
AN02050: Extend I2S loopback application with DSP and AI

AN02050: Extend I2S loopback application with DSP and AI

Publication Date: 2025/10/13
Document Number: XM-015408-AN v1.0.0

IN THIS DOCUMENT

1 Application overview . 1
2 Common aspects of both extensions . 1
3 Adding DSP . 2
4 Adding AI . 6
5 Modifications to the main() function . 11
6 Modifications to the application() function . 12
7 Combined extensions . 13
8 Tutorial application . 13
9 Resource usage . 16
10 References . 16

xCORE devices make it easy to add functionality to an existing design. This application
note provides a simple example of how to do so by adding two extensions to an existing
design:

· Audio DSP functionality, and

· AI-based keyword spotting.

Building up functionality in this way allows the developer to implement and test a design
in an incremental manner.

AN00162 describes how to implement a basic I2S loopback application on an XCORE
device. This I2S loopback application acts as the starting point for this application note.

1 Application overview

The software included in this application note has both the DSP extension and the AI
extension integrated into a single application. The use of pre-processor macros allows
for easy inclusion or exclusion of each extension.

Each extension has been implemented in C. As in AN00162, the application and I2S com-
ponent have been implemented in XC.

Without either extension, the system consists of three threads communicating over two
sets of ports as shown in Fig. 1.

2 Common aspects of both extensions

2.1 Common processing pattern

Each extension adds threads of processing to the code running on the xCORE processor.
The common pattern for each thread consists of some code that performs initialisation
followed by an event-driven processing loop.

The processing loop waits on one or more resources to detect an event. When an event
occurs, the loop runs a corresponding event handler. Once the event handler completes,
the processing loop waits for the next event. The loop continues in this manner until all

1

https://www.xmos.com/application-notes/an00162
https://www.xmos.com/application-notes/an00162

AN02050: Extend I2S loopback application with DSP and AI

Fig. 1: I2S loopback thread diagram

processing stops, for instance upon removal of power. No mechanism exists to exit a
processing loop based on detection of an event.

2.2 Header file declarations

To allow correct linkage regardless of the language of the source file that includes them,
each header file includes the xccompat.h header file and some conditionally included
lines to establish external C-linkage when needed. The xccompat.h file defines type-
defs for xCORE resources when writing source code in C or C++.

3 Adding DSP

The DSP extension adds a simple volume control capability to the application. A single
button controls the volume level and mute/unmute state. Pressing the button cycles
through a series of volume levels, from the maximum volume down to mute and then
back up to maximum volume.

With the DSP extension, the system consists of five threads communicating over three
sets of ports as shown in Fig. 2.

The DSP functionality appears in the some_dsp.c source file. Button handling ap-
pears in the some_gpi.c source file. The corresponding header files some_dsp.h and
some_gpi.h declare the public interface to each module.

3.1 The DSP header file

The some_dsp() function provides an entry point to start the DSP functionality. It de-
clares two channel end parameters, one for handling audio data exchanged with the
application and one for receiving button-press indications from the button handler.
void some_dsp(chanend c_dsp, chanend c_gpi);

The main() function has the responsibility to provide the correct channel ends when
starting the DSP thread.

2

AN02050: Extend I2S loopback application with DSP and AI

Fig. 2: DSP extension thread diagram

3.2 The DSP source file

The some_dsp.c source file implements the DSP functionality. It defines several con-
stants, a few data structures, and a single function, some_dsp(), organised as a sepa-
rate thread of processing.
Initialisation includes setting the initial volume level, un-muting the audio, and setting the
value of the variable that controls the direction of volume changes.

// Set initial volume control gain and make sure it's un-muted
int volume_idx = 0; // Start at -6dB
adsp_volume_control_set_gain(&volume_control, VOLUME_LEVEL[volume_idx]);
adsp_volume_control_unmute(&volume_control);
bool direction = DECREASE;

It also initialises a buffer and index for storing audio samples. Finally, it defines a variable
to hold the button-press data it will receive from the button handler.

// Initialize the audio sample buffer
int idx = 0;
int32_t sample[BUFFER_SIZE];

// Create a place to sink the button-pressed data
bool button_pressed;

The thread’s event-driven processing loop uses the SELECT_RES macro. This macro
expands into an infinite loop which allows individual handlers to respond to events on
different resources.

SELECT_RES(
CASE_THEN(c_dsp, event_dsp_chanend),
CASE_THEN(c_gpi, event_button_pressed)

) // SELECT_RES

Each CASE statement associates a resource with an event handler. In the first CASE,
the resource is the channel end c_dsp, and any event on that channel end invokes the
event_dsp_chanend handler. In the second CASE, the resource is the channel end
c_gpi, and any event on that channel end invokes the event_button_pressed han-
dler.
The loop responds to two events: audio data arriving on the c_dsp channel end or
button-press data arriving on the c_gpi channel end. The first event handler reads audio
samples from the c_dsp channel end and stores them in the sample buffer. When the
buffer is full, it applies the current volume level to each sample and returns it through the
same channel end.

