
an00125: USB Mass Storage Device Class

an00125: USB Mass Storage Device Class

Publication Date: 2025/7/18
Document Number: XM-006293-AN v3.1.0

IN THIS DOCUMENT

1 Overview . 2
1.1 Features . 2

2 USB Mass Storage Device Class application note 3
2.1 CMakeLists.txt additions for this application . 3
2.2 Declaring resource and setting up the USB components 4
2.3 The application main() function . 4
2.4 Configuring the USB Device ID . 4
2.5 USB Mass storage Class specific defines . 5
2.6 USB Device Descriptor . 5
2.7 USB Configuration Descriptor . 5
2.8 USB string descriptor . 6
2.9 USB Mass storage Class requests . 6
2.10 USB Mass storage Class Endpoint0 . 6
2.11 Receiving storage data from the host . 7
2.12 SCSI Command Implementation . 10
2.13 Serial Flash Functions . 10

3 Demo Hardware Setup . 12
4 Example application . 13

4.1 Building the example . 13
4.2 Running the example . 13

5 References . 14

This application note shows how to create a USB device compliant to the standard USB
mass storage device class on an xmos xcore.ai device.

The code associated with this application note provides an example of using the XMOS
Device Library and associated USB class descriptors to provide a framework for the cre-
ation of a USB mass storage device.

The mass storage framework uses XMOS libraries to provide a bidirectional mass stor-
age device example over high speed USB.

Note: This application note provides a standard USB Mass Storage Device Class which
addresses Bulk-Only Transport (BOT) or Bulk/Bulk/Bulk (BBB) specification and as a re-
sult does not require drivers to run on Windows, Linux or Mac.

The Peripheral Device Type (PDT) supported in this application note is SCSI (Small Com-
puter System Interface) Block Command (SBC) Direct-access device (e.g. flash-based
storage). This example application uses the on-board serial flash as its memory device.

1

an00125: USB Mass Storage Device Class

This application note is designed to run on an XMOS xcore-200 or xcore.ai series device.
The example code provided with the application has been implemented and tested on
the XK-EVK-XU316 board but there is no dependency on this board and it can bemodified
to run on any development board which uses an xcore-200 or xcore.ai series device.

Note

· This document assumes familiarity with the XMOS xcore architecture, the Univer-
sal Serial Bus 2.0 Specification (and related specifications), the XMOS tool chain
and the xC language. Documentation related to these aspects which are not spe-
cific to this application note are linked to in the references appendix.

· For the full API listing of the XMOS USB Device (XUD) Library please see the XMOS
USB Device (XUD) Library.

1 Overview

TheUniversal Serial Bus (USB) is a communication architecture that gives a PC the ability
to interconnect a variety of devices via a simple four-wire cable. One such device is the
mass storage. Traditionally, mass storage device class provides adaptability for devices
like

· USB flash drive

· memory card reader

· digital audio player

· digital camera

· external hard drive

The USB specification provides as standard device class for the implementation of USB
mass storage.

Block diagram of USB Mass storage application provides an overview of the system.

Fig. 1: Block diagram of USB Mass storage application

1.1 Features

This section describes the features that are supported by the demo application. The
application uses an on-board flashwith a usermemory partition of 3MB. The application
does the following

2

https://www.xmos.com/file/lib_xud
https://www.xmos.com/file/lib_xud
https://www.usb.org/sites/default/files/usbmassbulk_10.pdf

an00125: USB Mass Storage Device Class

· Enumerates as Mass Storage device

· Displays as “ XMOS DISK “

The device will have a FAT12 filesystem and 3 MBytes of memory available.

Note

Read and write operations may be slow as this is just an example.

2 USB Mass Storage Device Class application note

The demo in this note uses the XMOS USB device library and shows a simple program
that receives data from and sends data to the host.

For the USBMass storage device class application example, the system comprises three
tasks running in separate logical cores of a xcore device.

The tasks perform the following operations.

· A task containing the USB library functionality to communicate over USB

· A task implementing Endpoint0 responding both standard and mass storage class
USB requests

· A task implementing the application code for receiving and sendingmass storage data
into the device

These tasks communicate via the use of xconnect channels which allow data to be
passed between application code running on separate logical cores.

