lib_camera: XCORE Camera Library

Publication Date: 2025/6/26
Document Number: XM-015339-UG v2.0.0

XMOS



lib_camera: XCORE Camera Library

IN THIS DOCUMENT

1

OVerview . . . . . o 3
1.1 Purpose . . . 3
12 Supported Hardware . . . . . . ... 3
13 Keyfeatures . . . . . . . . . 4
14 High-level Architecture . . . . . . . . . . . 5
15 Additional Resources . . . . . ... 5

Architecture . . . . . . 6
21 Components . . . . ..o 6
22 Image ProcessingBlocks . . . . . . . ... 7
2.3 Image Processing Pipeline . . . . . . . . ... 8
24 Capture Sequence Diagram . . . . . . . . ... 8

Getting Started . . . . . . . 10
3.1 RGB Capture Example . . . . . . . . . . 10
32 Hardware Requirements . . . . . . . . . ... 1
33 Hardware Setup . . . . . . . . 1
34 Software Requirements . . . . . . .. Lo 1
35 SoftwareSetup . . . . . .. 12
3.6 Related Documentation . . . . . . . . . . ..o 13

Configuration . . . . . .. 13
4.1 Logging Options . . . . . . . . . 13
42 Default Settings . . . . . . . . . . 14
4.3 Image Configuration . . . . . . . . ... 14
4.4 Adding Support for the xcore.ai EvaluationKit . . . . . . . .. ... ... ... 15
45 Adding Support for Other Boards . . . . . . . . . . . . ... ... ... ... 17
4.6 AddingaNew Sensor . . . . . .. 17

Troubleshooting . . . . . . . . . 18
5.1 CommonIssues . . . . . ... 18

Contributing . . . . . . . 19
6.1 Modifying or Adding an ISP component . . . . . . .. ... 20

APIReference . . . . . . . .. 21
7.1 Camera . . . . . . 21
7.2 ISP . 22
7.3 SENSOIS . . . L . e 28
7.4 VO 30




lib_camera: XCORE Camera Library

Introduction

Lib Camera is a software library designed to interface camera sensors with xcore de-
vices. It provides a comprehensive set of functionalities, including camera sensor con-
figuration, Image Signal Processing, and image capture. This documentation offers an
overview of the library’s architecture, usage, and extensibility for custom applications.

With this guide, users can quickly get started capturing images and integrating the cam-
era library with other XMOS libraries to build end-to-end computer vision solutions.

The documentation is organized as follows:

Overview: Introduction to the library’s purpose, supported hardware, key features, and
high-level architecture.

Architecture: Detailed explanation of the library’s components, data flow, and concur-
rency model.

Getting Started: Step-by-step instructions for setting up the library and running exam-
ple applications.

Configuration: Guidance on configuring the library for various hardware platforms and
use cases.

Troubleshooting: Tips and solutions for common issues encountered when using the
library.

Contributing: Information on contributing to the project, including bug reporting, fea-
ture requests, and development guidelines.

API Reference: Comprehensive reference for the API functions and data structures.
1 Overview

This section provides an overview of the library, including its purpose, supported hard-
ware, key features, and high-level architecture.

1.1 Purpose

The XMQOS Camera Library is designed to provide a high-level interface for camera op-
erations, including image capture, processing, and configuration. It abstracts the com-
plexities of camera hardware and provides a simple API for developers to work with.

The library is intended to be connected to other XMOS libraries to perform more complex
tasks, such as image classification, object tracking, and other computer vision applica-
tions. This document provides a series of examples or Application Notes to demonstrate
how to use the library in conjunction with other XMQOS libraries.

This documentation is intended for developers who either want to use the library in their
applications or want to customise it to interface their own camera sensor with an XMOS
device. A knowledge of camera communication protocols (MIPI, 12C) and image pro-
cessing is recommended.

1.2 Supported Hardware

Lib Camera is designed to work with the following hardware:

Processor: This library is designed to work with the XMOS xcore.ai processor fam-
ily (XU3176). It is important to mention that only the packages 265 pin FBGA and


https://www.xmos.com/xcore-ai

lib_camera: XCORE Camera Library

128 pin TQFP include a D-PHY receiver, which is required for MIPI-CSI2 camera
connection.

Camera Sensors: This library is designed to work with the IMX219 camera sensor.
Other sensors may require modifications to the library. More information on how to
add your own sensor can be found in the documentation. See Configuration for more
information.

Camera Interface: The library uses the MIPI-CSI2 interface for camera connection
and 12C for camera control. The library is designed to work with the D-PHY receiver on
the xcore.ai processor family. It is important to note that the library does not support
the parallel camera interface (DVP) or the USB camera interface.

Boards: This library works directly with the xcore.ai Vision Development Kit (XK-EVK-
XU316-AlV). It can be used with other boards that have a MIPI-CSI2 interface and
I2C control, such as the xcore.ai Explorer Development Kit (XK-EVK-XU316), but some
modifications may be required. More information on how to add your own board can
be found in the documentation. See Configuration for more information.

1.3 Key features

Image Signal Processing (ISP): The library includes ISP capabilities to enhance the
image quality and transform raw image data into the requested format by the user.
The included functions are demosaicing, downsampling, image scaling and cropping,
image rotation, Auto Exposure (AE), and Auto White Balance (AWB).

Asynchronous Capture Mode: The library supports an asynchronous still mode where
the ISP thread handles camera operations in a non-blocking manner. When an exter-
nal thread or application requests a frame, the ISP thread starts the camera, captures
the frame, processes it, and delivers it to the application without halting its execution.
This allows the application to continue performing other tasks, such as running an
Al model, while the camera is capturing and processing the next frame. Subsequent
frame requests can be made immediately after the first, enabling efficient and seam-
less integration of camera operations into the application workflow.

Dynamic Region of Interest (ROI): The library supports dynamic ROl selection, allowing
the user to select a specific region of the image for processing. This is useful for
applications that require only a portion of the image to be processed, such as object
detection or tracking.

RAWS8 and RGB888 data format. The library supports the following data formats:
RAWS (RGGB) and RGB888. Refer to Camera Data Formats for more information.
Data type is in int8_t by default. This can be changed via the demux options at
compile time, or by converting the data using the camera_conversion functions.