3

AN02050: Extend I2S loopback application with DSP and AI

event_dsp_chanend:
sample[idx] = chan_in_word(c_dsp);

if(BUFFER_SIZE <= ++idx) {
for(size_t i = 0; i < BUFFER_SIZE; ++i) {

int32_t result = adsp_volume_control(&volume_control, sample[i]);
chan_out_word(c_dsp, result);

}
idx = 0;

}

continue; // end of event_dsp_chanend

The second event handler reads button-press data arriving on the c_gpi channel end
and stores it in the button_pressed variable. The button handler has been de-
signed to only send data when a button has been pressed. Consequently, storing
the data in the button_pressed variable only serves to remove it from the channel
so that subsequent button-presses can be received. Having cleared the channel, the
event handler changes the volume level and mute/unmute state based on values in the
DECREASE_VOLUME, INCREASE_VOLUME, and VOLUME_LEVEL arrays.
#define VOLUME_LEVEL_COUNT (4)
// Arrange violume levels in decreasing order of gain to allow an index equal to VOLUME_LEVEL_COUNT to signify a�
↪→muted state.
static const int32_t VOLUME_LEVEL[VOLUME_LEVEL_COUNT] = {

INT_MAX>>2, // -6dB
INT_MAX>>3, // -9dB
INT_MAX>>4, // -12dB
INT_MAX>>5, // -15dB

};

#define DECREASE (false)
#define INCREASE (true)

typedef struct {
size_t next_index;
bool next_direction; // DECREASE or INCREASE

} volume_change_t;

static const volume_change_t DECREASE_VOLUME[VOLUME_LEVEL_COUNT] = {
{1, DECREASE}, // Move to -9dB, continue decreasing
{2, DECREASE}, // Move to -12dB, continue decreasing
{3, DECREASE}, // Move to -15dB, continue decreasing
{4, INCREASE} // Mute, start increasing

}; // DECREASE_VOLUME

static const volume_change_t INCREASE_VOLUME[VOLUME_LEVEL_COUNT+1] = {
{0, DECREASE}, // Should not happen, start decreasing
{0, DECREASE}, // Move to -6dB, start decreasing
{1, INCREASE}, // Move to -9dB, continue increasing
{2, INCREASE}, // Move to -12dB, continue increasing
{3, INCREASE} // Unmute, move to -15dB, continue increasing

}; // INCREASE_VOLUME

event_button_pressed:
button_pressed = chan_in_word(c_gpi);

if(direction == DECREASE) {
direction = DECREASE_VOLUME[volume_idx].next_direction;
volume_idx = DECREASE_VOLUME[volume_idx].next_index;
if(VOLUME_LEVEL_COUNT <= volume_idx) {

adsp_volume_control_mute(&volume_control);
} else {

adsp_volume_control_set_gain(&volume_control, VOLUME_LEVEL[volume_idx]);
}

} else {
direction = INCREASE_VOLUME[volume_idx].next_direction;
volume_idx = INCREASE_VOLUME[volume_idx].next_index;
adsp_volume_control_set_gain(&volume_control, VOLUME_LEVEL[volume_idx]);
if(volume_idx == VOLUME_LEVEL_COUNT-1) {

adsp_volume_control_unmute(&volume_control);
}

}

continue; // end of event_button_pressed

3.3 The button handler header file

The some_gpi() function provides an entry point to start the button handler. It accepts
a channel end which the button logic will use to send button-press data to the DSPmod-
ule. It also accepts a port argument.

4

AN02050: Extend I2S loopback application with DSP and AI

#if defined(__XC__)
void some_gpi(chanend c_gpi, in port p_buttons);
#else
void some_gpi(chanend c_gpi, port p_buttons);
#endif // defined(__XC__)

Note

The XC language requires inclusion of a port’s direction when declaring or defining it.
Neither C nor C++ recognise the direction keyword when declaring or defining a port.
Hence some_gpi.h declares some_gpi() twice with slightly different signatures,
once for use within XC files and again for use within C or C++ files.

The main() function supplies the correct channel end and the actual port connected to
the buttons when starting the button handler thread.

3.4 The button handler source file

The some_gpi.c source file implements the button handler functionality. It de-
fines some constants useful for isolating data from button 0 and a single function,
some_gpi(), organised as a separate thread of processing.

Initialisation prepares the button port for input and configures a timer to handle bouncing
of the button signal. The port_set_trigger_in_equal() function configures the
port to generate an event when someone presses button 0 and button 1 is not pressed.

