
AN00120 (2.0.2)

Application Note: AN00120

XMOS 100Mbit Ethernet application note
Ethernet connectivity is an essential part of the explosion of connected devices known collectively as the
Internet of Things (IoT). XMOS technology is perfectly suited to these applications - offering future proof
and reliable ethernet connectivity whilst offering the flexibility to interface to a huge variety of “Things”.

This application note shows a simple example that demonstrates the use of the XMOS Ethernet library to
create a layer 2 ethernet MAC interface on an XMOS multicore microcontroller.

The code associated with this application note provides an example of using the Ethernet Library to
provide a framework for the creation of an ethernet Media Independent Interface (MII) and MAC interface
for 100Mbps.

The applcation note uses XMOS libraries to provide a simple IP stack capable of responding to an ICMP
ping message. The code used in the application note provides both MII communication to the PHY and a
MAC transport layer for ethernet packets and enables a client to connect to it and send/receive packets.

Required tools and libraries

The code in this application note is known to work on version 14.2.4 of the xTIMEcomposer tools suite,
it may work on other versions.

The application depends on the following libraries:

• lib_ethernet (>=3.3.0)
• lib_otpinfo (>=2.0.0)
• lib_slicekit_support (>=2.0.0)

Required hardware

This application note is designed to run on an XMOS xCORE-L (General Purpose family) series device. The
example code provided with the application has been implemented and tested on the xCORE-L2 sliceKIT
1V2 (XP-SKC-L2) core board using ethernet sliceCARD 1V1 (XA-SK-E100). There is no dependancy on this
core board - it can be modified to run on any (XMOS) development board which has the option to connect
to the ethernet sliceCARD.

Prerequisites

• This document assumes familarity with the XMOS xCORE architecture, the Ethernet standards IEEE
802.3u (MII), the XMOS tool chain and the xC language. Documentation related to these aspects
which are not specific to this application note are linked to in the references appendix.

• For a description of XMOS related terms found in this document please see the XMOS Glossary1.
• For an overview of the Ethernet library, please see the Ethernet library user guide.

1http://www.xmos.com/published/glossary

Copyright 2017 XMOS Ltd. 1 www.xmos.com
XM008190

http://www.xmos.com/published/glossary

AN00120 (2.0.2)

1 Overview

1.1 Introduction

The application note shows the use of the XMOS Ethernet library. The library allows multiple clients to
access the Ethernet hardware. This application note uses the standard Ethernet MAC which uses two
logical cores. The Ethernet library also provides a real-time MAC which uses more cores but provides
high performance streaming data, accurate packet timestamping, priority queuing and 802.1Qav traffic
shaping.

MII provides the data transfer signals between the Ethernet PHY (Physical Layer Device or transceiver) and
the xCORE device. The MII layer receives packets of data which are then routed by an Ethernet MAC layer
to multiple processes running on the xCORE. SMI provides the management interface between the PHY
and the xCORE device.

1.2 Block Diagram

PHY

MII

SMI

Ethernet
MAC

PHY
driver

xCORE

Application

SMI
driver

Figure 1: Application block diagram

The application communicates with the Ethernet MAC that drives the MII data interface to the PHY. A
separate PHY driver configures the PHY via the SMI serial interface.

Copyright 2017 XMOS Ltd. 2 www.xmos.com
XM008190

AN00120 (2.0.2)

2 100Mbit Ethernet library demo

2.1 The Makefile

The demo in this note uses the XMOS Ethernet library and shows a simple program communicating with
the Ethernet library.

To start using the Ethernet library, you need to add lib_ethernet to you Makefile:

USED_MODULES = .. lib_ethernet ...

This demo also gets the MAC address out of the xCORE OTP rom and is for the sliceKIT. So the
Makefile also includes the OTP reading library (lib_otpinfo) and the sliceKIT support library
(lib_slicekit_support):

USED_MODULES = .. lib_otpinfo lib_slicekit_support

2.2 Allocating hardware resources

The Ethernet library requires several ports to communicate with the Ethernet PHY. These ports are de-
clared in the main program file (main.xc). In this demo the ports are set up for the Ethernet slice
connected to the CIRCLE slot of the sliceKIT:

// Here are the port definitions required by ethernet. This port assignment
// is for the L16 sliceKIT with the ethernet slice plugged into the
// CIRCLE slot.
port p_eth_rxclk = on tile[1]: XS1_PORT_1J;
port p_eth_rxd = on tile[1]: XS1_PORT_4E;
port p_eth_txd = on tile[1]: XS1_PORT_4F;
port p_eth_rxdv = on tile[1]: XS1_PORT_1K;
port p_eth_txen = on tile[1]: XS1_PORT_1L;
port p_eth_txclk = on tile[1]: XS1_PORT_1I;
port p_eth_rxerr = on tile[1]: XS1_PORT_1P;
port p_eth_dummy = on tile[1]: XS1_PORT_8C;

clock eth_rxclk = on tile[1]: XS1_CLKBLK_1;
clock eth_txclk = on tile[1]: XS1_CLKBLK_2;

Note that the port p_eth_dummy does not need to be connected to external hardware - it is just used
internally by the Ethernet library.

The MDIO Serial Management Interface (SMI) is used to transfer management information between MAC
and PHY. This interface consists of two signals which are connected to two ports:

port p_smi_mdio = on tile[1]: XS1_PORT_1M;
port p_smi_mdc = on tile[1]: XS1_PORT_1N;

The final ports used in the application are the ones to access the internal OTP memory on the xCORE.
These ports are fixed and can be intialized with the OTP_PORTS_INITIALIZER macro supplied by the
lib_otpinfo OTP reading library.

// These ports are for accessing the OTP memory
otp_ports_t otp_ports = on tile[0]: OTP_PORTS_INITIALIZER;

Copyright 2017 XMOS Ltd. 3 www.xmos.com
XM008190

AN00120 (2.0.2)

2.3 The application main() function

The main function in the program sets up the tasks in the application.

int main()
{
ethernet_cfg_if i_cfg[NUM_CFG_CLIENTS];
ethernet_rx_if i_rx[NUM_ETH_CLIENTS];
ethernet_tx_if i_tx[NUM_ETH_CLIENTS];
smi_if i_smi;

par {
on tile[1]: mii_ethernet_mac(i_cfg, NUM_CFG_CLIENTS,

i_rx, NUM_ETH_CLIENTS,
i_tx, NUM_ETH_CLIENTS,
p_eth_rxclk, p_eth_rxerr,
p_eth_rxd, p_eth_rxdv,
p_eth_txclk, p_eth_txen, p_eth_txd,
p_eth_dummy,
eth_rxclk, eth_txclk,
ETH_RX_BUFFER_SIZE_WORDS);

on tile[1]: lan8710a_phy_driver(i_smi, i_cfg[CFG_TO_PHY_DRIVER]);

on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);

on tile[0]: icmp_server(i_cfg[CFG_TO_ICMP],
i_rx[ETH_TO_ICMP], i_tx[ETH_TO_ICMP],
ip_address, otp_ports);

}
return 0;

}

The mii_ethernet_mac communicates with the PHY and connects to the application via the three inter-
faces. It takes the previously declared ports as arguments as well as the required buffer size for the
packet buffer within the MAC.

The smi task is part of the Ethernet library and controls the SMI protocol to configure the PHY. It connects
to the lan8710a_phy_driver task which connects configuration of the PHY

Copyright 2017 XMOS Ltd. 4 www.xmos.com
XM008190

AN00120 (2.0.2)

2.4 The PHY driver

The PHY drive task connects to both the Ethernet MAC (via the ethernet_cfg_if interface for configura-
tion) and the SMI driver (via the smi_if interface):

[[combinable]]
void lan8710a_phy_driver(client interface smi_if smi,

client interface ethernet_cfg_if eth) {
ethernet_link_state_t link_state = ETHERNET_LINK_DOWN;
ethernet_speed_t link_speed = LINK_100_MBPS_FULL_DUPLEX;
const int link_poll_period_ms = 1000;
const int phy_address = 0x0;
timer tmr;
int t;
tmr :> t;

while (smi_phy_is_powered_down(smi, phy_address));
smi_configure(smi, phy_address, LINK_100_MBPS_FULL_DUPLEX, SMI_ENABLE_AUTONEG);

while (1) {
select {
case tmr when timerafter(t) :> t:
ethernet_link_state_t new_state = smi_get_link_state(smi, phy_address);
// Read LAN8710A status register bit 2 to get the current link speed
if ((new_state == ETHERNET_LINK_UP) &&

((smi.read_reg(phy_address, 0x1F) >> 2) & 1)) {
link_speed = LINK_10_MBPS_FULL_DUPLEX;

}
else {
link_speed = LINK_100_MBPS_FULL_DUPLEX;

}
if (new_state != link_state) {
link_state = new_state;
eth.set_link_state(0, new_state, link_speed);

}
t += link_poll_period_ms * XS1_TIMER_KHZ;
break;

}
}

}

The first action the drive does is wait for the PHY to power up and then configure the PHY. This is done
via library functions provided by the Ethernet library.