Task diagramof USBmass storage application shows the task and communication struc-
ture for this application note.

Mass Storage Bulk Endpoint

Default control Endpoint 0

XUD Manager

x_ep_in[1]

c_ep_out[1]

x_ep_in[0]

c_ep_out[0]

USB

PHY

Data,

Status,

Command

Transfer

Enumeration

Class

Requests

Quad SPI

Flash

Memory

SCSI

XU316-1024

Fig. 2: Task diagram of USB mass storage application

2.1 CMakeLists.txt additions for this application

To start using the USB library, the user needs to add lib_xud to the CMakeLists.txt:
set (APP_DEPENDENT_MODULES "lib_xud")

After CMakeLists.txt has been modified, the USB APIs can be acessed via the
xud_device.h header file:

3

an00125: USB Mass Storage Device Class

#include <xud_device.h>

2.2 Declaring resource and setting up the USB components

main.xc contains the application implementation for a device based on the USB mass
storage device class. There are some defines in it that are used to configure the XMOS
USB device library. These are displayed below.
/* USB Endpoint Defines */
#define XUD_EP_COUNT_OUT 2 //Includes EP0 (1 out EP0 + Mass Storage data output EP)
#define XUD_EP_COUNT_IN 2 //Includes EP0 (1 in EP0 + Mass Storage data input EP)

These describe the endpoint configuration for this device. This example has bi-
directional communication with the host machine via the standard endpoint0, an end-
point for receiving the bulk data from the host into our device and an endpoint for sending
the bulk data to host from our device.

2.3 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main.xc
int main()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

par
{

on USB_TILE: XUD_Main(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, epTypeTableOut, epTypeTableIn,
XUD_SPEED_HS, XUD_PWR_BUS);

on USB_TILE: Endpoint0(c_ep_out[0], c_ep_in[0]);

on USB_TILE: massStorageClass(c_ep_out[1],c_ep_in[1], 0);

}
return 0;

}

Looking at this in a more detail a few things can be noted:

· The par statement starts three separate tasks in parallel

· There is a task to configure and execute the USB library: XUD_Main()

· There is a task to startup and run the Endpoint0 code: Endpoint0()

· There is a task to deal with USB mass storage requests arriving from the host:
massStorageClass()

· The define USB_TILE describes the tile on which the individual tasks will run

· In this example all tasks run on the same tile as the USB PHY

· The xconnect communication channels used by the application are set up at the be-
ginning of main()

· The USB defines discussed earlier are passed into the function XUD_Main()

2.4 Configuring the USB Device ID

The USB ID values used for vendor id, product id and device version number are defined
in the file endpoint0.xc. These are used by the host machine to determine the vendor of
the device (in this case XMOS) and the product plus the firmware version.
/* USB Device ID Defines */
#define BCD_DEVICE 0x0010
#define VENDOR_ID 0x20B1
#define PRODUCT_ID 0x10BA

4

an00125: USB Mass Storage Device Class

2.5 USB Mass storage Class specific defines

The USBMass storage Class is configured in the file endpoint0.xc. Below there are a set
of standard defines which are used to configure the USB device descriptors to setup a
USB mass storage device running on an xcore device.
/* USB Mass Storage Interface Subclass Definition */
#define USB_MASS_STORAGE_SUBCLASS 0x06 /* SCSI transparent command set */

/* USB Mass Storage interface protocol */
#define USB_MASS_STORAGE_PROTOCOL 0x50 /* USB Mass Storage Class Bulk-Only (BBB) Transport */

/* USB Mass Storage Request Code */
#define USB_MASS_STORAGE_RESET 0xFF /* Bulk-Only Mass Storage Reset */
#define USB_MASS_STORAGE_GML 0xFE /* Get Max LUN (GML) */