// Prepare the button port for input
port_enable(p_buttons);
int32_t button_state = port_in(p_buttons);
port_set_trigger_in_equal(p_buttons, BUTTON_0_PRESSED);

// Prepare a timer for handling bouncing by the button input
hwtimer_t t_settle = hwtimer_alloc();
const uint32_t SETTLE_TIME = 5000000; // 50ms in 10ns ticks

const bool BUTTON_PRESSED = true;
bool stable = true;

The SELECT_RESmacro establishes the thread’s event-driven processing loop.
SELECT_RES(

CASE_GUARD_THEN(p_buttons, stable, event_button_port),
CASE_NGUARD_THEN(t_settle, stable, event_button_settle_timer)

) // SELECT_RES

Each CASE statement associates a resource with an event handler. In the first
CASE, the resource is the port p_buttons, and events on that port invoke the
event_button_port handler only if the stable variable equals true. This condi-
tional guard prevents invocation of the handler while the button signal is bouncing. In the
second CASE, the resource is the timer t_settle, and events on that timer invoke the
event_button_settle_timer handler only if the stable variable equals false.
This conditional guard enables invocation of the handler while the button signal settles
down after someone presses it.

The loop responds to two events: a button press and a timer event. The first event
handler responds to an event on the p_buttons port. Due to the port’s trigger con-
figuration, this event indicates that button 0 has been pressed. The handler takes sev-
eral actions. First, it reads the button’s state from the port and clears the event trigger
so that subsequent events due to the button signal bouncing do not invoke the han-
dler again. Second, it sends a button-pressed indication to the DSP module over the
c_gpi channel. Third, it sets up a trigger time for the t_settle timer and enables
the event_button_settle_timer handler by setting the stable variable to false.
The timer will generate an event after an interval of 50 ms.

5

AN02050: Extend I2S loopback application with DSP and AI

event_button_port:
button_state = port_in(p_buttons);
port_clear_trigger_in(p_buttons);
chan_out_word(c_gpi, BUTTON_PRESSED);
hwtimer_set_trigger_time(t_settle, hwtimer_get_time(t_settle) + SETTLE_TIME);
stable = false;
continue; // end of event_button_port

The second event handler responds to an event on the t_settle timer. This event
indicates that the timer’s trigger interval has elapsed. The handler reads the current
value of the buttons from the p_buttons port. Since the event_button_port han-
dler cleared the trigger condition for the p_buttons port, no constraint exists on the
value of each button. Both button 0 and button 1 may be either pressed or not pressed.
Consequently, this handler masks the button state to check only the value of button 0.
If button 0 reports an asserted (i.e., pressed) state, the handler establishes a new trig-
ger time for the t_settle timer. If button 0 reports an unasserted (i.e., released) state,
the handler clears the t_settle timer trigger, sets the stable variable to true and
re-establishes the trigger condition on the p_buttons port. These actions re-enable
the event_button_port handler to respond to the next button press and disable the
event_button_settle_timer handler.

event_button_settle_timer:
button_state = port_in(p_buttons);

// Active low; ignore values for buttons other than button 0
if(0 == (button_state & BUTTON_0_MASK)) {

hwtimer_change_trigger_time(t_settle, hwtimer_get_time(t_settle) + SETTLE_TIME);
} else {

hwtimer_clear_trigger_time(t_settle);
stable = true;
port_set_trigger_in_equal(p_buttons, BUTTON_0_PRESSED);

}

continue; // end of event_button_settle_timer

4 Adding AI

The AI extension adds a keyword spotting capability to the application. It includes a
Neural Network that has been trained to spot ten different words. The extension has
been designed so that detection of two of those words lights up an LED. When the AI
extension detects the word “right”, it lights up LED 0. When it detects the word “left”, it
lights up LED 3.

With the AI extension, the system consists of six threads communicating over three sets
of ports as shown in Fig. 3.

Fig. 3: AI extension thread diagram

6

AN02050: Extend I2S loopback application with DSP and AI

The entry point for the AI functionality appears in the some_ai.cpp source file. The LED
handling logic appears in the some_gpo.c source file. The corresponding header files
some_ai.hpp and some_gpo.h declare the public interface to each module.

4.1 The AI header file

The some_ai() function provides an entry point to start the AI functionality. The func-
tion declares two channel end parameters, one for handling audio data received from the
application and one for sending LED commands to the LED handler.
void some_ai(chanend c_ai, chanend c_gpo);

The main() function has the responsibility to provide the correct channel ends when
starting the AI thread.

4.2 The AI source file

The some_ai.cpp source file provides the entry point and coordinating logic for the
keyword spotting functionality. It defines two functions, some_ai_collect() and
some_ai_process(). It also defines a single entry function, some_ai(), which oper-
ates as a separate thread of processing.

