor =/

0x09, /%
USB_DESCTYPE_INTERFACE, /%
0x01, /%
0x00, /*
0x00, /*
USB_CLASS_VIDEO, /*
USB_VIDEO_STREAMING, /*
0x00, /%
0x00, /*
/% Class-specific VS Interface
OxOE, B
USB_DESCTYPE_CS_INTERFACE, /=
USB_VS_INPUT_HEADER, /*
0x01, /%
0x47, 0x00, /%
(VIDEO_DATA_EP_NUM | 0x80), /=
0x00, /*
0x02, /*
0x01, /*
0x00, /*
0x00, /*
0x01, /*
0x00, /*
/% Class-specific VS Format

0x1B, /*
USB_DESCTYPE_CS_INTERFACE, /=
USB_VS_FORMAT_UNCOMPRESSED, /=

0x01,

0x01,
0x59,0x55,0x59,0x32,
0x00,0x00,0x10,0x00,
0x80,0x00,0x00,0xAA,
0x00,0x38,0x9B,0x71,
BITS_PER_PIXEL,
0x01,

0x00,

0x00,

0x00,

0x00,

/% Class-specific VS Frame
Ox1E,
USB_DESCTYPE_CS_INTERFACE,
USB_VS_FRAME_UNCOMPRESSED,
0x01,

0x01,

SHORT_CHARS (WIDTH),
SHORT_CHARS (HEIGHT),
WORD_CHARS (MIN_BIT_RATE),
WORD_CHARS (MAX_BIT_RATE),

/*
/%

/%
/:’:
/*
/*
/*
/%
/*

/*
/*
/*
/%
/*
/*
/:’:
/*
/*

0 bLength =/

*/

1 bDescriptorType - Class-specific Interface */

2 bDescriptorSubType - FORMAT UNCOMPRESSED =/

3 bFormatIndex */

4 bNumFrameDescriptors - 1 Frame descriptor followed */

5 guidFormat - YUY2 Video format =/
21 bBitsPerPixel - 16 bits =/
22 bDefaultFrameIndex =/

23 bAspectRatioX =/
24 bAspectRatioY =/

25 bmInterlaceFlags - No interlaced mode */
26 bCopyProtect - No restrictions on duplication */

Descriptor =/

o

bLength =/

bDescriptorType - Class-specific Interface =/
bDescriptorSubType =/

bFrameIndex =/

wWidth - 480 pixels =/
wHeight - 320 pixels =/

dwMinBitRate */
3 dwMaxBitRate =*/

1
2
3
4 bmCapabilities - Still image capture method 1 =/
5
7
9
1

Copyright 2016 XMOS Ltd.

29

WWW.XmMOos.com
XM007149

®
l MOS AN00127 (2.0.2)

WORD_CHARS (MAX_FRAME_SIZE), /+ 17 dwMaxVideoFrameBufSize =/

WORD_CHARS (FRAME_INTERVAL), /% 21 dwDefaultFrameInterval (in 100ns units) =/
0x01, /% 25 bFrameIntervalType =/

WORD_CHARS (FRAME_INTERVAL), /* 26 dwFrameInterval (in 100ns units) =/

/% Video Streaming Interface Descriptor =/
/% Alternate Setting 1 =/

0x09, /% 0 bLength =/

USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType - Interface =/

0x01, /* 2 bInterfaceNumber - Interface 1 =/

0x01, /% 3 bAlternateSetting - 1 */

0x01, /% 4 bNumEndpoints =/

USB_CLASS_VIDEO, /* 5 bInterfaceClass - Video Class =/
USB_VIDEO_STREAMING, /% 6 bInterfaceSubClass - VideoStreaming Interface =/
0x00, /% 7 bInterfaceProtocol - No protocol =/