2.6 USB Device Descriptor

endpoint0.xc is where the standard USB device descriptor is declared for the mass stor-
age device. Below is the structure which contains this descriptor. This will be requested
by the host when the device is enumerated on the USB bus.
static unsigned char devDesc[] =
{
0x12, /* 0 bLength */
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType */
0x00, /* 2 bcdUSB version */
0x02, /* 3 bcdUSB version */
0x00, /* 4 bDeviceClass - Specified by interface */
0x00, /* 5 bDeviceSubClass - Specified by interface */
0x00, /* 6 bDeviceProtocol - Specified by interface */
0x40, /* 7 bMaxPacketSize for EP0 - max = 64*/
(VENDOR_ID & 0xFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & 0xFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct */
(BCD_DEVICE & 0xFF), /* 12 bcdDevice */
(BCD_DEVICE >> 8), /* 13 bcdDevice */
0x01, /* 14 iManufacturer - index of string */
0x02, /* 15 iProduct - index of string */
0x03, /* 16 iSerialNumber - index of string */
0x01 /* 17 bNumConfigurations */

};

From this descriptor the user can see that product, vendor and device firmware revision
are all coded into this structure. This will allow the host machine to recognise the mass
storage device when it is connected to the USB bus.

2.7 USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device
class and the endpoint setup. For the USB mass storage device the configuration de-
scriptor which is read by the host is as follows.
static unsigned char cfgDesc[] = {
0x09, /* 0 bLength */
USB_DESCTYPE_CONFIGURATION, /* 1 bDescriptortype = configuration */
0x20, 0x00, /* 2 wTotalLength of all descriptors */
0x01, /* 4 bNumInterfaces */
0x01, /* 5 bConfigurationValue */
0x00, /* 6 iConfiguration - index of string */
0x80, /* 7 bmAttributes - Self powered */
0x50, /* 8 bMaxPower - 160mA */

/* USB Bulk-Only Data Interface Descriptor */
0x09, /* 0 bLength */
USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType */
0x00, /* 2 bInterfacecNumber */
0x00, /* 3 bAlternateSetting */
0x02, /* 4: bNumEndpoints */
USB_CLASS_MASS_STORAGE, /* 5: bInterfaceClass */
USB_MASS_STORAGE_SUBCLASS, /* 6: bInterfaceSubClass */
USB_MASS_STORAGE_PROTOCOL, /* 7: bInterfaceProtocol */
0x00, /* 8 iInterface */

/* Bulk-In Endpoint Descriptor */
0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */

(continues on next page)

5

an00125: USB Mass Storage Device Class

(continued from previous page)
0x81, /* 2 bEndpointAddress - EP1, IN */
XUD_EPTYPE_BUL, /* 3 bmAttributes */
0x00, /* 4 wMaxPacketSize - Low */
0x02, /* 5 wMaxPacketSize - High */
0x00, /* 6 bInterval */

/* Bulk-Out Endpoint Descriptor */
0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
0x01, /* 2 bEndpointAddress - EP1, OUT */
XUD_EPTYPE_BUL, /* 3 bmAttributes */
0x00, /* 4 wMaxPacketSize - Low */
0x02, /* 5 wMaxPacketSize - High */
0x00, /* 6 bInterval */

};

From this code the user can see that the USB mass storage class defines described
earlier are encoded into the configuration descriptor along with the bulk USB endpoint
description for receiving storage data into the application code. These endpoint allows
us to process the storage data request from the host and to the host inside the main
mass storage application task.

2.8 USB string descriptor

There is onemore descriptor within this file relating to the configuration of the USBMass
storageClass. This section should also bemodified tomatch the capabilities of themass
storage device.

/* String table - unsafe as accessed via shared memory */
static char * unsafe stringDescriptors[]=
{
"\x09\x04", // Language ID string (US English)
"XMOS", // iManufacturer
"xMASSstorage", // iProduct
"XD070101ho4I4KwM", // iSerial Number

};

2.9 USB Mass storage Class requests

Inside endpoint0.xc there is some code for handling the USBMass storage device class
specific requests. These are shown in the following code:
/* Mass Storage Class Requests */
int MassStorageEndpoint0Requests(XUD_ep ep0_out, XUD_ep ep0_in, USB_SetupPacket_t sp)
{

unsigned char buffer[1] = {0};

switch(sp.bRequest)
{

case USB_MASS_STORAGE_RESET:
XUD_ResetEpStateByAddr(1);
return XUD_RES_OKAY; // This request is used to reset the mass storage device
break;

case USB_MASS_STORAGE_GML:
return XUD_DoGetRequest(ep0_out, ep0_in, buffer, 1, sp.wLength);
break;

default:
debug_printf("MassStorageEndpoint0Requests @ default : 0x%x\n",sp.bRequest);
break;

}

return XUD_RES_ERR;
}

These mass storage specific request are implemented by the application as they do not
form part of the standard requests which have to be accepted by all device classes via
endpoint0.