The some_ai() function

The some_ai() thread of processing starts two further threads of processsing,
some_ai_collect() and some_ai_process(). It also creates a channel, c_task,
which is used to send data from some_ai_collect() to some_ai_process().
void some_ai(chanend_t c_ai, chanend_t c_gpo) {

assert((SAMPLE_FREQUENCY / AI_SAMPLE_FREQUENCY == 2) && (SAMPLE_FREQUENCY % AI_SAMPLE_FREQUENCY == 0));
channel_t c_task = chan_alloc();
PAR_JOBS(

PJOB(some_ai_collect, (c_ai, c_task.end_a)),
PJOB(some_ai_process, (c_task.end_b, c_gpo))

);
chan_free(c_task);

} // End of some_ai

Note

Although the PAR_JOBS macro in some_ai() includes two PJOB macros, only
one new thread of processing comes into existence. The scheduler uses the same
thread for some_ai_process() as for some_ai() since nothing prohibits run-
ning them sequentially. Execution of the chan_free() function is held off until
both some_ai_collect() and some_ai_process() return.

The some_ai_collect() function

The keyword spotter operates at 16 kHz on a monaural audio signal collected into
units of 320 samples within a 512-sample frame. The rest of the application operates
at 32 kHz on a stereo audio signal, and it works on a sample-by-sample basis. The
some_ai_collect() thread of processing provides the conversion between these two
sets of characteristics.

Initialisation code defines a sample buffer and a frame buffer plus some variables that in-
dex these buffers. The samples buffer has enough space to hold two samples of stereo
data. By holding two samples, it allows 2-to-1 decimation through averaging sample val-
ues. The frame buffer has enough space to hold 512 samples of monaural data.

7

AN02050: Extend I2S loopback application with DSP and AI

// Define buffers and index variables
int32_t samples[SAMPLE_COUNT][CHANS_PER_FRAME] = {{0}};
unsigned samples_idx = 0;
unsigned channel_idx = 0;

int32_t frame[KWD_FRAME_SIZE] = {0};
unsigned frame_idx = 0;

A SELECT_RESmacro establishes the thread’s event-driven processing loop.
SELECT_RES(CASE_THEN(c_ai, event_ai_chanend))
{

event_ai_chanend:{
samples[samples_idx][channel_idx] = chan_in_word(c_ai);
channel_idx = (channel_idx + 1) % CHANS_PER_FRAME;
if (channel_idx == 0) {

samples_idx = (samples_idx + 1) % SAMPLE_COUNT;
if (samples_idx == 0) {

// get decimated mono sample
int32_t sample = (samples[0][0] >> 1) + (samples[1][0] >> 1);
frame[frame_idx++] = sample;

if (N_SAMPLES <= frame_idx) { // frame collected
frame_idx = 0;
chan_out_buf_word(c_collect, (uint32_t *)frame, N_SAMPLES);

} // frame collected
}

}
continue;

} // event_ai_chanend
} // select

The single CASE statement associates the c_ai channel end with the
event_ai_chanend event handler. The handler runs upon receiving data through the
c_ai channel end. It collects the data received through the c_ai channel end into the
samples buffer with if statements and use of the modulo operator advancing the
channel_idx and sample_idx values correctly. Each time the samples buffer holds
two new samples of stereo data, the handler copies the average value of the samples
for channel 0 into the frame buffer.

int32_t sample = (samples[0][0] >> 1) + (samples[1][0] >> 1);
frame[frame_idx++] = sample;

Once the frame contains 320 samples of data, the handler sends it to the
some_ai_process() thread over the c_collect channel end.

if (N_SAMPLES <= frame_idx) { // frame collected
frame_idx = 0;
chan_out_buf_word(c_collect, (uint32_t *)frame, N_SAMPLES);

} // frame collected

The some_ai_process() function

The some_ai_process() thread invokes the keyword spotter and determineswhether
either of the two desirable keywords have been detected based on the information the
keyword spotter returns.

Its initialisation code defines variables and structures needed by the keyword spotter
and initialises it. It also defines a variable for indicating which keyword, if any, the spotter
detects.
void some_ai_process(chanend_t c_process, chanend_t c_gpo) {

kwd_spotter_state_t state = KWD_SPOTTER_NOT_READY;
kwd_spotter_ctx_t ctx = {{0}};

state = kwd_spotter_init(&ctx);
assert(state == KWD_SPOTTER_INIT_DONE);

uint32_t *fft_frame_ptr = ctx.kwd_frame_ptr;

kwd_label_indices_t keyword_detected = UNKNOWN;

A SELECT_RESmacro establishes the thread’s event-driven processing loop.