Image rotations: The library supports image rotation in two ways: 90 degrees and
180 degrees. The 90-degree rotation is performed in software, while the 180-degree
rotation is performed in hardware by the camera sensor. The library also supports
horizontal and vertical flipping of the image.

Image I/0 and conversion operations: The library provides a set of functions to convert
the image data from one format to another or write image data to a file. The library
supports only binary files or BMP files. The conversion functions are designed to be
efficient and fast, allowing for real-time image processing.


https://www.opensourceinstruments.com/Electronics/Data/IMX219PQ.pdf
https://docs.sharpcap.co.uk/2.9/10_CameraBasics.htm

lib_camera: XCORE Camera Library

1.4 High-level Architecture

The library is structured into several key components, each responsible for a specific
aspect of camera operation. The library itself is designed to only use two threads: the
MIPI Receiver thread and the ISP thread.

The high-level architecture is shown in Fig. 1:

«sw_library» g] «ext. sw» 2]
lib_camera user

«thread» «thread» «thread»
MIPI_rx ISp User App

|

«functions»
sensor_ctrl

«component» «component»
MIPI 12C

«HW»
IMX219

Fig. 1: High-level block diagram of the 1ib_camera.

Note that only the main components are shown in the diagram. Further details about the
architecture and components are provided in the Architecture section.

>

MIPI Receiver Thread: This thread is responsible for receiving data from the camera
sensor over the MIPI-CSI2 interface. It handles the low-level details of the MIPI proto-
col and provides data packets to the ISP thread for processing.

ISP Thread: This thread is responsible for handling both MIPI receiver request for in-
coming data and user requests to deliver the processed data. It also handles initiali-
sation and configuration of the camera sensor.

Sensor Control: Encapsulates a group of functions to control the camera sensor. It
handles the 12C communication with the camera sensor and provides a high-level in-
terface for configuring the sensor settings.

User Thread: This thread is not part of the library but is provided as an example of
how to use the library. It is responsible for setting the buffer where the image data
will be stored and for processing the image data after it has been captured. Image
size and properties are user centric, meaning that the user can set the image size and
properties according to their needs. The library will then handle the conversion of the
image data to the desired format.

1.5 Additional Resources

>

>

>

MIPI CSI-2 specification: MIPI
XMQOS 12C library user Guide: XMOS 12C
XMQOS XC Programming Guide: XMOS XC Programming Guide


https://www.mipi.org/specifications/csi-2
https://github.com/xmos/fwk_io
https://www.xmos.ai/download/XMOS-Programming-Guide-(documentation)(E).pdf

lib_camera: XCORE Camera Library

» XMOS C Programming Guide: XMOS C Programming Guide

» XMOS XS3A Architecture: XMOS XS3 Architecture

> Sony IMX219 datasheet: IMX219

2 Architecture

This section provides a detailed overview of the architecture of the library, including its

components, data flow, and concurrency model. It is intended for developers who want
to understand how the library works and how to customise it for their own applications.

2.1 Components

In this library, components refer to a high-level description of the main parts of the library.
The library is composed of several components, each responsible for a specific task.
A component could be a group of modules, a class, a function or a thread. The main
components of the library are:


https://www.xmos.com/documentation/XM-014363-PC/html/prog-guide/quick-start/c-programming-guide/index.html
https://www.xmos.com/download/The-XMOS-XS3-Architecture.pdf
https://www.opensourceinstruments.com/Electronics/Data/IMX219PQ.pdf

Component

Sensor

Sensor Control

Sensor Region

MIPI D-PHY SHIM

MIPI Receiver

ISP

User Thread

lib_camera: XCORE Camera Library

Table 1: lib_camera components
Description

The sensor refers to the camera hardware and its drivers, lo-
cated in the src/sensors directory. Each sensor is imple-
mented as a class that inherits from a generic base class
(sensor_base.cpp). For example, sensor_imx219.cpp
provides support for the IMX219 sensor. A C++ wrapper
(sensor_wrapper.cpp) allows these classes to be used
from C code, as called by cameras_1isp.

Sensor control covers all 12C operations for configuring the sen-
sor, such as reading or writing registers for pixel format, expo-
sure time, data format, and clock configuration.

The Sensor Region, defined in camera.. h, is a macro specifying
the maximum image size the sensor can capture. This affects
the achievable frame rate and selectable region. The maximum
region is set by the sensor’s active pixel area (e.g., 3280x2464
for IMX219). Downsampling and binning reduce this size. The
ISP will reject regions larger than allowed, but the maximum
can be adjusted based on user needs and sensor capabilities.

The MIPI Software Interface Module (SHIM) consist of a MIPI D-
PHY receiver and a demultiplexer, which translates MIPI Lanes
data into xcore ports. Usually, the MIPI Shims receive two MIPI
data lanes, which are translated into 4 xcore ports, active, valid,
clock and data.

The MIPI receiver is a dedicated software thread that interfaces
with the MIPI SHIM ports. It monitors the active and valid
signals, collects incoming data, and assembles it into 32-bit
words. The receiver continues this process until a complete
image line is buffered, at which point it sends and signals the
ISP to start processing the line.

In this context, the ISP englobes all the image processing func-
tions, from MIPI packets to a desired output image. It consists
of line-by-line processes as well as after the end of frame (EOF)
functions. They are located in src/isp.

The user thread or consumer is the thread or application that
specifies the image and consumes it. This thread needs to call
functions from the ISP that will allow configuring the desired
image and taking a picture. This code is also located in src/
isp. This library provides examples of how the user thread or
consumer would look.

2.2 Image Processing Blocks

The library supports two types of ISP components: Line ISP and End-of-Frame (EOF) ISP.
The primary difference between them lies in how they process image data.

Line ISP components process data on a line-by-line basis or in groups of lines. This
means the component processes each line of the image as it is received from the camera
sensor. This approach is typically used when converting from RAWS input to a desired
output format, such as RGB888 or YUV422. Processing line by line is preferred in this
case to avoid storing the entire RAW image in memory.



lib_camera: XCORE Camera Library

End-of-Frame ISP components, on the other hand, process data after the entire image
has been received and processed by the line ISP components. These components han-
dle tasks that do not necessarily require storing the entire image, such as auto-exposure
adjustments, or tasks that can be performed in-place in memory, such as int8 to uint8
conversion or gamma correction.

