
AN03009: Placing interfaces on the XCORE

AN03009: Placing interfaces on the XCORE

Publication Date: 2025/11/5
Document Number: XM-015415-AN v1.0.0

IN THIS DOCUMENT

1 Introduction . 1
2 Ports . 1
3 Interface placement and package selection . 2
4 General considerations . 3
5 The portmap . 5
6 Interface placement . 8
7 Example application . 9
8 Further reading . 16

1 Introduction

Unlike many microcontrollers, the XCORE architecture does not include a fixed set of
built-in interface peripherals. Instead, the architecture provides a set of general-purpose
I/O ports that support software modules which implement a wide variety of interface
protocols. This approach provides considerable flexibility in selecting and configuring
the interface functionality present on a device.

XMOS provides numerous software interface libraries, designed to use the general-
purpose I/O ports, that implement common interface protocols including ADAT, Ethernet
MAC, I2C, I2S, S/PDIF, SPI, UART, and USB. These libraries come as source code, enabling
specialisation of their functionality when necessary.

This application note describes a procedure for placing interface functionality on an
XCORE device. It presumes that the interface protocols needed by the design have been
identified and characterised (e.g., their type, number of instances, specific roles, widths,
sample rates, and clock domains). The example application includes an interface periph-
eral that uses an XMOS-supplied software interface library and two GPIO interfaces that
use a custom handler instead of an XMOS-supplied library.

Prior to explaining interface placement, this note presents the necessary background on
electrical pins, architectural ports, and packages that bring out ports to pins.

2 Ports

A port connects an XCORE processor through one or more pins to an external device.
Ports can be narrow (1-bit ports) or wide (up to 32-bit ports). Each XCORE device has a
set 1-, 4-, 8-, 16-, and 32- bit ports available. The number of ports of each width depends
on the specific XCORE package.

Each port includes logic to support a variety of interface operations including simple I/O,
clocked I/O, buffered I/O, and serialisation. AN03007: XCORE Ports provides an intro-
duction to XCORE ports and pointers to further information.

Ports are part of a tile (e.g., tile 0 or tile 1). The pin number associated with a port will
start with Xn, where n is the tile number. For an interface that usesmultiple ports, choose
ones on the same tile, otherwise the software cannot control them.

1

https://www.xmos.com/libraries/
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html

AN03009: Placing interfaces on the XCORE

3 Interface placement and package selection

3.1 Factors in package selection

Choosing an XCORE package for a particular design requires consideration of multiple
factors including:

· The number and type of interfaces required.

· The amount of memory required.

· The amount of compute capability needed to perform the necessary computational
functions within the system’s time constraints.

· The number of independent threads of processing and the communication channels
between them to implement the design in a timely manner.

These factors interact with one another. New information about one factor may have an
impact on the others. For example, every interface peripheral added to a design uses, at
least partially, a thread of processing and takes up some of the available memory and
computational bandwidth. Similarly, adding a purely computationalmodulewill usemore
memory and may need a separate thread of processing or a separate communication
channel.

XMOS offers a range of XCORE packages. While each package internally has the same
number of ports per tile, the number of external pins varies. Physically smaller packages
with fewer pins do not bring out each port to an external pin. Moving from a smaller
package to a larger one within the same generation provides more interface capability.

In addition, the XCORE architecture has been designed for XCORE processors to network
with one another, forming a cohesive system of computational nodes that function as
a single device. No special hardware or software is needed to communicate between
multiple XCORE processors even if they reside on different physical devices. To the pro-
grammer, the network of processors appears as a single devicewithmorememory, more
computational power, and more ports. This feature allows the system architect to easily
add more resources of any needed type without incurring additional software develop-
ment effort.

3.2 Interface placement within the design process

Often the set of interface peripherals needed by a design becomes apparent during de-
velopment of the system architecture, and it becomes fixed at that point. For this reason,
one approach when designing a system to operate on an XCORE places the interface pe-
ripherals once they are known. In this way, the system architect can choose an XCORE
package to fit the needed set of peripherals. If subsequent development reveals that the
system needsmore resources, the decisionsmade during interface placement can often
be retained with little or no software modification (e.g., by altering the set of ports or the
tile that hosts a peripheral).