8

AN02050: Extend I2S loopback application with DSP and AI

SELECT_RES(CASE_THEN(c_process, event_frame_received))
{

event_frame_received:{
chan_in_buf_word(c_process, fft_frame_ptr, N_SAMPLES);
state = kwd_spotter_compute(&ctx);
if (state == KWD_SPOTTER_DONE){

if (ctx.kwd_output[LEFT] > THRESHOLD){
keyword_detected = LEFT;

}
else if (ctx.kwd_output[RIGHT] > THRESHOLD){

keyword_detected = RIGHT;
}
else{

keyword_detected = UNKNOWN;
}
chan_out_word(c_gpo, keyword_detected); // Notify GPO task

}
continue;

} // event_frame_received
} // select

The single CASE statement associates the c_process channel end with the
event_frame_received event handler. The handler runs upon receiving data through
thec_process channel end. It collects a block of data received through thec_process
channel end into a buffer within the keyword spotter’s context structure and then invokes
the keyword spotter. The handler then determines whether or not the spotter has de-
tected either of the two chosen keywords. It sends an indication of the keyword de-
tected through the c_gpo channel end for every result returned by the keyword spotter.
Any detection of the word “left” results in the handler sending the LEFT value. Likewise,
any detection of the word “right” results in the handler sending the RIGHT value. If the
keyword spotter detects anything else, including silence, it sends the UNKNOWN value.

Note

The keyword spotter implementation resides in the kwd_spotter directory and its
sub-directories. This application note does not discuss the keyword spotter design
or algorithm. However, AN02013 includes some information about these areas of
keyword spotting.

Because the keyword spotter operates on a 320-sample segment of a 512-sample frame
of data and because a human utterance spans multiple frames, the keyword spotter
usually detects the same word multiple times in a row. However, the spotter’s output will
occasionally drop below the threshold used for detection only to rise above it again on
a subsequent invocation. The design of event_frame_received does not attempt
to process these multiple positive detections or the occasional false negative ones. It
simply sends all of the data through the c_gpo channel end to the LED thread allowing
that thread to manage the operation of the LEDs.

4.3 The LED header file

The some_gpo() function accepts a channel endwhich the GPO logic will use to receive
LED data from the AI module. It also accepts a port argument.
#if defined(__XC__)
void some_gpo(chanend c_gpo, out port p_leds);
#else
void some_gpo(chanend c_gpo, port p_leds);
#endif // defined(__XC__)

Note

The XC language requires inclusion of a port’s direction when declaring or defining it.
Neither C nor C++ recognise the direction keyword when declaring or defining a port.

9

https://www.xmos.com/application-notes/an02013

AN02050: Extend I2S loopback application with DSP and AI

Hence some_gpo.h declares some_gpo() twice with slightly different signatures,
once for use within XC files and again for use within C or C++ files.

The main() function supplies the correct channel end and the actual port connected to
the LEDs when starting the LED handler thread.

4.4 The LED source file

The some_gpo.c source file implements the LED handler functionality. It defines the
constants to turn on and off two of the LEDs and a single function, some_gpo(), organ-
ised as a separate thread of processing.
Initialisation prepares the LED port for output, ensures that all LEDs are turned off, and
configures a timer to handle transient variablility in the keyword detection data received
from the AI processing thread.
void some_gpo(chanend c_gpo, port p_leds)
{

// Prepare the LED port for output
// For simplicity, this example turns off all four LEDs initially,
// and only changes the state of LED 0
port_enable(p_leds);
uint32_t current_led_state = LEDS_OFF;
uint32_t next_led_state = LEDS_OFF;
port_out(p_leds, current_led_state);

// Prepare a timer to sustain the LED output
hwtimer_t t_sustain = hwtimer_alloc();
const uint32_t SUSTAIN_DURATION = 85000000; // 850ms in 10ns ticks
bool sustaining = false;

kwd_label_indices_t led_signal = UNKNOWN;

The SELECT_RESmacro establishes the thread’s event-driven processing loop.
SELECT_RES(

CASE_THEN(c_gpo, event_gpo_chanend),

Each CASE statement associates a resource with an event handler. In the first CASE,
the resource is the channel end c_gpo, and data received over that channel end in-
voke the event_gpo_chanend handler. In the second CASE, the resource is the timer
t_sustain, and events on that timer invoke the event_sustain_timer_trigger
handler when the sustaining flag equals true.
The loop responds to two events: data received over a channel end and a timer event.
The first event handler responds to data received over the c_gpo channel end. The han-
dler takes two actions. First, it reads the data from the channel end so that subsequent
attempts to use the channel by the keyword spotter thread do not block. Second, it either
processes that data or ignores it depending on the value of the sustaining flag.