2.10 USB Mass storage Class Endpoint0

The function Endpoint0() contains the code for dealing with device requests made from
the host to the standard endpoint0 which is present in all USB devices. In addition to

6

an00125: USB Mass Storage Device Class

requests required for all devices, the code handles the requests specific to the mass
storage device class.

if(result == XUD_RES_OKAY)
{

/* Set result to ERR, we expect it to get set to OKAY if a request is handled */
result = XUD_RES_ERR;

/* Stick bmRequest type back together for an easier parse... */
bmRequestType = (sp.bmRequestType.Direction<<7) | (sp.bmRequestType.Type<<5) |

(sp.bmRequestType.Recipient);

/* Handle specific requests first */
switch(bmRequestType)
{

/* Direction: Device-to-host and Host-to-device
* Type: Class
* Recipient: Interface
*/
case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:

/* Inspect for mass storage interface num */
if(sp.wIndex == 0)
{

/* Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset */
result = MassStorageEndpoint0Requests(ep0_out,ep0_in,sp);

}
break;

default:
break;

}
}

2.11 Receiving storage data from the host

The application endpoint for Command Transport, Data-In, Data-Out and Status Trans-
port are implemented in the file mass_storage.xc as per the flow shown in below figure
(Command/Data/Status Flow). This is contained within the functionmassStorageClass()
which is shown in next page.

Ready

Command Transport (CBW)

Status Transport (CSW)

Data OUT (from host) Data IN (to host)

Fig. 3: Command/Data/Status Flow

void massStorageClass(chanend chan_ep1_out,chanend chan_ep1_in, int writeProtect)
{

unsigned char commandBlock[CBW_SHORT_PACKET_SIZE];
unsigned char commandStatus[CSW_SHORT_PACKET_SIZE];
unsigned host_transfer_length = 0;

(continues on next page)

7

an00125: USB Mass Storage Device Class

(continued from previous page)
int readCapacity[8];
int readLength, readAddress;
int writeLength, writeAddress;
int dCBWSignature = 0, bCBWDataTransferLength = 0;
int bmCBWFlags = 0, bCBWLUN = 0, bCBWCBLength = 0;
int Operation_Code = 0;
XUD_Result_t result;
int ready = 1;
unsigned char blockBuffer[MASS_STORAGE_BLOCKLENGTH];
const int cswSignature = CSW_SIGNATURE;

debug_printf("USB Mass Storage class demo started\n");

/* Init command status packet - first 4 bytes are the Command Status Wrapper signature */
memset(commandStatus, 0, CSW_SHORT_PACKET_SIZE);
memcpy(commandStatus, &cswSignature, sizeof(int));

/* Initialise the XUD endpoints */
XUD_ep ep1_out = XUD_InitEp(chan_ep1_out);
XUD_ep ep1_in = XUD_InitEp(chan_ep1_in);

#if !DETECT_AS_FLOPPY
massStorageInit();

#endif

while(1)
{

unsigned char bCSWStatus = CSW_STATUS_CMD_PASSED;
// Get Command Block Wrapper (CBW)
if(XUD_RES_OKAY == (result = XUD_GetBuffer(ep1_out, (commandBlock, char[CBW_SHORT_PACKET_SIZE]), host_