The main body of the drive is an infinite loop that periodically reacts to a timer event in an xC select
statement. A a set period it checks the state of the PHY over SMI and then informs the MAC of this state
via the eth.set_link_state call. This way the MAC can know about link up/down events or change of
link speed.

2.5 ICMP Packet Processing

The packet processing in the application is handled by the icmp_server task which is defined in the file
icmp.xc. This function connects to the ethernet MAC via a transmit, receive and configuration interface:

[[combinable]]
void icmp_server(client ethernet_cfg_if cfg,

client ethernet_rx_if rx,
client ethernet_tx_if tx,
const unsigned char ip_address[4],
otp_ports_t &otp_ports)

{

The first thing the task performs is configuring its connection to the MAC. The MAC address is configured
by reading a MAC address out of OTP (using the otp_board_info_get_mac function from the OTP reading
library) and then calling the set_macaddr interface function:

Copyright 2017 XMOS Ltd. 5 www.xmos.com
XM008190

AN00120 (2.0.2)

unsigned char mac_address[MACADDR_NUM_BYTES];
ethernet_macaddr_filter_t macaddr_filter;

// Get the mac address from OTP and set it in the ethernet component
otp_board_info_get_mac(otp_ports, 0, mac_address);

size_t index = rx.get_index();
cfg.set_macaddr(0, mac_address);

After this, the task configures filters to determine which type of packets is will receive from the MAC:

memcpy(macaddr_filter.addr, mac_address, sizeof(mac_address));
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Add broadcast filter
memset(macaddr_filter.addr, 0xff, MACADDR_NUM_BYTES);
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Only allow ARP and IP packets to the app
cfg.add_ethertype_filter(index, 0x0806);
cfg.add_ethertype_filter(index, 0x0800);

The task then proceeds into an infinite loop that waits for a packet from the MAC and then processes it:

while (1)
{
select {
case rx.packet_ready():
unsigned char rxbuf[ETHERNET_MAX_PACKET_SIZE];
unsigned char txbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);

if (packet_info.type != ETH_DATA)
continue;

if (is_valid_arp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_arp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ARP response sent\n");

}
else if (is_valid_icmp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_icmp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ICMP response sent\n");

}
break;

}
}

}

The xC select statement will wait for the event rx.packet_ready() which is a receive notification from
the MAC (see the Ethernet library user guide for details of the ethernet receive interface). When a packet
arrives the rx.get_packet call will retreive the packet from the MAC.

After the packet is processed the tx.send_packet call will send the created reponse packet to the MAC.

Copyright 2017 XMOS Ltd. 6 www.xmos.com
XM008190

AN00120 (2.0.2)

Details of the packet processing functions is_valid_arp_packet, build_arp_response,
is_valid_icmp_packet and build_icmp_response can be found in the icmp.xc file. The functions
implement the ICMP protocol.

Copyright 2017 XMOS Ltd. 7 www.xmos.com
XM008190

AN00120 (2.0.2)

APPENDIX A - Demo Hardware Setup

• To run the demo, connect the XTAG-2 USB debug adapter to the sliceKIT via the supplied adaptor
board

• Connect the XTAG-2 to the host PC (using USB extension cable if desired)
• Connect the ethernet sliceCARD to the CIRCLE slot of the sliceKIT. Then, connect the slice to the

host PC or to the network switch using an ethernet cable.
• On the xCORE-L series sliceKIT ensure that the xCONNECT LINK (xSCOPE) switch is set to ON, as per

the image, to allow xSCOPE to function.

Figure 2: Hardware Setup for XMOS MAC library demo

Copyright 2017 XMOS Ltd. 8 www.xmos.com
XM008190

AN00120 (2.0.2)

APPENDIX B - Launching the demo device

Once the application source code is imported into the tools you can edit the demo to configure the IP
address the ICMP code uses. This is declared as a data structure in main.xc (which is then passed to the
icmp_server function):

static unsigned char ip_address[4] = {192, 168, 1, 178};

Alter this value to an IP address that works on your network.