event_gpo_chanend:
led_signal = chan_in_word(c_gpo);
if(!sustaining) {

switch (led_signal) {
case LEFT:

next_led_state = LED_3_ON;
break;

case RIGHT:
next_led_state = LED_0_ON;
break;

case UNKNOWN:
next_led_state = LEDS_OFF;
break;

default:
next_led_state = LEDS_OFF;
break;

}

if(next_led_state != current_led_state) {
port_out(p_leds, next_led_state);
current_led_state = next_led_state;

if(next_led_state != LEDS_OFF) {
sustaining = true;

(continues on next page)

10

AN02050: Extend I2S loopback application with DSP and AI

(continued from previous page)
hwtimer_set_trigger_time(t_sustain, hwtimer_get_time(t_sustain) + SUSTAIN_DURATION);

}
}

}
continue; // end of event_gpo_chanend

As noted earlier, the keyword spotter thread sends a stream of keyword detection data
through the channel that connects it to this thread. If the event_gpo_chanend handler
did not read the data from the c_gpo channel end every time the keyword spotter thread
sent some, the chan_out_word() function call in some_ai_process()would block
further processing within that loop, which in turn would prohibit the processing of new
events there. Consequently, the some_gpo() thread must respond to events on the
c_gpo channel promptly regardless of any other responsibilities it has.

The sustaining flag ensures that the event_gpo_chanend handler pays attention
to the received data when the keyword spotter thread has detected a new keyword. The
sustaining flag equals true during the period that the some_gpo() thread keeps
an LED turned on in a sustained manner, that is, after the keyword spotter thread has
detected a new keyword. While sustain equals true, the event_gpo_chanend han-
dler ignores data received over the c_gpo channel end. Once the some_gpo thread
turns the LED off, the sustaining flag equals false, and the event_gpo_chanend
handler processes new keyword detection data.

To process the keyword detection data, the event_gpo_chanend handler maps the
data to specific LED states through a switch statement. If the new LED state dif-
fers from the current one, the handler turns on or off one of the LEDs through the
port_out() function. When the handler turns on an LED, it changes the value of
sustaining to true to ignore subsequent data received over the c_gpo channel end.
It also sets a trigger on the t_sustain timer at 850 ms from the current time using the
hwtimer_set_trigger_time function.

When the t_sustain timer reaches the trigger time and the sustaining flag equals
true, the event_sustain_timer_trigger handler runs. This handler sets the
sustaining flag to false and clears the trigger condition on the t_sustain timer.
Setting the sustaining flag to false results in the event_gpo_chanend handler
processing the next keyword detection data it receives over the c_gpo channel. Clear-
ing the trigger condition for the t_sustain timer and setting the sustaining flag to
false ensures that the event_sustain_timer_trigger handler will not run again
until a new keyword has been detected.

event_sustain_timer_trigger:
hwtimer_clear_trigger_time(t_sustain);
sustaining = false;
continue; // end of event_sustain_timer_trigger

5 Modifications to the main() function

Compared to AN00162, the main() function contains only a few changes. For specific
build configurations, it:

· Defines the channels c_ai, c_dsp, c_gpi, and c_gpo,

· Starts the some_gpi() and some_gpo() threads on tile[0], and

· Starts the some_ai() and some_dsp() threads on tile[1].

On tile[1], the i2s_loopback() function has been renamed application().
Channel ends have been conditionally included as arguments to the application()
function for communication with the AI and DSP modules in specific build configura-
tions. Due to the use of these channel ends within the application() function, use of
the [[distribute]] attribute is no longer valid. The application() function must
occupy its own thread.

11

https://www.xmos.com/application-notes/an00162

AN02050: Extend I2S loopback application with DSP and AI

int main(void)
{

chan c_audio_hw_init; // Channel for cross-tile communication

#if (ADD_AI_PROCESSING == 1)
chan c_ai; // Channel for application <-> AI communication
chan c_gpo; // Channel for LED events

#endif

#if (ADD_DSP_PROCESSING == 1)
chan c_dsp; // Channel for application <-> DSP communication
chan c_gpi; // Channel for button press events

#endif

par {
on tile[0]: {

par {
xk_evk_xu316_AudioHwRemote(c_audio_hw_init);

#if (ADD_AI_PROCESSING == 1)
some_gpo(c_gpo, p_leds);

#endif

#if (ADD_DSP_PROCESSING == 1)
some_gpi(c_gpi, p_buttons);

#endif
} // Inner par

} // tile[0]

on tile[1]: {
interface i2s_frame_callback_if i_i2s;

xk_evk_xu316_AudioHwChanInit(c_audio_hw_init);

par {
application(

#if (ADD_AI_PROCESSING == 1)
c_ai,

#endif
#if (ADD_DSP_PROCESSING == 1)

c_dsp,
#endif
i_i2s);

i2s_frame_master(
i_i2s,
p_dac,
NUM_I2S_LINES,
p_adc,
NUM_I2S_LINES,
DATA_BITS,
p_bclk,
p_lrclk,
p_mclk,
bclk);