2

AN03009: Placing interfaces on the XCORE

4 General considerations

4.1 Constraints on interface placement

The XCORE architecture provides considerable flexibility in placing interface peripherals,
however some hardware constraints exist. Certain features available in an XCORE device
overlay specific ports. When used, these featuresmake the overlaid ports unavailable for
other uses. Examples include connection to:

· Flash memory,

· LPDDR memory,

· MIPI,

· USB, and

· Other XCORE devices via xLinks.

4.2 Interface placement strategy

We recommend the following initial strategy when placing interface peripherals on an
XCORE device:

1. Place constrained peripherals.

2. Place peripherals that require wide ports.

3. Place serial peripherals that use narrow ports.

4. Place GPIO peripherals using remaining narrow or wide ports.

The software on a tile can only directly access ports and pins on that tile. Therefore, when
placing an interface peripheral, keep associated wires on the same tile. For debugging
purposes, consider using one xLink to connect to a host PC via an xTAG. If the design
uses multiple XCORE devices or may evolve to do so, consider reserving one or more
xLinks per device for inter-device communication.

The strategy outlined here provides a good starting point. Depending on the number
and type of interface peripherals needed and on your familiarity with XMOS technology,
a different order may prove more effective.

4.2.1 Placing constrained interfaces

When booting an XCORE device, the state of three pins in a specific 4-bit port determines
the boot mode. After booting, this port may be used for other purposes, however care
must be taken to avoid conflicts with the boot process. Booting an XCORE device from
SPI flash memory use a specific set of four 1-bit ports. Booting from QSPI flash memory
uses one specific 4-bit port and two specific 1-bit ports. The datasheet for the XCORE
device provides details about the ports used during the boot process.

A USB interface overlays all or a part of certain ports on any XCORE device. When us-
ing a multi-tile package, the designer has the option to choose the tile hosting the USB
interface.

On an XCORE.AI device, MIPI likewise overlays certain ports, but again, the designer can
choose the tile hosting it.

Connection to LPDDRmemory, which is only available on the largest XCORE.AI package,
overlays some ports on both tiles.

The Describe a target platform section of the XTC Tools User Guide provides some ad-
ditional information about constrained interfaces.

3

https://www.xmos.com/xa-xtag4
https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tutorials/describe-a-target-platform/platform.html
https://www.xmos.com/documentation/XM-014363-PC/html/index.html

AN03009: Placing interfaces on the XCORE

4.2.2 Placing wide-port interfaces

Ports of different widths frequently use the same pins as one another. For instance, two
8-bit ports will connect to the same pins as one 16-bit port. In some cases, two 4-bit
ports will connect to the same pins as one 8-bit port. In other cases, four 1-bit ports will
connect to some of the same pins as those used by an 8-bit port. Using a narrower port
makes the corresponding pins in the wider port(s) unavailable for use.

In general, an XCORE device will have more 4-bit ports than 8-bit ports, more 8-bit ports
than 16-bit ports, and so on. Consequently, it makes sense to place interface peripherals
that require wider ports before placing those that can use a narrower one. For instance,
if a product includes an OLED display with an 8-bit parallel interface, choose an 8-bit port
for it. The chosen port cannot be in use by any constraining interface, and it will need to
have all eight bits brought out to pins. If the design requires several 4-bit ports but few
1-bit ports, choose an 8-bit port that shares pins with 1-bit ports. Conversely, if the design
requires many 1-bit ports but few or no 4-bit ports, choose an 8-bit port that shares pins
with 4-bit ports.

After allocating ports at one width, move on to the next narrower port size.

Some interface protocols that use a wide port for data require a narrow port for clock
signals, selection or enablement signals, and so forth. For example, placing an Ethernet
MII PHYwill need two 4-bit ports (for RXD0..3 andTXD0..3), and six 1-bit ports (for RXCLK,
TXCLK, RXEN, TXEN, MDC, and MDIO).

4.2.3 Placing serial interfaces

Many 1-bit ports do not share their pin with any wider port, which makes them ideal for
use by serial protocols. Each clock signal must use a 1-bit port.