2.3 Image Processing Pipeline

The image processing pipeline consists of several stages, including demosaicing, down-
sampling, image scaling and cropping, image rotation, Auto Exposure (AE), and Auto
White Balance (AWB). Each stage is implemented as a separate function in the library,
allowing for easy customisation and extension. Fig. 2 illustrates the image processing
pipeline:

RAW8 RGGB Data

[ demosaic/downsample ]
AE/AWB

(Optional)

- Crop

- Resize

- Rotate

- dtype conv

output_image

Fig. 2: ISP Pipeline Diagram

This diagram illustrates a basic image processing pipeline. It starts with RAW8 RGGB
input data, followed by demosaicing and downsampling. Histograms and statistics are
computed to support auto-exposure (AE) and auto white balance (AWB). Optional oper-
ations include cropping, resizing, rotating, and data type conversion. The final result is
an output image.

2.4 Capture Sequence Diagram

Fig. 3 illustrates the interaction between the main components of the library during the
image capture process. It shows how the MIPI receiver thread and the ISP thread work
together to capture and process an image.

This diagram outlines the sequence of operations in the camera capture pipeline. The
main thread starts the ISP and MIPI threads. The user thread prepares the image buffer,
image metadata (image_t), and configuration (image_cfg_t). The ISP thread initialises



lib_camera: XCORE Camera Library

the camera sensor via 12C. The user then computes ISP coordinates and begins capture
for each frame.

For every frame, the sensor is started, and MIPI sends line packets to the ISP. Based
on the packet type (FRAME_START, RAWS, or FRAME_END), the ISP updates counters,
processes expected lines, or performs post-processing (statistics, auto-exposure, auto
white balance). Once the frame is complete, the sensor is stopped, and the captured
image is retrieved.

| Start ISP thread
—_—

| Start MIPI thread

| Creates image buffer

Creates image_t

i

| Creates/Updates image_cfg_t

:I

| camera_sensor_init()

return 0 (success)

camera_isp_coordinates_compute()

| return 0 (success)

p
[ o J——

camera_isp_start_capture()

| sensor_start()

a
[For each line]

Send packet

| get packet type

alt [MIPI_DT_FRAME_START]

| restart counters

|

[MIPI_DT_RAWS]

| handle_no_expected._lines()
| handle_expected_lines()

[MIPI_DT_FRAME_END]

| handle_post_process: stats, AE, AWB |

I sensor_stop()

| camera_isp_get_capture()

o M‘PHh Izcc"”n

Fig. 3: Capture Sequence Diagram




lib_camera: XCORE Camera Library

3 Getting Started

This section provides a quick-start guide to help users get up and running with the library.
Itincludes information on hardware and software requirements, installation instructions,
and a minimal working example that captures a frame from the camera.

© Note

To directly go to the instructions for building and running the example, refer to Build
and Run the Example section.

3.1 RGB Capture Example

The following example demonstrates how to use the library to capture a frame from the
camera and save it to a file. The example is located in the examples directory of the
library source code.

The example consists of two main files:

mapfile.xc: Thisfile contains the entry point to the application (main). On one hand,
it initialises the camera_main thread. On the other hand, it starts the user_app
thread. camera_main is part of the camera library and is responsible for initialising
the camera, configuring the camera settings, and starting the camera capture pro-
cess. It also handles the MIPI receiver thread and the ISP thread. The user_app
thread is responsible for processing the image data after it has been captured. Both
communicate via the channel c_cam. For more information on XMQOS channels, refer
to the XMOS XC Programming Guide and the C version XMOS C Programming Guide.

int main(void)
{

chan c_cam;

// Parallel jobs

par{
on tile[1]: camera_main(c_cam);
on tile[1]: user_app(c_cam);

return 0;

user_app.c: This contains the user_app thread, which is responsible for setting the
buffer where the image data will be stored and for processing the image data after it
has been captured. Image size and properties are user centric, meaning that the user
can set the image size and properties according to their needs. The library will then
handle the conversion of the image data to the desired format.

// Image and configuration

const unsigned h = 200;

const unsigned w = 200;

const unsigned ch = 3;

const unsigned img_size = h * w * ch;
int8_t image_buffer[img_size] = { 0 };

camera_cfg_t config = {
.offset_x = 0,
.offset_y = 0,
.mode = MODE_RGB2,
I
image_cfg_t image = {
.height = h,
.width = w,
.channels = ch,
.size = h*wx*ch,
.ptr = &image_buffer[0],
.config = &config

// set coords and send to ISP

camera_isp_coordinates_compute(&image) ;

(continues on next page)

10 y,


https://www.xmos.ai/download/XMOS-Programming-Guide-(documentation)(E).pdf
https://www.xmos.com/documentation/XM-014363-PC/html/prog-guide/quick-start/c-programming-guide/index.html

lib_camera: XCORE Camera Library

(continued from previous page)

camera_isp_start_capture(c_cam, &image);
sim_model_invoke(); // this is just some big delay to show that it is non-blocking
camera_isp_get_capture(c_cam);

First, the user must define the objects camera_cfg_t and image_cfg_t. The
camera_cfg_t struct contains the camera configuration parameters, such as offsets
to define the region of interest and the acquisition mode. The image_cfg_t struct con-
tains the image data and properties, such as width, height, a pointer to the image buffer,
and a pointer to the previously declared configuration. In the example, the user expects
an image of 200x200x3 RGB int8 image.

Next, the user must call the camera_isp_coordinates_compute() function, which
takes a pointer to image_cfg_t. This call computes the coordinates of the region of in-
terest (ROI) based on the camera configuration (camera_cfg_t) and the capture mode.

In this case, it will be captured in RGB format and downsampled by a factor of 2 and start-
ing at position (0,0).

The function camera_isp_coordinates_compute () only needs to be called once if
the user does not change the image size or properties. It needs to be called again each
time image size, format or properties are changed.

Finally, the user must call the camera_isp_start_capture() function to start
the camera capture process. When the user needs the frame, they can call the

camera_isp_get_capture() function. This function will block until the frame is
ready.

Once the frame is ready, the user can process the image data and save it to a file using
the save_image () function.

The following sections provide detailed information about the requirements for running
the example, as well as step-by-step instructions on how to build and execute it.

3.2 Hardware Requirements

The library is designed to work with the following hardware:
» xcore.ai Vision Development Kit (XK-EVK-XU316-AlV).