↪→transfer_length)))
{

/* The CBW shall start on a packet boundary and shall end as a short packet
* with exactly 31 (0x1F) bytes transferred
*/
assert(host_transfer_length == CBW_SHORT_PACKET_SIZE);
/* verify Signature - that helps identify this packet as a CBW */
dCBWSignature = commandBlock[0] | commandBlock[1] << 8 |

commandBlock[2] << 16 | commandBlock[3] << 24;
assert(dCBWSignature == CBW_SIGNATURE);

bCBWDataTransferLength = commandBlock[8] | commandBlock[9]<<8 |commandBlock[10] << 16 |�
↪→commandBlock[11] << 24;

bmCBWFlags = commandBlock[12]; bCBWLUN = (commandBlock[13] & 0x0F);
assert(bCBWCBLength = (commandBlock[14] & 0x1F) <= 16);
Operation_Code = commandBlock[15];

switch(Operation_Code)
{

case TEST_UNIT_READY_CMD: // Test unit ready:
bCSWStatus = ready ? CSW_STATUS_CMD_PASSED : CSW_STATUS_CMD_FAILED;
break;

case REQUEST_SENSE_CMD: // Request sense
requestSenseAnswer[2] = ready ? STATUS_GOOD : STATUS_CHECK_CONDITION;
result = XUD_SetBuffer(ep1_in, requestSenseAnswer, sizeof(requestSenseAnswer));
break;

case INQUIRY_CMD: // Inquiry
result = XUD_SetBuffer(ep1_in, inquiryAnswer, sizeof(inquiryAnswer));
break;

case START_STOP_CMD: // start/stop
ready = ((commandBlock[19] >> 1) & 1) == 0;
break;

case MODE_SENSE_6_CMD: // Mode sense (6)
case MODE_SENSE_10_CMD: // Mode sense (10) // For Mac OSX

if (writeProtect) modeSenseAnswer[2] |= 0x80;

result = XUD_SetBuffer(ep1_in, modeSenseAnswer, sizeof(modeSenseAnswer));
break;

case MEDIUM_REMOVAL_CMD: // Medium removal
break;

case RECEIVE_DIAGNOSTIC_RESULT_CMD:
memset(readCapacity,0x0000,sizeof(readCapacity));
result = XUD_SetBuffer(ep1_in, (readCapacity, unsigned char[8]), 32);
break;

case READ_FORMAT_CAPACITY_CMD: // Read Format capacity (UFI Command Spec)
readCapacity[0] = byterev(8);
readCapacity[1] = byterev(massStorageSize());
readCapacity[2] = byterev(MASS_STORAGE_BLOCKLENGTH) | (DETECT_AS_FLOPPY ? NO_CARTRIDGE_IN_

↪→DRIVE : FORMATTED_MEDIA);
result = XUD_SetBuffer(ep1_in, (readCapacity, unsigned char[8]), 12);
break;

case READ_CAPACITY_CMD: // Read capacity
/* -1 since report last block address */

(continues on next page)

8

an00125: USB Mass Storage Device Class

(continued from previous page)
readCapacity[0] = byterev(massStorageSize()-1);
readCapacity[1] = byterev(MASS_STORAGE_BLOCKLENGTH);
result = XUD_SetBuffer(ep1_in, (readCapacity, unsigned char[8]), 8);
break;

case READ_CAPACITY_16_CMD:
memset(readCapacity,0x0000,sizeof(readCapacity));
/* -1 since reporr last block address */
readCapacity[1] = byterev(massStorageSize()-1);
readCapacity[2] = byterev(MASS_STORAGE_BLOCKLENGTH);
result = XUD_SetBuffer(ep1_in, (readCapacity, unsigned char[8]), 32);
break;

case READ_10_CMD: // Read (10)
readLength = commandBlock[22] << 8 | commandBlock[23];
readAddress = commandBlock[17] << 24 | commandBlock[18] << 16 | commandBlock[19] << 8 |�

↪→commandBlock[20];
for(int i = 0; i < readLength ; i++)
{

bCSWStatus |= massStorageRead(readAddress, blockBuffer);
result = XUD_SetBuffer(ep1_in, blockBuffer, MASS_STORAGE_BLOCKLENGTH);
readAddress++;

}
break;

case WRITE_10_CMD: // Write
writeLength = commandBlock[22] << 8 | commandBlock[23];
writeAddress = commandBlock[17] << 24 | commandBlock[18] << 16 | commandBlock[19] << 8 |�

↪→commandBlock[20];
for(int i = 0; i < writeLength ; i++)
{

result = XUD_GetBuffer(ep1_out, blockBuffer, host_transfer_length);
bCSWStatus |= massStorageWrite(writeAddress, blockBuffer);
writeAddress++;