Some serial protocols (e.g., I2S) allow multiple data wires to use a single clock signal.
Aggregating data wires in this way saves on the number of 1-bit ports needed at the
expense of using the same clock rate. For example, placing a 4-channel I2S requires six
or seven 1-bit ports: LRCLK, MCLK, BCLK, ADC0, ADC1, DAC0, and DAC1 (the inclusion of
MCLK is optional in some cases).

A design that requires multiple sample rates or interface roles, (e.g., Controller or Target)
will need separate clock signals.

It may be possible to place a collection of 1-bit signals together on an unused wide port.
For example, if the product includes multiple chips of the same type (e.g., CODECs), a
separate bit in a wide port can control the RESET line for each one.

In some cases (e.g., I2C), XMOS supplies an interface library that can use a wide port for
a serial protocol that normally uses several 1-bit ports.

4.2.4 Placing GPIO interfaces

GPIO can use either wide or narrow ports. Judicious use of bit masks and bit shifting
allows multiple GPIO connections to share a single wide port. One constraint is that all
signals sharing a port must use the same direction (input or output).

4

AN03009: Placing interfaces on the XCORE

5 The portmap

The portmap table lists the pins and functions of an XCORE device. It acts as a useful
design aid and can be extended to document the interface choicesmade. You can down-
load a portmap for XCORE.AI as a spreadsheet from the XMOS website. Each row lists
a pin (typically named XnDmm, where n is the tile number and mm is the pin number on
that tile), which port(s) this pin belongs to, and the features that can overlay it.

As an example, the table below shows a portion of the portmap for tile[0] of the XU316-
1024-FB265 and XU316-1024-TQ128 devices. An empty cell in a Package Pin column
(the final two columns) indicates that the corresponding port has not been brought out
to a pin for that specific package. In the example below, bit 0 of four-bit port 4A (pin
X0D02) is brought out on the FB265 package but not on the TQ128 package.

5

https://www.xmos.com/file/xcore_ai-package-port-map/?version=latest

AN
03009:Placing

interfaces
on

the
XCO

RE

Port Alt Func Options Pkg
1b 4B 8B 16B 32B xLINKS QSPI Mstr SPI Mstr SPI Slave MIPI USB Pin Name FB 265 TQ 128

P1A0 xlink4_rx3 MISO SS X0D00 D1 6
P1B0 SS SS X0D01 C1 2

P4A0 P8A0 P16A0 P32A20 xlink7_rx0 RXD0 TXD0 X0D02 T8
P4A1 P8A1 P16A1 P32A21 xlink7_tx0 RXD1 TXD1 X0D03 U8
P4B0 P8A2 P16A2 P32A22 IO0 RXD2 TXD2 X0D04 A1 127
P4B1 P8A3 P16A3 P32A23 IO1 RXD3 TXD3 X0D05 C2 128
P4B2 P8A4 P16A4 P32A24 IO2 RXD4 TXD4 X0D06 B2 1
P4B3 P8A5 P16A5 P32A25 IO3 RXD5 TXD5 X0D07 B1 3
P4A2 P8A6 P16A6 P32A26 xlink7_tx1 RXD6 TXD6 X0D08 T9
P4A3 P8A7 P16A7 P32A27 xlink7_tx1 RXD7 TXD7 X0D09 U9

P1C0 xlink4_rx4 SCKL SCLK SCLK X0D10 D2 4
P1D0 xlink4_rx2 MOSI MOSI X0D11 E2 7
P1E0 xlink7_rx4 RXA FLAG0 X0D12 P7 46
P1F0 xlink7_rx3 FLAG1 X0D13 R7 47

P4C0 P8B0 P16A8 P32A28 xlink4_rx1 RXD0 X0D14 D4 8
P4C1 P8B1 P16A9 P32A29 xlink4_rx0 RXD1 X0D15 D3
P4D0 P8B2 P16A10 xlink4_tx0 RXD2 X0D16 E4 9
P4D1 P8B3 P16A11 xlink4_tx1 RXD3 X0D17 E3
P4D2 P8B4 P16A12 xlink4_tx2 RXD4 X0D18 E1
P4D3 P8B5 P16A13 xlink4_tx3 RXD5 X0D19 F2
P4C2 P8B6 P16A14P32A30 xlink4_tx4 RXD6 X0D20 F1
P4C3 P8B7 P16A15P32A31 xlink5_rx4 RXD7 X0D21 G2

6

AN03009: Placing interfaces on the XCORE

By adding columns to the portmap, the designer can document the particular interface
type and signal assigned to each port. In particular, developers may find it helpful to
give each port in use a meaningful name, e.g., PORT_I2S_BCLK, PORT_I2S_LRCLK,
PORT_I2S_DIN, etc.