» x Micro USB cable.

3.3 Hardware Setup

» Plug the 1x Micro USB cable to both the host computer and the DEBUG Micro USB port.

» Face the xcore.ai Vision Development Kit horizontally, with the camera connector look-
ing down.

Fig. 4 shows the hardware setup for the example:

3.4 Software Requirements

The following software is required to build and run the library:
» XTC tools: 15.3.1 XTC tools.

» Python: 3.10 or later Python.

» CMake: 3.21 or later CMAKE.

1 y,


https://www.xmos.com/view/Tools-15-Documentation
https://www.python.org/
https://cmake.org/

lib_camera: XCORE Camera Library

Dl )\
« g s

Fig. 4: Hardware Setup for the xcore.ai Vision Development Kit

3.5 Software Setup

Before building the example, ensure that the XTC tools are installed and properly acti-
vated in your development environment (XTC tools). This can be verified by running the
following command in a terminal with the XTC tools sourced:

Xcc --version

This command should display the version of the installed XTC tools. If the tools are
not installed or activated, refer to the installation instructions in the documentation.

Once done, run the following commands from the root of the library:

# install python dependencies

pip install -r requirements.txt

# go to example folder

cd examples/capture_rgb

# build

cmake -G "Unix Makefiles" -B build
xmake -C build

If the build is successful, the message [100%] Built target capture_rgb and
the usage report will be displayed:

Table 2: Memory Usage Per Tile

Tile Memory Used Status
tile[0] 4236 / 524288 OKAY
tile[11 170692 / 524288  OKAY

Note that the memory usage is shown in bytes, and results could differ slightly. The
maximum memory available for each tile is 524288 bytes. As we can see in this case,
the memory usage is well within the limits for both tiles. Usage is about 0.81% of the
total memory available for tile 0 and about 32% for tile 1.

Build and Run the Example
Once the example is built, you can run it using the following command:

# run

xrun --xscope bin/capture_rgb.xe
# decode image

python decode.py

This will run the example, save the image to a binary file, and then the python script will
decode the image and display it.

12 y,


https://www.xmos.com/view/Tools-15-Documentation

lib_camera: XCORE Camera Library

To go further, uncomment the following lines in the user_app . c and re-run the file:

/* (Optional) try something out of bounds
config.offset_x = 1.8;

config.offset_y = 1.8;
camera_isp_coordinates_compute(&image) ;
camera_isp_coordinates_print(&image);

*/

This will try to apply an offset > 1.0 and will cause an error. The error will be displayed in
the terminal, and the program will exit with an error code.

xrun: Program received signal ET_ECALL, Application exception.
0x00881ad6 in camera_isp_coordinates_compute (img_cfg=0xe2a2c) at ...camera_isp.c:216

The line that raised the error, corresponds to the following:

xassert(cfg->x2 <= SENSOR_WIDTH && "x2");
xassert(cfg->y2 <= SENSOR_HEIGHT && "y2");

As we can see, the error is raised because the offset is greater than the image size. Offset
has to be a valid range in float from 0.0 to 1.0.

3.6 Related Documentation

The following application notes provide additional information about the library and how
to use it with other XMOS libraries:

» AN02005: Xmos Logo Detector

» ANO02010: Face Identification on xcore.ai
» ANO02013: Faceld And Keyword Spotting
4 Configuration

This section provides guidance on configuring the xcore.ai camera library for a variety of
hardware platforms and use cases. It covers the main configuration structures, logging
options, default settings, and steps required to adapt the library for different boards and
SEensors.

Logging Options

Default Settings

Image Configuration

Adding Support for the xcore.ai Evaluation Kit
Adding Support for Other Boards

vV V.V v.Vv .Yy

Adding a New Sensor

4.1 Logging Options
The library provides a logging mechanism to help developers debug and monitor the

camera’s operation. The logging options are available via CMake options. The following
options are available:

13 y,



lib_camera: XCORE Camera Library

-DDEBUG_PRINT_ENABLE_CAM_ISP=1: This option enables debug prints for the ISP
thread. It can be used to monitor the status of the ISP and its components.

-DDEBUG_PRINT_ENABLE_CAM_MIPI=1 : This option enables debug prints for the
MIPI thread. It can be used to monitor the status of the MIPI receiver and its com-
ponents.

-DCONFIG_APPLY_AE=1: This option enables the application of automatic exposure
(AE) settings. It can be set to 0 to disable AE.

-DCONFIG_APPLY_AWB=T: This option enables the application of automatic white bal-
ance (AWB) settings. It can be set to 0 to disable AWB.

-DLIBXCORE_XASSERT_IS_ASSERT=1: This option configures the library to use the
standard assert C standard library instead of 1ib_xcore/xassert for runtime
exceptions. Enabling this provides more detailed error reporting, as assert outputs
information about the error location, while xassert does not.

4.2 Default Settings

The main default settings can be found in the camera.. h file. The following settings are
available:
// High-Level Sensor Configuration

#define SENSOR_WIDTH 800 ///< Sensor width in pixels
#define SENSOR_HEIGHT 860 ///< Sensor height in pixels

#define CONFIG_FLIP FLIP_NONE ///< Flip mode: FLIP_NONE, FLIP_VERTICAL
#define CONFIG_BINNING BINNING_ON ///< Binning mode: BINNING_ON or BINNING_OFF
#define CONFIG_CENTRALISE  CENTRALISE_ON ///< Centralise mode: CENTRALISE_ON or CENTRALISE_OFF

#ifndef CONFIG_APPLY_AWB
#define CONFIG_APPLY_AWB (1) ///< Apply White Balance: 1 to apply, 6 to skip
#endif

#ifndef CONFIG_APPLY_AE
#define CONFIG_APPLY_AE (1) ///< Apply Auto Exposure: 1 to apply, 6 to skip
#endif

This chooses the default settings and options for the camera library. This configuration
willimpose some constraints that are suitable for most applications, but can be modified
to suit specific needs.

4.3 Image Configuration

The primary structure used to configure these options is through camera_cfg_t for
camera-specific settings and image_cfg_t for image-related settings. For more details
on these structures, please refer to the API section AP/ Reference.