0x00, /* 8 iInterface - Unused =/

/+* Standard VS Isochronous Video Data Endpoint Descriptor =/

0x07, /% 0 bLength =/
USB_DESCTYPE_ENDPOINT, /% 1 bDescriptorType =/
(VIDEO_DATA_EP_NUM | 0x80), /* 2 bEndpointAddress - IN Endpoint =/
0x05, /% 3 bmAttributes - Isochronous EP (Asynchronous) */
0x00, 0x04, /* 4 wMaxPacketSize 1x 1024 bytes=/
0x01, /% 6 bInterval =/
};
unsafe{

/% String table - unsafe as accessed via shared memory =/
static char * unsafe stringDescriptors[]=

{
"\x09\x04", /% Language ID string (US English) =/
""XMOS", /* iManufacturer =/
"XMOS USB Video Device",/* iProduct =/
"Config", /* iConfiguration string =/
bE

}

/* Endpoint 0 handles both std USB requests and Video class-specific requests =/
void EndpointO(chanend chan_epO_out, chanend chan_ep0_in)

USB_SetupPacket_t sp;

unsigned bmRequestType;
XUD_BusSpeed_t usbBusSpeed;

XUD_ep epO_out = XUD_InitEp(chan_epO_out, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);
XUD_ep epO_in = XUD_InitEp(chan_epO_in, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);

UVC_InitProbeCommitData();

while(1)
{
/* Returns XUD_RES_OKAY on success */
XUD_Result_t result = USB_GetSetupPacket(epO_out, epO_in, sp);

if(result == XUD_RES_OKAY)
{

/% Set result to ERR, we expect it to get set to OKAY if a request is handled =/
result = XUD_RES_ERR;

/% Stick bmRequest type back together for an easier parse... x/

bmRequestType = (sp.bmRequestType.Direction<<7) |
(sp.bmRequestType.Type<<5) |
(sp.bmRequestType.Recipient);

if ((bmRequestType == USB_BMREQ_H2D_STANDARD_DEV) &&
(sp.bRequest == USB_SET_ADDRESS))

// Host has set device address, value contained in sp.wValue

switch (bmRequestType)
{

/% Direction: Device-to-host and Host-to-device

Copyright 2016 XMOS Ltd. 30 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

}

« Type: Class

#« Recipient: Interface / Endpoint
%/

case USB_BMREQ_H2D_CLASS_INT:

case USB_BMREQ_D2H_CLASS_INT:

case USB_BMREQ_H2D_CLASS_EP:

case USB_BMREQ_D2H_CLASS_EP:

/% Inspect for VideoControl Class interface number or
% VideoStreaming Class interface number or EP number;
If an Entity is addressed, the High byte has to be checked
« for Entity ID =/
if(sp.wIndex == 0 || sp.wIndex == 1 || sp.wIndex == (VIDEO_DATA_EP_NUM | 0x80))

{
/% Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset */
result = UVC_InterfaceClassRequests(epO_out, epO_in, sp);
}
break;

3
} /= if ends =/

/% If we haven't handled the request about then do standard enumeration requests */
if(result == XUD_RES_ERR)

{
/% Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset =/
unsafe{
result = USB_StandardRequests(epO_out, epO_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0, null, 0, stringDescriptors, sizeof(stringDescriptors)/sizeof(stringDescriptors
= [0D),
sp, usbBusSpeed);
}
}

/% USB bus reset detected, reset EP and get new bus speed */
if(result == XUD_RES_RST)
{

usbBusSpeed = XUD_ResetEndpoint(epO_out, ep0_in);

/* Buffer to hold Video data in YUYV format =/
unsigned int gVideoBuffer[3][PAYLOAD_SIZE / 4];

/* Function to handle all endpoints of the Video class excluding control endpoint0 =/
void VideoEndpointsHandler(chanend c_epint_in, chanend c_episo_in)

{

XUD_Result_t result;

int frame = 0x0C;

int pts, tmrValue = 0;
timer presentationTimer;

int sofCounts = 0, frameCounts = 0;
unsigned int index = 0;

unsigned int i_index = 0;

int split = (MAX_FRAME_SIZE / 6);
int i_split = (MAX_FRAME_SIZE / 6);