After finishing the first version of the portmap, making a PCB-floorplan with the selected
package(s) will reveal potential routing issues such as cross-overs, long traces, etc. At
this stage, the system architect has flexibility to move signals around. In addition to best
practice for GPIO signals, any xLinks should be routed as documented in the datasheet.

7

AN03009: Placing interfaces on the XCORE

6 Interface placement

Placing an interface peripheral on an XCORE device involves several steps:

1. Associate each interface signal with a port of appropriate width,

2. Define and initialize at file-scope a variable for each port used by the interface periph-
eral, and

3. Call the entry point function of the interface handler or XMOS-supplied interface library
to start a separate thread of processing.

For XMOS supplied libraries you must also:

4. Pass each port variable and possibly an interface definition to the entry point function
of the associated interface library,

5. Include the API header file for the library in the application’s source code files as nec-
essary, and

6. Add the name of the library to the APP_DEPENDENT_MODULES variable in the appli-
cation’s CMakeLists.txt file.

8

AN03009: Placing interfaces on the XCORE

7 Example application

7.1 Introduction to the example

This example application demonstrates how to:

· Place a common serial communication interface peripheral on an XCORE device, and

· Place GPIO peripherals for a button and an LED.

The example has been kept intentionally simple to focus attention on the interface place-
ment process. The application includes an I2S interface peripheral that receives and
transmits audio data. A button controls muting and unmuting of the transmitted audio
data. An LED indicates the mute status.

The example uses an I2C interface to configure an external audio codec on the XK-EVK-
XU316 board. A XMOS-provided board support package performs the necessary I2C in-
terface placement and hardware configuration for this board. Consequently, this appli-
cation note does not discuss I2C interface placement in any depth.

Unlike many XMOS example applications, this one requires modification to allow it to
build successfully.

The modifications involve:

· Defining and initialising a port variable for the button input in thebutton_handler.c
source file,

· Defining and initialising a port variable for the LED output in the led_handler.c
source file,

· Defining and initialising port variables for the I2S interface in the main.xc source file,

· Calling the entry point functions for the custom button and LED handlers,

· Defining an I2S interface for use by the application in the main.xc source file, and

· Calling the entry point function for the I2S interface peripheral.

Except for themodifications listed above, the provided source files contain all of the logic
needed to implement the described functionality.

The following sections illustrate the procedure described in the Interface placement sec-
tion above.

7.2 Step 1: Associating an interface signal with a port

The XCORE architecture assumes that each XCORE tile resides within a network of
XCORE tiles. Most XCORE packages include two tiles although some packages include
only one tile and others includemore than two. The XN file describes the network of tiles.
For each tile in the network, the XN file lists the ports available on it.

To associate an interface signal to a port, the designer edits the XN file to give the port a
meaningful name. Application note AN02039: Ports, Pins, and the XN file provides more
information about the XN file and how to give a name to a port.

Because the example application runs on the XK-EVK-XU316 board, the XN file has al-
ready been correctly configured. For other designs, the system architect may have to
modify the XN file as the first step of the interface placement procedure.

The snippets below show the relevant lines from the XK-EVK-XU316 XN file for the ports
used in the example application.

9

https://www.xmos.com/xk-evk-xu316
https://www.xmos.com/xk-evk-xu316
https://www.xmos.com/file/lib_board_support
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/xk-evk-xu316

AN03009: Placing interfaces on the XCORE

Listing 1: Button and LED ports
<Tile Number="0" Reference="tile[0]">
.
.
.
<Port Location="XS1_PORT_4C" Name="PORT_LEDS"/>
<Port Location="XS1_PORT_4D" Name="PORT_BUTTONS"/>
.
.
.

</Tile>

These lines specify that the button input uses a 4-bit port 4D on tile 0 and the LED output
uses a 4-bit port 4C. They also assign a name to each of these ports.