Below is an example configuration:

camera_cfg_t config = {
.offset_x = 0.2,
.offset_y = 6.3,
.mode = MODE_RGB2,

image_cfg_t image = {
.height = 192,
.width = 240,
.channels = 3,
.size = h * w * ch,
.ptr = &image_buffer[0],
.config = &config

In this example, the user has set the image size to 192x240 pixels with 3 channels (RGB).
The ptr field points to the buffer where the image data will be stored. The config field
points to the camera configuration structure, which contains additional settings such as

14 p,



lib_camera: XCORE Camera Library

offsets and modes. In this case MODE_RGB2 is selected, meaning that the image will
take a region of 384x480 pixels from the sensor area to produce a 192x240 image. The
offsets are set to 0.2 and 0.3, which means that the image will start from 20% and 30%
of the sensor's maximum area.

4.4 Adding Support for the xcore.ai Evaluation Kit

The xcore.ai Explorer Development Kit (XK-EVK-XU376) is a development board that can
be used with the xcore.ai camera library, it has a compatible FPC-24 connector and a
MIPI D-PHY receiver. It can support cameras like the Raspberry Pi camera module v2.1
(IMX219) directly. The main difference is the board layout, in the xcore.ai Explorer Devel-
opment Kit, 12C and MIPI lines collide in the same tile, so the user will need to adapt the
hardware or software to make it work.

Regarding the Hardware solution, the user can route free pins on tile[1] to the 12C signals
from tile [0] (SCL:X0D37:D16, SDA:X0D38:D17). This allows reuse of the same code as
used for the xcore.ai Vision Development Kit. MIPI can be placed in both tiles, with the
only restriction that MIPI and USB can't be placed on the same tile. The specific ports
and pin assignments for the board can be found in the corresponding XN file and the
board’s manual. Fig. 5 illustrates how to achieve this:

X1D51_32A2/XL1_IN2
X1D52__32A3/XLI1_IN1
X1D53__32A4/XL1_INO
54 3DAS/XLL O

Fig. 5: xcore.ai Explorer Development Kit 12C connections

In this configuration, free pins on tile[1] (X1D56, X1D57) are used to connect the I12C sig-
nals from tile[0] (SDA, SCL respectively).

Regarding the Software solution, the user will need to adapt the code to work with the
xcore.ai Explorer Development Kit. The following sections provide a guide on how to do
this. The first change is to adapt the entry point of the program as follows:

#define SCL_BIT_POS 6x1
#define SCL_BIT_MASK 6xC
#define SDA_BIT_POS 6x0
#define SDA_BIT_MASK 6xC

(continues on next page)

15 y,



lib_camera: XCORE Camera Library

(continued from previous page)

on tile[1]: camera_main(c_cam);
on tile[1]: user_app(c_cam);

#define CAMERA_MIPI_TILE 1
#define CAMERA_I2C_TILE @

#define SCL_BIT_POS 6x0
#define SCL_BIT_MASK 6x@
#define SDA_BIT_POS 6x8@
#define SDA_BIT_MASK 6x@

on tile[CAMERA_MIPI_TILE]: camera_main(c_cam, c_i2c);

on tile[CAMERA_MIPI_TILE]: user_app(c_cam);
on tile[CAMERA_I2C_TILE]: camera_sensor_control_rx(c_i2c);

The main difference is that in the xcore.ai Vision Development Kit the 12C and MIPI
are on the same tile, so the sensor control object can be called directly as a func-
tion, while in the xcore.ai Explorer Development Kit, the 12C and MIPI ports are on
different tiles, therefore the user will need to create a new thread (in the example
camera_sensor_control_rx) to handle the I12C control, and both threads will com-
municate via a channel (in the example, c_i2c).

To enable this, the camera_main function needs to accept a second channel parameter,
c_i2c. This channel is used for communication between the ISP thread and the 12C
control thread, and should be passed to camera_isp_thread.
void camera_main(chanend_t c_cam, chanend_t c_i2c) {
/*
a
PAR_JOBS(
PJOB(camera_mipi_rx, (ctx.p_mipi_rxd, ctx.p_mipi_rxa, c_pkt.end_a, c_ctrl.end_a)),

PJOB(camera_isp_thread, (c_pkt.end_b, c_ctrl.end_b, c_cam, c_i2c))
)i

The key distinction is that, on the xcore.ai Explorer Development Kit, 12C com-
mands are not issued directly from the ISP thread. Instead, the ISP thread invokes
camera_sensor_control_tx, which transmits the command over a channel to a
dedicated thread (camera_sensor_control_rx) running on the tile with I2C access.
This thread receives the command and performs the actual I2C transaction with the cam-
era sensor. This separation enables inter-tile communication and proper handling of
hardware constraints.

camera_sensor_init();

camera_sensor_control_tx(SENSOR_INIT, 0);

The camera_sensor_control_rx thread is responsible for receiving 12C control
commands over the c_i2c channel (sent via camera_sensor_control_tx)and ex-
ecuting them on the sensor.

Below is a definition of what the camera_sensor_control_rx thread could look like:

void camera_sensor_control_rx(chanend_t c_i2c){
uint32_t encoded_response;
sensor_control_t cmd;
uint8_t arg;
int ret = 0;

SELECT_RES(
CASE_THEN(c_i2c, c_i2c_handler))
{
c_i2c_handler: {
encoded_response = chan_in_word(c_i2c);
cmd = (sensor_control_t)DECODE_CMD(encoded_response);
arg = DECODE_ARG(encoded_response) ;
switch (cmd)

case 8
camera_sensor_init(); break;
M oo

(continues on next page)

16 y,



lib_camera: XCORE Camera Library

(continued from previous page)

}
assert((ret == @) && "Could not perform I2C write");

}
¥

void camera_sensor_control_tx(chanend_t c_i2c, sensor_control_t cmd, uint8_t arg) {

uint32_t encoded_command = ENCODE_CTRL(cmd, arg);
chan_out_word(c_i2c, encoded_command);

After implementing the above changes, the user will need to rebuild the application. The
user can then run the example and verify that the camera is working correctly.

4.5 Adding Support for Other Boards

The xcore.ai camera library is designed to work with the supported hardware listed in the
Supported Hardware section. However, it can be adapted to work with other boards that
meet the minimum hardware requirements.

If the board meets these requirements, it may be necessary to adapt either the hardware
or software configuration, depending on the board’s architecture.