}
break;

default:
debug_printf("Invalid Operation Code Received : 0x%x\n",Operation_Code);
bCSWStatus = CSW_STATUS_CMD_FAILED;
break;

}
}

/* Setup Command Status Wrapper (CSW). The CSW shall start on a packet boundry
* and shall end as a short packet with exactly 13 (0x0D) bytes transferred */
/* The device shall echo the contents of dCBWTag back to the host in the dCSWTag */
commandStatus[4] = commandBlock[4];
commandStatus[5] = commandBlock[5];
commandStatus[6] = commandBlock[6];
commandStatus[7] = commandBlock[7];
commandStatus[12] = bCSWStatus;

XUD_SetBuffer(ep1_in, commandStatus, CSW_SHORT_PACKET_SIZE);

}
} // END of massStorageClass

The following points can be observed from the code above:

· Two buffers are declared, one to receive the Command transport CBW (Command
Block Wrapper) data which is streamed into the application from the host and the
other to send Status transport CSW (Command Status Wrapper) to the host.

· This task operates inside a while (1) loop which waits for data to arrive and then pro-
cesses it.

· It checks for the CBW Signature and packet size that get received from the host.

· Based on the Operation code available on the CBWCB (CBW Command Block) field,
SCSI commands corresponding to flash drive are executed.
· Operation code received may correspond to SCSI commands like Inquiry, Test Unit

Ready, Request Sense, Read Capacity, Mode Sense, Read/Write, etc.

· Once the execution (Command transport, Data-In or Data-Out) is completed, the de-
vice shall echo the contents of CBWTag field sent by the host back along with the
CSWStatus and CSWSignature as Status transport. This ensures that the Status send
to host is associated with the Command received from host.

9

an00125: USB Mass Storage Device Class

2.12 SCSI Command Implementation

Some of the SCSI command definitions and the reponse from the device are mentioned
below.

· INQUIRY: command requests that information regarding parameters of the Device be
sent to the Host.
· The response to this command provides standard INQUIRY data of (36 bytes) PDT,

RMB (Removable Medium Bit), Vendor Identification, Product Identification and
Product Revison Level, etc.

· TEST UNIT READY: command provides a means to check if the Device is ready. This
command is useful in that it allows a Host to poll a Device until it is ready without the
need to allocate space for returned data.
· The response to this command returns GOOD, if the device accepts an appropriate

medium access command or CHECK CONDITION status with a sense key of NOT
READY.

· REQUEST SENSE: command requests the device to transfer sense data to the host
whenever an error is reported. The sense data describes what caused the error con-
dition.
· The response to this command is a sense key, Additional Sense Code (ASC) or ASC

Qualifier (ASCQ) depending on which error occured.

· READCAPACITY: command requests the device to transfer 8 bytes of parameter data
describing the capacity of the installed medium of the device.
· The response to this command returns Logical Block Address (LBA) and block

length in bytes of the memory device.

· MODE SENSE: command requests the device to transfer parameter data describing
the medium type, block descriptor length, read/write error recovery mode.
· The response to this command returns PDT type as medium type, error recovery

mode, descriptor length.

· READ/WRITE: command requests the device to read/write data onto the medium.
· The response toREAD transfers themost recent data valuewritten in the addressed

logical block of the medium to host.
· The response to WRITE writes the data transferred by the host to the medium.

2.13 Serial Flash Functions

For accessing the on-board serial flash, the user will need to add the flash library lflash in
CMakeLists as one of the APP_COMPILER_FLAGS and use flashlib.h to access the flash
library functions.

Note

No separate core is required to handle the SPI read/write.