Listing 2: I2S ports
<Tile Number="1" Reference="tile[1]">
.
.
.
<!-- Audio ports -->
<Port Location="XS1_PORT_1D" Name="PORT_MCLK_IN"/>
<Port Location="XS1_PORT_1C" Name="PORT_I2S_BCLK"/>
<Port Location="XS1_PORT_1B" Name="PORT_I2S_LRCLK"/>
<Port Location="XS1_PORT_1A" Name="PORT_I2S_DAC_DATA"/>
<Port Location="XS1_PORT_1N" Name="PORT_I2S_ADC_DATA"/>
.
.
.

</Tile>

These lines specify that the I2S interface uses several 1-bit ports on tile 1, one for each
signal wire. They also assign a name to each of these ports.

7.3 Step 2: Define a variable for each port used by the interface peripheral

Initialisation of a port variable can use the underlying name given in the XN file. Assigning
a meaningful name in the XN file documents the intention and minimises changes in the
source code if later development results in moving the interface to a different port or set
of ports.
As shown previously, the XN file already includes meaningful names for the ports used
by the example. The table below describes each port’s function.

Inter-
face

Function Port Name Description

I2S
Bit Clock PORT_I2S_BCLK 1-bit port for bit clock signal
Left-Right
Clock

PORT_I2S_LRCLK 1-bit port for Left-Right clock sig-
nal

Master Clock PORT_MCLK_IN 1-bit port for master clock signal
Data In PORT_ADC_DATA 1-bit port for audio data from

codec
Data Out PORT_DAC_DATA 1-bit port for audio data to codec

GPIO
Button Input PORT_BUTTONS 4-bit port for button input
LED Output PORT_LEDS 4-bit port for LED output

Each definition of a port variablemust appear at file-scope. Initialisation of a port variable
with a port name allows the variable to act as a reference to the corresponding port
defined in the XN file.
For interface peripherals that use an XMOS-supplied interface library, the definition and
initialisation of the associated port(s) typically occurs in the file containing the applica-

10

AN03009: Placing interfaces on the XCORE

tion’s main() function. Designs that include a custom protocol handler may define and
initialise the associated port variables within that handler or may define and initialise
them elsewhere and pass them as an argument to the handler’s entry point function.

Note

An XCORE application built with XTC Tools version 15 requires you to place the
main() function in a source file written in the XC language. Functionality in the tool
chain uses information in this file to place threads of processing on specific tiles of
the XCORE network. The tool chain also uses information in the XN file to create a
platform.h file that includes a defined symbol for each port name.

To complete the process of placing the button interface peripheral, edit the
button_handler.c source file to define and initialise the p_buttons port variable at
file-scope as shown below. The lib_xcore library distributed with the XTC Tools defines
the port_t type for defining a port in C.

Listing 3: Definition and initialisation of the button port variable
// Define the port for the buttons.
// Initialising p_buttons with PORT_BUTTONS connects it through the XK-EVK-XU316
// XN file with PORT_4D on tile[0].
// The datasheet for the XU316-1024-FB265 shows PORT_4D of tile[0] connected
// through signals X0D16, X0D17, X0D18, and X0D19 to balls E4, E3, E1, and F2.
// The schematic for the XK-EVK-XU316 board shows that two of these signals,
// X0D16 and X0D17, connect directly to Button 0 and Button 1 respectively.
static port_t p_buttons = PORT_BUTTONS;

Tip

A comment in the source file indicates where to place the definition.

To complete the process of placing the LED interface peripheral, edit theled_handler.
c source file to define and initialise the p_leds port variable at file-scope as shown
below.

Listing 4: Definition and initialisation of the LED port variable
// Define the port for the LEDs.
// Initialising p_leds with PORT_LEDS connects it through the XK-EVK-XU316 XN
// file with PORT_4C on tile[0].
// The datasheet for the XU316-1024-FB265 shows PORT_4C of tile[0] connected
// through signals X0D14, X0D15, X0D20, and X0D21 to balls D4, D3, F1, and G2.
// The schematic for the XK-EVK-XU316 board shows that these signals connect
// through a 74AVC4TD245 voltage level shifter to LEDs 0..3.
static port_t p_leds = PORT_LEDS;

Complete the process of placing the I2S interface peripheral by editing the main.xc
source file to define and initialise the port variables at file-scope as shown below.