You can now build the project which will generate the binary file required to run the demo application.
Once the application has been built you need to download the application code onto the xCORE-L sliceKIT.
Here you use the tools to load the application over JTAG onto the xCORE device.

• Select Run Configuration.
• In Main menu, enable xSCOPE in Target I/O options.
• In XScope menu, enable Offline [XScope] Mode.
• Click Apply and then Run.

When the processor has finished booting you will see the following text in the xTIMEcomposer console
window when ping-ed from the host.

Figure 3: Response on xTIMEcomposer console for Ping

Copyright 2017 XMOS Ltd. 9 www.xmos.com
XM008190

AN00120 (2.0.2)

Figure 4: Response on Host PC for Ping

On the above ping response on host, out of 40 packets transmitted to device first 15 packet couldn’t able
to reach the device. During this period, device will respond as ARP packet received. After that device
(remaining 35 packets) responds as ICMP packet received. (Figure 3)

Copyright 2017 XMOS Ltd. 10 www.xmos.com
XM008190

AN00120 (2.0.2)

APPENDIX C - FAQs

1. What do I do if I need to change the ethernet sliceCARD slot?

The ports in the application are configured to connect to ethernet sliceCARD in the CIRCLE slot but this
can be changed by changing the port declarations in main.xc.

2. How can the demo be altered to use the real-time MAC?
The call to mii_ethernet_mac needs to be replaces with a call to mii_ethernet_rt_mac. See the
Ethernet library user guide for more details.

3. What are Buffers and Queues? Why are they needed?

The MAC maintains two sets of buffers: one for the incoming packets and the other for outgoing
packets.

For the incoming packets:

• Empty buffers are in the incoming queue awaiting a packet coming from the MII interfaces.
• Buffers received from the MII interface are filtered and moved into a forwarding queue if

appropriate.
• Buffers in the forwarding queue are moved into a client queue depending on which client

registered for that type of packet.
• Once the data from a buffer has been sent to a client, the buffer is moved back into the

incoming queue.

For the outgoing packets:

• Empty buffers are stored in an empty queue awaiting a packet from the client.
• Once the data is received the buffer is moved into a transmit queue awaiting output on the

MII interface.
• Once the data is transmitted, the buffer is released back to the empty queue.

Copyright 2017 XMOS Ltd. 11 www.xmos.com
XM008190

AN00120 (2.0.2)

APPENDIX D - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

XMOS Layer 2 Ethernet MAC Component

https://www.xmos.com/published/xmos-layer-2-ethernet-mac-component

IEEE 802.3 Ethernet Standards

http://standards.ieee.org/about/get/802/802.3.html

Ethernet Basics

http://homepage.smc.edu/morgan_david/linux/n-protocol-09-ethernet.pdf

Ethernet Frame

http://en.wikipedia.org/wiki/Ethernet_frame

Ethernet Timestamps

http://m.eetindia.co.in/STATIC/PDF/200906/EEIOL_2009JUN03_NETD_TA_01.pdf?SOURCES=DOWNLOAD

MAC address

http://en.wikipedia.org/wiki/MAC_address

Ethernet Type

http://en.wikipedia.org/wiki/EtherType

Internet Control Message Protocol

http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Copyright 2017 XMOS Ltd. 12 www.xmos.com
XM008190

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide
https://www.xmos.com/published/xmos-layer-2-ethernet-mac-component
http://standards.ieee.org/about/get/802/802.3.html
http://homepage.smc.edu/morgan_david/linux/n-protocol-09-ethernet.pdf
http://en.wikipedia.org/wiki/Ethernet_frame
http://m.eetindia.co.in/STATIC/PDF/200906/EEIOL_2009JUN03_NETD_TA_01.pdf?SOURCES=DOWNLOAD
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/EtherType
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

AN00120 (2.0.2)

APPENDIX E - Full Source code listing

E.1 Source code for main.xc

// Copyright (c) 2014-2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include "otp_board_info.h"
#include "ethernet.h"
#include "icmp.h"
#include "smi.h"