/% Initialize all endpoints */
XUD_ep epint_in

XUD_InitEp(c_epint_in, XUD_EPTYPE_INT);

XUD_ep episo_in = XUD_InitEp(c_episo_in, XUD_EPTYPE_ISO);

/* Just to keep compiler happy */
epint_in = epint_in;

/% XUD will NAK if the endpoint is not ready to communicate with XUD =/

/% Fill video buffers with different color data =/

for(int i = 0; 1 < (PAYLOAD_SIZE/4); 1i++) {

/* Set RED color =/
gVideoBuffer[0][i] = 0x7010D010;

Copyright 2016 XMOS Ltd.

31 WWW.XMO0S.com
XM007149

®
l MOS AN00127 (2.0.2)

/* Set GREEN color =/
gVideoBuffer[2][i] = 0x00000000;
/% Set BLUE color =/
gVideoBuffer[1][i] = 0xDC206020;

}
while(1)
{
int expectedPixels = MAX_FRAME_SIZE;
presentationTimer :> pts;
/% Fi1l the buffers with payload header =/
for(int i=0; i<3; i++)
{
/* Make the Payload header =/
(gVideoBuffer[i], unsigned char[])[0] = PAYLOAD_HEADER_LENGTH;
(gVideoBuffer[i], unsigned char[])[1] = frame;
/* Set dwPresentationTime */
(gVideoBuffer[i], unsigned short[])[1] = pts;
(gVideoBuffer([i], unsigned short[])[2] = pts>>16;
/* Set scrSourceClock =/
(gVideoBuffer[i], unsigned short[])[3] = pts;
(gVideoBuffer([i], unsigned short[])[4] = pts>>16;
(gVideoBuffer[i], unsigned short[])[5] = (sofCounts>>3) & 2047;
}
/* Just to simulate the motion in the video frames =/
i_split = (i_split - ((WIDTH)=%8));
ifCisplit <= 0) {
i_split = MAX_FRAME_SIZE / 6;
i_index = (i_index + 1) % 3;
}
presentationTimer :> tmrValue;
/* Let the frames scroll =/
index = i_index;
split = i_split;
/% Transmits single frame =/
while(expectedPixels > 0)
if(expectedPixels < (PAYLOAD_SIZE - PAYLOAD_HEADER_LENGTH)) {
/% Payload transfer =/
result = XUD_SetBuffer(episo_in, (gVideoBuffer[index], unsigned char[]), expectedPixels+
< PAYLOAD_HEADER_LENGTH) ;
} else {
/* Payload transfer =/
result = XUD_SetBuffer(episo_in, (gVideoBuffer[index], unsigned char[]), 1024);
/* Note down the SOF counts =/
sofCounts++;
expectedPixels -= ((PAYLOAD_SIZE)- PAYLOAD_HEADER_LENGTH) ;
if(expectedPixels <= (MAX_FRAME_SIZE - split)) {
index = (index + 1) % 3;
split += (MAX_FRAME_SIZE / 6);
}
frame = frame A 1; /+ Toggle FID bit =/
frameCounts++;
}

XMOS

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is

Copyright 2016 XMOS Ltd. 32 WWW.Xmos.com
XM007149

®
l MOS AN00127 (2.0.2)

its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 33 WWW.Xmos.com
XM007149

	USB Video Class Device
	Overview
	Introduction
	Block diagram

	USB Video Class application note
	Makefile additions for this example
	Source code files
	Declaring resource and setting up the USB components
	The application main() function
	Configuring the USB device ID
	Video device topology
	USB Descriptors
	USB Device Descriptor
	USB Configuration Descriptor
	VideoControl Interface
	VideoStreaming Interface
	USB String Descriptors

	USB Standard and Class-Specific requests
	Video data streaming

	Demo Hardware Setup
	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio
	Running the demo
	Running on Windows
	Running on Mac OSX
	Running on Linux

	References
	Full source code listing
	Source code for main.xc
	Source code for usb_video.xc