If both MIPI and 12C interfaces are available on the same tile, the code for the xcore.ai
Vision Development Kit can generally be reused. Update the XN file and adjust the 12C
port initialisation as needed, typically found under the sensor folder.

If MIPI and I12C are located on separate tiles, follow the approach described in the previ-
ous section for the xcore.ai Explorer Development Kit. This involves creating a dedicated
thread for 12C control and establishing inter-tile communication via channels.

Additionally, ensure that the MIPI connector meets D-PHY specifications and that 12C
lines are correctly routed to the appropriate pins for the custom board. Board-specific
configuration may require further adjustments to the hardware description and initialisa-
tion code.

4.6 Adding a New Sensor

This section describes how to add a new sensor to the xcore.ai camera library. It covers
both hardware and software aspects, including the necessary steps to ensure compati-
bility and functionality.

First, the user will need to see if their sensor is compatible with the xcore.ai Vision Devel-
opment Kit.

The sensor has to:
Support MIPI CSI2 protocol
Be driven from a 3.3V source
Have a compatible FPC-24 camera connector.

Fig. 6 shows the pinout of the 24-pin FPC connector on the xcore.ai Vision Development
Kit:

Once a compatible sensor is available, the user will need to adapt the software.
By navigating to sensors/api/SensorBase.hpp, the user will find the SensorBase

class whichisintended to be derived from. It doesn't have anything to do with a particular
sensor, it only provides an API to do basic 12C communication with the sensor. Inside

17 y,



lib_camera: XCORE Camera Library

NO| PIN NAME |NO| PIN NAME
1 NC 16 DGND
2 NC 11 MIPI-D2N
3 DOVDD1.8V 18 MIPI-D2P
b DVDD1.2V 19 DGND
5 Sensor-PWDN 20 MIPI-DN
6 DGND 21 MIPI-D1P
7 MCLK 22 DGND
8 DGND 23 MIPI-DON
9 AGND 24 MIPI-DOP
10 AVDD2.8V 25 DGND
11 NC 26 MIPI-CLKN
12 DGND 217 MIPI-CLKP
13 MIPI-D3P 28 DGND
14 MIPI-D3N 29 SCL{1.8V)
15 DGND 30 SDA(1.8V)
1
i
———8.9:0.2% 0.32:0.05 PCBE—I!= " DF37C-300P-0 4 VI51}

10£0.2%

Fig. 6: FPC-24 connector pinout

SensorBase class users can also find some public virtual methods which will have to
be implemented in the derived class.

In order to implement a new sensor, the user will need to create a directory in
lib_camera/src/sensors, implement a derived class with initialize(),
stream_start(), stream_stop(), set_exposure(), configure() and
control() methods.

After that's been done, the user will need to rebuild the application.

5 Troubleshooting

5.1 Common Issues

This section provides solutions to common issues that users may encounter when using
the library.

1. Camera Not Detected: If the camera is not connected or not properly connected, the
system will fail to detect it. In these cases, the board will blink red and the following
error message will be displayed:

ERROR: IMX219 not connected
>> Verify that the sensor is properly connected"

To resolve this issue, ensure that the camera is properly connected to the board. If the
camera is not detected, check the connection and try again.

18 y,



lib_camera: XCORE Camera Library

2. Invalid Image Configuration: If the image configuration is invalid, the system will not
be able to process the image correctly. This can happen if the image size is not sup-
ported by the camera or if the image format is not supported. In this case, the follow-
ing error message will be displayed:

xrun: Program received signal ET_ECALL, Application exception.
0x000881a%9a in camera_isp_coordinates_compute (img_cfg=0xd2280)

To resolve this issue, ensure that the image configuration is valid and supported by the
camera. Check the camera documentation for supported image sizes and formats.

3. Missing Timings: It may occur that the camera is not able to meet the timings for a
specific mode. This can be due to a variety of reasons, such as the camera running
out of time while processing the current line before the next one arrives, the camera
is configured faster than it can handle, either the PHY or the SHIM. If this happens,
the camera will not be able to meet the required timing and the ISP will receive invalid
packets. This will result in an error message similar to the following:

xrun: Program received signal ET_ECALL, Application exception.

0x00881c6ba in handle_unknown_packet (data_type=<optimized out>)
at _camera_isp.c:77

4. Incorrect Capture Sequence: This issue may occur if ISP functions are called in the
wrong order or too early. For example, calling camera_isp_start_capture()
before computing the coordinates with camera_isp_coordinates_compute()
can result in undefined behaviour, often leading to image corrup-
tion. Conversely, if camera_isp_get_capture() is called before
camera_isp_start_capture(), the ISP will block while waiting for the im-
age to be captured indefinitely.

5. Incorrect Tile Placement: Ensure that both the caller thread and the camera_main
thread are running on the same tile (by default, tile 1). If they are placed on differ-
ent tiles, code attempts to jump, branch, or return to an address that is not part of
executable memory.

Frame time: 4805210 cycles

xrun: Program received signal ET_ILLEGAL_PC, Illegal program counter.
0x4cB886f7e in ?? ()

6. Image Corruption: Image corruption can occur if the image buffer is modified before
the image has been fully captured. If the image is modified while the ISP is process-
ing it, or if the pointer is used during capture, this may result in undefined behavior
and data corruption. To prevent this issue, ensure that the image is not modified or
accessed until the ISP has completed processing.

6 Contributing

This section provides guidelines for contributing to the library. We welcome contribu-
tions from the community, whether it's bug fixes, new features, or improvements to the
documentation.

The general approach to contributing to the library is to fork the repository, make your
changes, and then submit a pull request. This allows us to review your changes and
ensure they meet our quality standards before merging them into the main branch.

When doing so, it is recommended to add tests or examples to demonstrate the new
functionality or bug fix. This will help us understand the changes and ensure they work
as intended.

PRs will trigger a Cl pipeline that will run the tests and check the code style. Make sure
new tests are added to the pipeline modifying the correct CMakeLists.txt file.

19 y,



lib_camera: XCORE Camera Library

The following section focuses on contributing to the ISP components.

6.1 Modifying or Adding an ISP component

The library supports two types of ISP components: Line ISP and End-of-Frame (EOF) ISP.
The primary difference between them lies in how they process image data.