// Here are the port definitions required by ethernet. This port assignment
// is for the L16 sliceKIT with the ethernet slice plugged into the
// CIRCLE slot.
port p_eth_rxclk = on tile[1]: XS1_PORT_1J;
port p_eth_rxd = on tile[1]: XS1_PORT_4E;
port p_eth_txd = on tile[1]: XS1_PORT_4F;
port p_eth_rxdv = on tile[1]: XS1_PORT_1K;
port p_eth_txen = on tile[1]: XS1_PORT_1L;
port p_eth_txclk = on tile[1]: XS1_PORT_1I;
port p_eth_rxerr = on tile[1]: XS1_PORT_1P;
port p_eth_dummy = on tile[1]: XS1_PORT_8C;

clock eth_rxclk = on tile[1]: XS1_CLKBLK_1;
clock eth_txclk = on tile[1]: XS1_CLKBLK_2;

port p_smi_mdio = on tile[1]: XS1_PORT_1M;
port p_smi_mdc = on tile[1]: XS1_PORT_1N;

// These ports are for accessing the OTP memory
otp_ports_t otp_ports = on tile[0]: OTP_PORTS_INITIALIZER;

static unsigned char ip_address[4] = {192, 168, 1, 178};

// An enum to manage the array of connections from the ethernet component
// to its clients.
enum eth_clients {
ETH_TO_ICMP,
NUM_ETH_CLIENTS

};

enum cfg_clients {
CFG_TO_ICMP,
CFG_TO_PHY_DRIVER,
NUM_CFG_CLIENTS

};

[[combinable]]
void lan8710a_phy_driver(client interface smi_if smi,

client interface ethernet_cfg_if eth) {
ethernet_link_state_t link_state = ETHERNET_LINK_DOWN;
ethernet_speed_t link_speed = LINK_100_MBPS_FULL_DUPLEX;
const int link_poll_period_ms = 1000;
const int phy_address = 0x0;
timer tmr;
int t;
tmr :> t;

while (smi_phy_is_powered_down(smi, phy_address));
smi_configure(smi, phy_address, LINK_100_MBPS_FULL_DUPLEX, SMI_ENABLE_AUTONEG);

while (1) {
select {
case tmr when timerafter(t) :> t:
ethernet_link_state_t new_state = smi_get_link_state(smi, phy_address);
// Read LAN8710A status register bit 2 to get the current link speed
if ((new_state == ETHERNET_LINK_UP) &&

((smi.read_reg(phy_address, 0x1F) >> 2) & 1)) {
link_speed = LINK_10_MBPS_FULL_DUPLEX;

}

Copyright 2017 XMOS Ltd. 13 www.xmos.com
XM008190

AN00120 (2.0.2)

else {
link_speed = LINK_100_MBPS_FULL_DUPLEX;

}
if (new_state != link_state) {
link_state = new_state;
eth.set_link_state(0, new_state, link_speed);

}
t += link_poll_period_ms * XS1_TIMER_KHZ;
break;

}
}

}

#define ETH_RX_BUFFER_SIZE_WORDS 1600

int main()
{
ethernet_cfg_if i_cfg[NUM_CFG_CLIENTS];
ethernet_rx_if i_rx[NUM_ETH_CLIENTS];
ethernet_tx_if i_tx[NUM_ETH_CLIENTS];
smi_if i_smi;

par {
on tile[1]: mii_ethernet_mac(i_cfg, NUM_CFG_CLIENTS,

i_rx, NUM_ETH_CLIENTS,
i_tx, NUM_ETH_CLIENTS,
p_eth_rxclk, p_eth_rxerr,
p_eth_rxd, p_eth_rxdv,
p_eth_txclk, p_eth_txen, p_eth_txd,
p_eth_dummy,
eth_rxclk, eth_txclk,
ETH_RX_BUFFER_SIZE_WORDS);

on tile[1]: lan8710a_phy_driver(i_smi, i_cfg[CFG_TO_PHY_DRIVER]);

on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);

on tile[0]: icmp_server(i_cfg[CFG_TO_ICMP],
i_rx[ETH_TO_ICMP], i_tx[ETH_TO_ICMP],
ip_address, otp_ports);

}
return 0;

}

E.2 Source code for icmp.xc

// Copyright (c) 2013-2017, XMOS Ltd, All rights reserved
#include <debug_print.h>
#include <xclib.h>
#include <stdint.h>
#include <ethernet.h>
#include <otp_board_info.h>
#include <string.h>

static unsigned short checksum_ip(const unsigned char frame[34])
{
int i;
unsigned accum = 0;

for (i = 14; i < 34; i += 2)
{
accum += *((const uint16_t*)(frame + i));

}

// Fold carry into 16bits
while (accum >> 16)
{
accum = (accum & 0xFFFF) + (accum >> 16);