#if (ADD_AI_PROCESSING == 1)
some_ai(c_ai, c_gpo);

#endif

#if (ADD_DSP_PROCESSING == 1)
some_dsp(c_dsp, c_gpi);

#endif
} // Inner par

} // tile[1]
} // Outer par
return 0;

6 Modifications to the application() function

Likewise, the application() function has only a few changes compared with the
i2s_loopback() function in AN00162. A minor modifications has taken place
in defining the size of the sample buffer. The expression NUM_I2S_LINES *
CHANS_PER_FRAME has been replaced with BUFFER_SIZE with that constant defined
in buffer.h to allow the static definition of corresponding buffers in multiple modules.

For specific build configurations, the application() function:

· Accepts up to two channel ends as parameters, one each for the AI and DSP exten-
sions,

· Initialises two more variables for use with the DSP extension,

· Sends audio data to these extensions as part of the i_i2s.receive()method, and

12

https://www.xmos.com/application-notes/an00162

AN02050: Extend I2S loopback application with DSP and AI

· Receives and stores DSP-processed audio data from the DSP module over the c_dsp
channel.

void application(
#if (ADD_AI_PROCESSING == 1)

chanend c_ai,
#endif
#if (ADD_DSP_PROCESSING == 1)

chanend c_dsp,
#endif
server i2s_frame_callback_if i_i2s

)
{

xk_evk_xu316_AudioHwInit(hw_config);

// Array used for looping back samples
int32_t samples[BUFFER_SIZE] = {0};

#if (ADD_DSP_PROCESSING == 1)
size_t idx = 0;
int32_t sample;

#endif

while (1) {
select {

case i_i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mode = I2S_MODE_I2S;
i2s_config.mclk_bclk_ratio = (MASTER_CLOCK_FREQUENCY / (SAMPLE_FREQUENCY * CHANS_PER_FRAME * DATA_

↪→BITS));
xk_evk_xu316_AudioHwConfig(SAMPLE_FREQUENCY, MASTER_CLOCK_FREQUENCY, 0, DATA_BITS, DATA_BITS);
break;

case i_i2s.receive(size_t n_chans, int32_t in_samps[n_chans]):
for (size_t i = 0; i < n_chans; ++i){

#if (ADD_AI_PROCESSING == 1)
// Send samples for AI processing
c_ai <: in_samps[i];

#endif

#if (ADD_DSP_PROCESSING == 1)
// Send samples to DSP processing
c_dsp <: in_samps[i];

#else
samples[i] = in_samps[i]; // copy samples for loopback

#endif
}
break;

#if (ADD_DSP_PROCESSING == 1)
// Receive processed samples from DSP
case c_dsp :> sample:

samples[idx] = sample;
if (BUFFER_SIZE <= ++idx){

idx = 0;
}
break;

#endif

case i_i2s.send(size_t n_chans, int32_t out_samps[n_chans]):
for (size_t i = 0; i < n_chans; ++i){

out_samps[i] = samples[i]; // loopback samples
}
break;

case i_i2s.restart_check() -> i2s_restart_t restart:
restart = I2S_NO_RESTART; // Keep on looping
break;

} // End select
} // End while (1)

} // End application

7 Combined extensions

When both extensions are included, the systemconsists of eight threads communicating
over four sets of ports as shown in Fig. 4.

8 Tutorial application

8.1 Prerequisites for building

This application note assumes that the XMOS XTC Tools have been downloaded and
installed. The required version is specified in the accompanying README.

Installation instructions can be found in the XTC Install Guide.

13

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide

AN02050: Extend I2S loopback application with DSP and AI

Fig. 4: AI and DSP extensions thread diagram

Special attention should be paid to the section on Installation of Required Third-Party
Tools.

The application is built using the xcommon-cmake build system, which is provided with
the XTC tools and is based on CMake.

The an02050 software ZIP package should be downloaded and extracted to a chosen
working directory.

To configure the build, the following commands should be run from an XTC command
prompt:
cd an02050
cd app_an02050
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software package. If any dependencies are
missing, they will be retrieved automatically during this step.

8.2 Building the application

This application note includes four build configurations:

· loopback: the basic I2S loopback application from AN00162.

· dsp: the application with the DSP extension.

· ai: the application with the AI extension.

· dsp_ai: the application with both the DSP and AI extensions.

All four application binaries can be built using xmake:
xmake -j -C build

To build a specific configuration, use:
xmake -j -C build app_an02050_<config>

where <config> is one of loopback, dsp, ai, or dsp_ai.