Line ISP components process data on a line-by-line basis or in groups of lines. This
means the component processes each line of the image as it is received from the camera
sensor. This approach is typically used when converting from RAW8 input to a desired
output format, such as RGB888 or YUV422. Processing line by line is preferred in this
case to avoid storing the entire RAW image in memory.

End-of-Frame ISP components, on the other hand, process data after the entire image
has been received and processed by the line ISP components. These components han-
dle tasks that do not necessarily require storing the entire image, such as auto-exposure
adjustments, or tasks that can be performed in-place in memory, such as int8 to uint8
conversion or gamma correction.

For modifying components, the user should be aware of the following:

camera_isp.c This file contains both line process under the
handle_expected_lines() function and EOF process under the
handle_post_process() function.

camera_isp.h : This file contains the different modes, and their corresponding maxi-
mum allowed regions for each mode.

Other files that may be of interest are:

camera.h : Defines the absolute maximum sensor region. This will drive the maximum
output image size.

sensor_wrapper.h : Defines the sensor wrapper functions, which are used to commu-
nicate with the camera sensor and configure its settings. These wrapper functions
are implemented in the sensor_wrapper.c file. This file serves as a C wrapper
for the C++ implementation, specifically the sensor_imx219. cpp class, which is a
subclass of the sensor_base.cpp class.

In order to add or modify an ISP component the user would have to submit their changes
in the isp folder. As an example, let us suppose the user wants to improve the conver-
sion from RAWS to RGB888 (RGB1) with an improved algorithm, or wants to add a new
alogrithm, like RAWS8 to RGB565.

The user should implement the new algorithm in the ISP folder, ensuring it adheres
to the library’s coding standards and performance requirements. Additionally, the
user should update the camera_isp.c file to integrate the new algorithm into the
handle_expected_lines() function.

To validate the changes, the user should ensure that the existing tests for this component
are updated or extended to cover the new algorithm. Submitting the PR will trigger the
Cl pipeline, which will run these tests. The pipeline will verify that the new algorithm
produces results comparable to the Python and OpenCV implementations by checking
metrics such as PSNR and SSIM. These metrics ensure the output quality is acceptable
when compared to the OpenCV reference implementation. For more information on ISP
tests, please check the tests/isp folder.

20 y,


https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Structural_similarity_index_measure

lib_camera: XCORE Camera Library

7 API Reference

This section contains the API reference for the Camera library.

» Camera
» ISP
» Sensors
» I/0

7.1 Camera

The Camera module serves as the entry point for the camera library.
It defines global macros for main camera configuration and provides functions to con-
figure and initialize the camera thread.

group Main camera functions

Defines

SENSOR_WIDTH
Sensor width in pixels.

SENSOR_HEIGHT
Sensor height in pixels.

CONFIG_FLIP
Flip mode: FLIP_NONE, FLIP_VERTICAL.

CONFIG_BINNING
Binning mode: BINNING_ON or BINNING_OFF.

CONFIG_CENTRALISE
Centralise mode: CENTRALISE_ON or CENTRALISE_OFF.

CONFIG_APPLY_AWB
Apply White Balance: 1to apply, 0 to skip.

CONFIG_APPLY_AE
Apply Auto Exposure: 11to apply, 0 to skip.

Functions

void camera_main(chanend_t c_camera)
Main entry point for the lib_camera module.

This function initializes and configures the MIPI interface, and starts both the
MIPI RX and ISP processing threads.

21 p.



lib_camera: XCORE Camera Library

Parameters

» c_camera — Channel endpoint for communication with the
user application.

7.2 ISP

The ISP module offers an interface for configuring and controlling the camera’s image
processing pipeline.

It provides functions to set the output format, resolution, and various image processing

parameters. This module includes both configuration and conversion functions essential
for adapting the camera output to different requirements.

group
Functions related to the Image Signal Processing (ISP) pipeline.

Defines
MODE_RAW_MAX_SIZE
MODE_RGB1_MAX_SIZE
MODE_RGB2_MAX_SIZE
MODE_RGB4_MAX_SIZE

MODE_YUV2_MAX_SIZE

Typedefs

typedef unsigned mipi_header_t

Enums

enum camera_mode_t

Defines the camera output modes.
Values:

enumerator MODE_RAW
Unprocessed RAW sensor data.

enumerator MODE_RGB1

RGB mode with no downsample (demosaicing)

enumerator MODE_RGB2
RGB mode with x2 downsample.

enumerator MODE_RGB4
RGB mode with x4 downsample.

22 4



lib_camera: XCORE Camera Library

enumerator MODE_YUV2
YUV2 mode (YUV422)

struct camera_cfg_t
#include <camera_isp.h> Configuration structure for the camera.

Public Members

float of fset_x
Horizontal offset in [0,1] range relative to the sensor area.

float of fset_y

Vertical offset in [0,1] range relative to the sensor area.

camera_mode_t mode
Camera output mode.

unsigned y2
Region of interest (ROI) in MIPI coordinates.

unsigned sensor_width
Width of the MIPI region.

unsigned sensor_height
Height of the MIPI region.

struct image_cfg_t
#include <camera_isp.h> Image configuration structure.

Public Members
unsigned height
Height of the output image in pixels.

unsigned width
Width of the output image in pixels.

unsigned channels
Number of channels in the output image (ex: 1for RAW, 3 for RGB)

unsigned size
Size of the output image in bytes.

int8_t *ptr
Pointer to the output image data.

camera_cfg_t *config
Pointer to the camera configuration structure.

group
Functions related to the Image Signal Processing (ISP) pipeline.

23 4



24

lib_camera: XCORE Camera Library

Functions

void camera_isp_prepare_capture(chanend_t c_cam, image_cfg_t

*image)
Captures frames until the AE is done or a maximum number of steps is
reached. This function can be called before camera_isp_start_capture
to ensure the image is well-exposed. It is optional and can be
skipped if the user does not require auto-exposure or is willing to ac-
cept initial frames with incorrect exposure. Has to be called after
camera_isp_coordinates_compute.

Parameters

» c_cam — camera channel
» image — image pointer and configuration

void camera_isp_start_capture(chanend_t c_cam, image_cfg_t *image)

Sends the camera configuration to the ISP thread and starts cap-
ture process. Capture process starts asynchronously, and the
function returns immediately.  This function should be called after
camera_isp_coordinates_compute. To capture the image, the
user should call camera_isp_get_capture.