}

accum = byterev(~accum) >> 16;

return accum;

Copyright 2017 XMOS Ltd. 14 www.xmos.com
XM008190

AN00120 (2.0.2)

}

static int build_arp_response(unsigned char rxbuf[64],
unsigned char txbuf[64],
const unsigned char own_mac_addr[MACADDR_NUM_BYTES],
const unsigned char own_ip_addr[4])

{
unsigned word;
unsigned char byte;

for (int i = 0; i < MACADDR_NUM_BYTES; i++)
{
byte = rxbuf[22+i];
txbuf[i] = byte;
txbuf[32 + i] = byte;

}
word = ((const unsigned int *) rxbuf)[7];
for (int i = 0; i < 4; i++)
{
txbuf[38 + i] = word & 0xFF;
word >>= 8;

}

txbuf[28] = own_ip_addr[0];
txbuf[29] = own_ip_addr[1];
txbuf[30] = own_ip_addr[2];
txbuf[31] = own_ip_addr[3];

for (int i = 0; i < MACADDR_NUM_BYTES; i++)
{
txbuf[22 + i] = own_mac_addr[i];
txbuf[6 + i] = own_mac_addr[i];

}
txbuf[12] = 0x08;
txbuf[13] = 0x06;
txbuf[14] = 0x00;
txbuf[15] = 0x01;
txbuf[16] = 0x08;
txbuf[17] = 0x00;
txbuf[18] = 0x06;
txbuf[19] = 0x04;
txbuf[20] = 0x00;
txbuf[21] = 0x02;

// Typically 48 bytes (94 for IPv6)
for (int i = 42; i < 64; i++)
{
txbuf[i] = 0x00;

}

return 64;
}

static int is_valid_arp_packet(const unsigned char rxbuf[nbytes],
unsigned nbytes,
const unsigned char own_ip_addr[4])

{
if (rxbuf[12] != 0x08 || rxbuf[13] != 0x06)
return 0;

debug_printf("ARP packet received\n");

if (((const unsigned int *) rxbuf)[3] != 0x01000608)
{
debug_printf("Invalid et_htype\n");
return 0;

}
if (((const unsigned int *) rxbuf)[4] != 0x04060008)
{
debug_printf("Invalid ptype_hlen\n");
return 0;

}
if ((((const unsigned int *) rxbuf)[5] & 0xFFFF) != 0x0100)

Copyright 2017 XMOS Ltd. 15 www.xmos.com
XM008190

AN00120 (2.0.2)

{
debug_printf("Not a request\n");
return 0;

}
for (int i = 0; i < 4; i++)
{
if (rxbuf[38 + i] != own_ip_addr[i])
{
debug_printf("Not for us\n");
return 0;

}
}

return 1;
}

static int build_icmp_response(unsigned char rxbuf[], unsigned char txbuf[],
const unsigned char own_mac_addr[MACADDR_NUM_BYTES],
const unsigned char own_ip_addr[4])

{
unsigned icmp_checksum;
int datalen;
int totallen;
const int ttl = 0x40;
int pad;

// Precomputed empty IP header checksum (inverted, bytereversed and shifted right)
unsigned ip_checksum = 0x0185;

for (int i = 0; i < MACADDR_NUM_BYTES; i++)
{
txbuf[i] = rxbuf[6 + i];

}
for (int i = 0; i < 4; i++)
{
txbuf[30 + i] = rxbuf[26 + i];

}
icmp_checksum = byterev(((const unsigned int *) rxbuf)[9]) >> 16;
for (int i = 0; i < 4; i++)
{
txbuf[38 + i] = rxbuf[38 + i];

}
totallen = byterev(((const unsigned int *) rxbuf)[4]) >> 16;
datalen = totallen - 28;
for (int i = 0; i < datalen; i++)
{
txbuf[42 + i] = rxbuf[42+i];

}

for (int i = 0; i < MACADDR_NUM_BYTES; i++)
{
txbuf[6 + i] = own_mac_addr[i];

}
((unsigned int *) txbuf)[3] = 0x00450008;
totallen = byterev(28 + datalen) >> 16;
((unsigned int *) txbuf)[4] = totallen;
ip_checksum += totallen;
((unsigned int *) txbuf)[5] = 0x01000000 | (ttl << 16);
((unsigned int *) txbuf)[6] = 0;
for (int i = 0; i < 4; i++)
{
txbuf[26 + i] = own_ip_addr[i];