11

AN03009: Placing interfaces on the XCORE

Listing 5: Definition and initialisation of the I2S port variables
// Define ports used by the I2S frame-based master functionality in lib_i2s.
// The XN file for the XK-EVK-XU316 shows the association between the native
// port names and these initialisation constants.
// The datasheet for the XU316-1024-FB265 shows how the ports connect through
// signals to balls on the device.
// The schematic for the XK-EVK-XU316 board shows the connection between the
// signals and other parts on the board.
on tile[1]: in port p_mclk = PORT_MCLK_IN;
on tile[1]: buffered out port:32 p_lrclk = PORT_I2S_LRCLK;
on tile[1]: out port p_bclk = PORT_I2S_BCLK;
on tile[1]: buffered out port:32 p_dac[NUM_I2S_LINES] = {PORT_I2S_DAC_DATA};
on tile[1]: buffered in port:32 p_adc[NUM_I2S_LINES] = {PORT_I2S_ADC_DATA};

The XC language defines port as a keyword. It requires the directional qualifier when
defining a specific port variable, and it allows the buffered and width qualifications to
further specify the operation of a port. The on tile[1]: phrase states the tile upon
which the defined resource resides. The use of an array allows the definition of several
1-bit ports named p_dac and p_adc. The software can address each port in the array
using a zero-based index.

7.4 Step 3: Call the entry point function of each interface handler

Having defined each port used by the custom interface handlers, everything is in place
to start those handlers. Edit the main() function in the main.xc source file to call the
buitton and LED entry point functions as shown below.

Listing 6: Invocation of the Button and LED custom interface handlers
// Entry point for the custom button handler
button_handler(c_button);

// Entry point for the custom LED handler
led_handler(c_led);

The declaration for the button handler appears in button_handler.h. The declaration
for the LED handler appears in led_handler.h. Each declaration includes a channel
end (chanend) parameter for communication between the handler and the code that
uses it.

7.5 Step 4: Pass each port variable to the entry point function of the
associated interface

Starting the I2S interface peripheral involves the creation of an interface as well as calling
the entry point function. Edit the main() function in the main.xc source file to define
the I2S interface used by the application as shown below.

Listing 7: Definition of the I2S interface
// Define an interface for I2S frame callback functions
interface i2s_frame_callback_if i_i2s;

The definition of i2s_frame_callback_if appears in the i2s.h file in lib_i2s.

Likewise, edit the main() function of themain.xc source file to call the I2SMaster entry
point function as shown below.

Listing 8: Invocation of the I2S interface library
// Entry point function for the I2S master interface.
// The API appears in lib_i2s
i2s_frame_master(

i_i2s, // XC-style interface
p_dac, // DAC data port(s)

(continues on next page)

12

https://www.xmos.com/file/lib_i2s

AN03009: Placing interfaces on the XCORE

(continued from previous page)
NUM_I2S_LINES, // Number of DAC I2S lines
p_adc, // ADC data port(s)
NUM_I2S_LINES, // Number of ADC I2S lines
DATA_BITS, // Data bits per sample
p_bclk, // Bit clock port
p_lrclk, // Left-right clock port
p_mclk, // Master clock port
bclk // Clock block for generating the Bit clock

);

The declaration of i2s_frame_master() function appears in the i2s.h file in lib_i2s.

7.6 Step 5: Include the API header file for the library

The API header files are needed to use an XMOS-supplied interface library. These are
already included in the example application in the main.xc source file as shown below.

Listing 9: Include APIs for XMOS libraries
#include <platform.h>
#include <xs1.h>
#include "i2c.h"
#include "i2s.h"
#include "signalling.h"
#include "xk_evk_xu316/board.h"

This snippet shows the inclusion of the I2S interface library API header file lib_i2s.
h along with other necessary XMOS tools, board support package, and standard library
header files.

7.7 Step 6: Including an XMOS-supplied interface library to the build
system

The XCommon-CMake build system makes it easy to add an XMOS-supplied library into
an application. Every application has its own CMakeLists.txt file. Each applica-
tion’s CMakeLists.txt file includes the definition of APP_DEPENDENT_MODULES. To
include an XMOS-supplied interface library in the set of modules built into an application,
add the library’s name to the APP_DEPENDENT_MODULES definition.