The below implementation does write/read operation onto the on-board serial flash.
#include "quadflash.h"

on tile[0]: fl_QSPIPorts spiPort =
{

PORT_SQI_CS,
PORT_SQI_SCLK,
PORT_SQI_SIO,
XS1_CLKBLK_1

};

void massStorageInit()
{

(continues on next page)

10

http://www.t10.org/lists/asc-num.htm

an00125: USB Mass Storage Device Class

(continued from previous page)
/* Connect to the QSPI flash */
fl_connect(spiPort);

/* Run the SPI clock a faster than default */
fl_dividerOverride(2);

}

int massStorageWrite(unsigned int blockNr, unsigned char buffer[])
{

unsigned char sectorBuffer[4096];

int fail = fl_writeData(blockNr * MASS_STORAGE_BLOCKLENGTH, MASS_STORAGE_BLOCKLENGTH, buffer, sectorBuffer);

return fail != 0;
}

int massStorageRead(unsigned int blockNr, unsigned char buffer[])
{

int fail = fl_readData(blockNr * MASS_STORAGE_BLOCKLENGTH, MASS_STORAGE_BLOCKLENGTH, buffer);

return fail != 0;
}

int massStorageSize() {
#if DETECT_AS_FLOPPY

return FLOPPY_DISK_SIZE;
#else

int sizeInBytes = fl_getDataPartitionSize();

/* Return number of blocks */
return sizeInBytes / MASS_STORAGE_BLOCKLENGTH;

#endif
}

11

an00125: USB Mass Storage Device Class

3 Demo Hardware Setup

To run the demo, connect the XK-EVK-XU316 DEBUG and USB (XMOS XK-EVK-XU316
Board) recepticals to separate USB connectors on the development PC.

Fig. 4: XMOS XK-EVK-XU316 Board

12

an00125: USB Mass Storage Device Class

4 Example application

4.1 Building the example

This section assumes the user have downloaded and installed the XMOS XTC tools (see
README for required version). Installation instructions can be found here.

Be sure to pay attention to the section Installation of required third-party tools.

The application uses the xcommon-cmake build system as bundled with the XTC tools.
This system is based on CMake

The an00125 software zip-file should be downloaded and unzipped to a chosen direc-
tory.

To configure the build run the following from an XTC command prompt:
cd an00125/app_an00125
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software download, however, if any are
missing it is at this configure step that they will be downloaded by the build system.

Finally, the application binary can be built using xmake:
xmake -C build

This command will cause binaries (.xe files) to be generated in relevant subdirectories of
the app_an00125/bin directory, one for each of the build configurations.

For subsequent builds, the cmake step can be omitted.

If CMakeLists.txt or other CMake configuration files have been modified, xmake will au-
tomatically trigger cmake to regenerate the build system as required.

4.2 Running the example

Once the application is built, the user will need to prepare the flash device by creating
a data partition. From a XTC command prompt run the following command from the
an00125/app_an00125 directory.
xflash --boot-partition-size=0x20000 --data disk.img --target=XK-EVK-XU316 ./bin/app_mass_storage.xe

The disk.img file is a 3MB FAT12-formatted disk image created for use as a virtual mass
storage device. It can be mounted and written to like a physical disk, allowing files such
as hello.txt to be included for testing or emulation purposes.

After flashing the device, XMOS DISK device will appear on the host computer.

13

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

an00125: USB Mass Storage Device Class

5 References

· XMOS XTC Tools Installation Guide

· XMOS XTC Tools User Guide

· XMOS USB Device Library

· USB Mass Storage Class Bulk-Only Transport

· USB 2.0 Specification

· USB Mass Storage Specification For Bootability

· SCSI Command

· SCSI Commands Reference Manual (Seagate)

· USB Mass Storage Device Specification Overview

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

14

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/lib_xud
https://www.usb.org/sites/default/files/usbmassbulk_10.pdf
https://www.usb.org/sites/default/files/usb_20_20240604.zip
https://www.usb.org/sites/default/files/usb_msc_boot_1.0.pdf
http://en.wikipedia.org/wiki/SCSI_command
http://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293068c.pdf
https://usb.org/sites/default/files/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf

	Overview
	Features

	USB Mass Storage Device Class application note
	CMakeLists.txt additions for this application
	Declaring resource and setting up the USB components
	The application main() function
	Configuring the USB Device ID
	USB Mass storage Class specific defines
	USB Device Descriptor
	USB Configuration Descriptor
	USB string descriptor
	USB Mass storage Class requests
	USB Mass storage Class Endpoint0
	Receiving storage data from the host
	SCSI Command Implementation
	Serial Flash Functions

	Demo Hardware Setup
	Example application
	Building the example
	Running the example

	References