}
ip_checksum += (own_ip_addr[0] | own_ip_addr[1] << 8);
ip_checksum += (own_ip_addr[2] | own_ip_addr[3] << 8);
ip_checksum += txbuf[30] | (txbuf[31] << 8);
ip_checksum += txbuf[32] | (txbuf[33] << 8);

txbuf[34] = 0x00;
txbuf[35] = 0x00;

icmp_checksum = (icmp_checksum + 0x0800);
icmp_checksum += icmp_checksum >> 16;
txbuf[36] = icmp_checksum >> 8;

Copyright 2017 XMOS Ltd. 16 www.xmos.com
XM008190

AN00120 (2.0.2)

txbuf[37] = icmp_checksum & 0xFF;

while (ip_checksum >> 16)
{
ip_checksum = (ip_checksum & 0xFFFF) + (ip_checksum >> 16);

}
ip_checksum = byterev(~ip_checksum) >> 16;
txbuf[24] = ip_checksum >> 8;
txbuf[25] = ip_checksum & 0xFF;

for (pad = 42 + datalen; pad < 64; pad++)
{
txbuf[pad] = 0x00;

}
return pad;

}

static int is_valid_icmp_packet(const unsigned char rxbuf[nbytes],
unsigned nbytes,
const unsigned char own_ip_addr[4])

{
unsigned totallen;
if (rxbuf[23] != 0x01)
return 0;

debug_printf("ICMP packet received\n");

if (((const unsigned int *) rxbuf)[3] != 0x00450008)
{
debug_printf("Invalid et_ver_hdrl_tos\n");
return 0;

}
if ((((const unsigned int *) rxbuf)[8] >> 16) != 0x0008)
{
debug_printf("Invalid type_code\n");
return 0;

}
for (int i = 0; i < 4; i++)
{
if (rxbuf[30 + i] != own_ip_addr[i])
{
debug_printf("Not for us\n");
return 0;

}
}

totallen = byterev(((const unsigned int *) rxbuf)[4]) >> 16;
if (nbytes > 60 && nbytes != totallen + 14)
{
debug_printf("Invalid size (nbytes:%d, totallen:%d)\n", nbytes, totallen+14);
return 0;

}
if (checksum_ip(rxbuf) != 0)
{
debug_printf("Bad checksum\n");
return 0;

}

return 1;
}

[[combinable]]
void icmp_server(client ethernet_cfg_if cfg,

client ethernet_rx_if rx,
client ethernet_tx_if tx,
const unsigned char ip_address[4],
otp_ports_t &otp_ports)

{
unsigned char mac_address[MACADDR_NUM_BYTES];
ethernet_macaddr_filter_t macaddr_filter;

// Get the mac address from OTP and set it in the ethernet component
otp_board_info_get_mac(otp_ports, 0, mac_address);

Copyright 2017 XMOS Ltd. 17 www.xmos.com
XM008190

AN00120 (2.0.2)

size_t index = rx.get_index();
cfg.set_macaddr(0, mac_address);

memcpy(macaddr_filter.addr, mac_address, sizeof(mac_address));
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Add broadcast filter
memset(macaddr_filter.addr, 0xff, MACADDR_NUM_BYTES);
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Only allow ARP and IP packets to the app
cfg.add_ethertype_filter(index, 0x0806);
cfg.add_ethertype_filter(index, 0x0800);

debug_printf("Test started\n");
while (1)
{
select {
case rx.packet_ready():
unsigned char rxbuf[ETHERNET_MAX_PACKET_SIZE];
unsigned char txbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);

if (packet_info.type != ETH_DATA)
continue;

if (is_valid_arp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_arp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ARP response sent\n");

}
else if (is_valid_icmp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_icmp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ICMP response sent\n");

}
break;

}
}

}

Copyright 2017 XMOS Ltd. 18 www.xmos.com
XM008190

AN00120 (2.0.2)

Copyright © 2017, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2017 XMOS Ltd. 19 www.xmos.com
XM008190

	XMOS 100Mbit Ethernet application note
	Overview
	Introduction
	Block Diagram

	100Mbit Ethernet library demo
	The Makefile
	Allocating hardware resources
	The application main() function
	The PHY driver
	ICMP Packet Processing

	Demo Hardware Setup
	Launching the demo device
	FAQs
	References
	Full Source code listing
	Source code for main.xc
	Source code for icmp.xc