Note

14

https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/
https://www.xmos.com/application-notes/an00162

AN02050: Extend I2S loopback application with DSP and AI

Building the ai and dsp_ai applications can take several minutes each.

Binary artifacts (.xe files) will be generated under the appropriate subdirectories of the
app_an02050/bin directory.
For subsequent builds, the cmake step may be omitted. If CMakeLists.txt or other
build files are modified, cmake will be re-run automatically by xmake as needed.

8.3 Hardware setup

Please refer to the XCORE.AI Evaluation Kit hardware platform documentation.
The application is designed to run on the XCORE.AI Evaluation Kit. Before running the
application:

· Connect a USB cable from a host computer to the DEBUG connector.
· Connect a USB cable from a host computer to the USB connector.
· Connect a sound source to the 3.5mm LINE IN connector.
· Connect headphones or speakers to the corresponding LINE OUT connec-

tor.

Note

It may be helpful to connect the host computer to the LINE IN connector
using an external USB sound card. Doing sowill allow a host-based audio
application, such as Audacity or Sound eXchange, to act as the sound
source.

8.4 Running the application

From an XTC command prompt, run the following command from the an02050/
app_an02050 directory:
xrun ./bin/app_an02050_<config>.xe

where <config> is one of loopback, dsp, ai, or dsp_ai.
Alternatively, the application can be programmed into flash memory for standalone exe-
cution:
xflash ./bin/app_an02050_<config>.xe

8.5 Testing the application

The application accepts analogue sound received through the LINE IN connector and
produces it through the LINE OUT connector. The behaviour of the application varies
depending on the build configuration.
The loopback configuration does not alter or interpret the sound received through the
LINE IN connector. It simply reproduces the received sound without any change through
the LINE OUT connector. In the loopback configuration, Button 0 and Button 1 have no
effect and none of the general purpose LEDs light up.
The dsp configuration adds a volume control to the sound processing. Pressing Button
0 changes the volume of the sound produced through the LINE OUT connector. Sub-
sequent presses of Button 0 lower the volume in steps until the sound is muted, then
increase the volume in steps to a maximum level.

15

https://www.xmos.com/download/xcore_ai-Evaluation-Kit-v2_0-hardware-manual%282V0%29.pdf/

AN02050: Extend I2S loopback application with DSP and AI

The ai configuration adds keyword spotting to the sound processing. If the application
detects the word “left” in the sound received through the LINE IN connector, it lights up
LED 3 briefly. Likewise, if the application detects the word “right”, it lights up LED 0 briefly.

The dsp_ai configuration combines the features of the dsp and ai configurations. But-
ton 0 will control the volume of the sound received through the LINE IN connector when
reproduced through the LINE OUT connector. Detection by the application of left or
right will briefly light up LED 3 or LED 0 respectively.

9 Resource usage

Table 1: Tile[0] resources used

Build Configura-
tion

Chan-
nel
Ends

Clock
Blocks

HW
Timers

Mem-
ory

Ports
(1b)

Ports
(4b)

Threads

Loopback 1 0 1 10748 2 0 1
DSP 2 0 2 11500 2 1 2
AI 2 0 2 11524 2 1 2
DSP plus AI 3 0 3 12036 2 2 3

Table 2: Tile[1] resources used

Build Configura-
tion

Chan-
nel
Ends

Clock
Blocks

HW
Timers

Mem-
ory

Ports
(1b)

Ports
(4b)

Threads

Loopback 3 1 2 10904 5 0 3
DSP 6 1 2 12040 5 0 4
AI 6 1 2 133740 5 0 4
DSP plus AI 9 1 2 134868 5 0 5

Note

The i_i2s XC interface on Tile[1] in the main() function uses one channel end for
the application() and one channel end for the i2s_frame_master().

10 References

· AN00162 Implementing an I2S loopback using the lib_i2s library

· AN02013 Face ID and Keyword Spotting Example

· XCommon CMake build system for XCORE applications and libraries

· XCORE.AI Evaluation Kit

· XTC Install Guide

· XMOS XTC Tools

16

https://www.xmos.com/application-notes/an00162
https://www.xmos.com/application-notes/an02013
https://www.xmos.com/documentation/XM-015090-PC/html/
https://www.xmos.com/download/xcore_ai-Evaluation-Kit-v2_0-hardware-manual%282V0%29.pdf/
https://xmos.com/xtc-install-guide
https://www.xmos.com/software-tools/

AN02050: Extend I2S loopback application with DSP and AI

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

17

	Application overview
	Common aspects of both extensions
	Adding DSP
	Adding AI
	Modifications to the main() function
	Modifications to the application() function
	Combined extensions
	Tutorial application
	Resource usage
	References