Appending a version number in parentheses to a library name will cause the XCommon-
CMake build system to use that specific released version of the library. For best results,
use the most recently released version when starting a new design.

The application’s CMakeLists.txt file has already included the necessary XMOS-
supplied libraries as shown in the snippet below.

13

https://www.xmos.com/file/lib_i2s
https://www.xmos.com/documentation/XM-015090-PC/html/

AN03009: Placing interfaces on the XCORE

Listing 10: APP_DEPENDENT_MODULES definition
set(APP_DEPENDENT_MODULES

"lib_board_support(1.3.0)"
"lib_i2s(6.0.1)"

) # APP_DEPENDENT_MODULES

When building, the XCommon-CMake build system will walk through the dependency
tree and pick up dependent modules. Hence, the set of libraries brought into a sandbox
may be larger than the set defined by the APP_DEPENDENT_MODULES symbol in the
application’s CMakeLists.txt file.

7.8 Building the example

This section assumes that the XMOS XTC Tools have been downloaded and installed.
The accompanying README specifies the required version, and the XMOS web site con-
tains installation instructions.
Special attention should be paid to the section on Installation of Required Third-Party
Tools.
The application is built using the XCommon-CMake build system, which is provided with
the XTC tools and is based on CMake.
Download and extract the an03009 software ZIP package to a chosenworking directory.
To configure the build, run the following commands from an XTC command prompt:
cd an03009
cd app_an03009
cmake -G "Unix Makefiles" -B build

The software package includes all required dependencies. If any dependencies aremiss-
ing, this step will retrieve them automatically.
Build the application binaries using xmake:
xmake -j -C build

The build process will generate binary artifacts (.xe files) under the appropriate subdirec-
tories of the app_an03009/bin directory — one for each supported build configuration.
For subsequent builds, the cmake step may be omitted. If CMakeLists.txt or other
build files are modified, cmake will be re-run automatically by xmake as needed.

7.9 Modifying the example

Attempting to build the unmodified example will result in several errors:
· The p_buttons port variable has not been defined and initialised in
button_handler.c.

· The p_leds port variable has not been defined and initialised in led_handler.c.
· None of the port variables for the I2S interface have been defined and initialised in
main.xc.

· The custom button and LED handlers have not been started in separate threads by
calling them from within a par statement in main.xc.

· An I2S interface, used by the application to interact with the I2S interface library, has
not been defined in main.xc.

· The I2S Master function itself (i.e., the entry point function to the XMOS-supplied I2S
interface library) has not been started in a separate thread by called it from within a
par statement in main.xc.

14

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

AN03009: Placing interfaces on the XCORE

After making these modifications, the application should build successfully.

7.10 Running the example

From an XTC command prompt, run the following command from the an03009/
app_an03009 directory:
xrun ./bin/app_an03009.xe

Alternatively, the application can be programmed into flash memory for standalone exe-
cution:
xflash ./bin/app_an03009.xe

7.11 Testing the example

Plug an analogue audio source into theLINE IN jack on the XK-EVK-XU316 board. Plug a
speaker or set of headphones into the LINE OUT jack on the XK-EVK-XU316 board. Play
some audio through the XK-EVK-XU316 from any convenient source. Pressing Button
0 will toggle the mute setting for the audio played out from the LINE OUT jack. When
muted, LED 0 will light up.

This example application uses a primitive technique to mute and unmute audio. It does
so to keep the application as simple as possible. Consequently, the act of muting or
un-muting introduces some noticable clicks.

15

https://www.xmos.com/xk-evk-xu316
https://www.xmos.com/xk-evk-xu316

AN03009: Placing interfaces on the XCORE

8 Further reading

· AN02039: Ports, Pins, and the XN file
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.
html

· AN03007: XCORE Ports
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.
html

· XCORE.AI port map
https://www.xmos.com/file/xcore_ai-package-port-map/?version=latest

· XMOS application build and dependency management system: XCommon-CMake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

· XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

· XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

16

https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/file/xcore_ai-package-port-map/?version=latest
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation

	Introduction
	Ports
	Interface placement and package selection
	General considerations
	The portmap
	Interface placement
	Example application
	Further reading