Parameters

» c_cam — camera channel
» image — image pointer and configuration

void camera_isp_get_capture(chanend_t c_cam)

Receives an image from the ISP thread. This function blocks
until the image is ready. This function should be called after
camera_isp_start_capture. Image will be returned in the image
structure passed to camera_isp_start_capture.

Parameters

» c_cam — camera channel

void camera_isp_thread(

)

streaming_chanend_t c_pkt, chanend_t c_ctrl, chanend_t c_cam,

Main thread function for the ISP. This function handles the interaction be-
tween the MIPI packet channel, control channel, and the camera channel. It
processes incoming data and manages the ISP pipeline forimage processing.

Parameters

» c_pkt - channel to receive mipi packets
» c_ctrl-channeltoreceive control messages from or to mipi
» c_cam — channel array between user and isp

void camera_isp_coordinates_compute(image_cfg_t *image_cfg)

compute MIPI coordinates, from user request to sensor dimensions.
Parameters

» image_cfg — pointer to the image configuration structure.

void camera_isp_coordinates_print(image_cfg_t *image_cfg)

prints the coordinates of the image_cfg
Parameters

» image_cfg — pointer to the image configuration structure.



lib_camera: XCORE Camera Library

void camera_isp_raw8_to_raw8 (image_cfg_t *image, int8_t *data_in,
unsigned In)

Converts RAWS lines from the sensor into an RAW8 image. Conversion:
HxWx1 (RAWS8) -> HxWx1 (RAWS)

Parameters

» image — structure containing image configuration and output
pointer.
» data_in - pointer to the input RAWS line data.
» 1n - current sensor line number.
void camera_isp_raw8_to_rgb1(image_cfg_t *image, int8_t *data_in,
unsigned In)

Converts RAWS lines into an RGB1image. (image demosaicing) Conversion:
HxWx1 (RAWS) -> HxWx3 (RGB)

Parameters

» image — structure containing image configuration and output
RGB pointer.
» data_in — pointer to the input RAW8 data.
» 1n - current sensor line number.
void camera_isp_raw8_to_rgbh2 (image_cfg_t *image, int8_t *data_in,
unsigned In)

Converts RAWS lines into an RGB2 image. (downsampled by 2) Conversion:
HxWx1 (RAWS) -> (H/2)x(W/2)x3 (RGB)
Parameters

» image — structure containing image configuration and output
RGB pointer.
» data_in - pointer to the input RAWS data.
» 1n - current sensor line number.
void camera_isp_raw8_to_rgbh4 (image_cfg_t *image, int8_t *data_in,
unsigned In)

Converts RAWS lines into an RGB4 image. (downsampled by 4) Conversion:
HxWx1 (RAWS) -> (H/4)x(W/4)x3 (RGB)
Parameters

» image — structure containing image configuration and output
RGB pointer.
» data_in — pointer to the input RAW8 data.
» 1n - current sensor line number.
void camera_isp_raw8_to_yuv2(image_cfg_t *image, int8_t *data_in,
unsigned In)

Converts RAWS lines into an YUV422 image. (downsampled by 2 horizontally)
Parameters

» image - structure containing image configuration and output
YUV pointer.
» data_in - pointer to the input RAW8 data.
» 1n - current sensor line number.
void camera_isp_white_balance(image_cfg_t *image)

Applies Static White Balancing to the image. This applies a gain to the R, G
and B channels of the image. Image must be in RGB format. Image pointer
is updated with the new image.

25 y,



lib_camera: XCORE Camera Library

Parameters

» image — structure containing image configuration and output
RGB pointer.

unsigned camera_isp_auto_exposure(image_cfg_t *image)

Computes camera gain to apply for a new auto exposure step given animage.
Computes the histograms and statistics of the image and computes the new
exposure value. It is based on false position method of histogram skewness.
It works well in unimodal distributions, but it is not very robust in multimodal
distributions.

Parameters

» image — structure containing image configuration and output
RGB pointer.
Returns
uint8_t new exposure valuein [1, 80] or O if the exposure is already
adjusted.

group Functions related to image conversion

Defines
GET_R(rgb)

Get Red component from encoded XRGB uint32_t.
GET_G(rgb)

Get Green component from encoded XRGB uint32_t.
GET_B(rgb)

Get Blue component from encoded XRGB uint32_t.
GET_Y(yuv)

Get Y component from encoded XYUV uint32_t.
GET_U(yuv)

Get U component from encoded XYUV uint32_t.
GET_V(yuv)

Get V component from encoded XYUV uint32_t.

Functions
void camera_rgb_to_greyscale4 (int8_t *gs_img, int8_t *img, unsigned
N_pix)
Convert an RGB image to the greyscale one. The operation can be performed
safely in-place on the same pointer. n_pix must be a multiple of 4.
Parameters

» gs_img — Greyscale image
» img — RGBimage
» n_pix — Number of RGB pixels
void camera_rgb_to_greyscale16 (int8_t *gs_img, int8_t *img, unsigned
n_pix)
Convert an RGB image to the greyscale one. The operation can be performed
safely in-place on the same pointer. n_pix must be a multiple of 16.

26 y,



27

lib_camera: XCORE Camera Library

Parameters

» gs_img — Greyscale image
» img — RGBimage
» n_pix — Number of RGB pixels
inline void camera_rgb_to_greyscale(
int8_t *gs_img, int8_t *img, unsigned n_pix,
)

Convert an RGB image to the greyscale one. The operation can be performed
safely in-place on the same pointer. n_pix must be a multiple of 4.

Parameters

» gs_img — Greyscale image
» img — RGBimage
» n_pix — Number of RGB pixels
int camera_yuv_to_rgb(inty,intuy,intv)
Converts a YUV pixel to RGB.
Parameters

» y —Y component
» u— Ucomponent
» v —V component
Returns
int result of rgb conversion (need macros to decode output)

int camera_rgh_to_yuv(intr,intg, intb)
Converts a RGB pixel to YUV.
Parameters

» r —red component
» g — green component
» b - blue component
Returns
int result of yuv conversion (need macros to decode output)

void camera_int8_to_uint8(
uint8_t *output, int8_t *input, const unsigned length,
)

Convert an array of int8 to an array of uint8. Data can be updated in-place.
Parameters

» output — Array of uint8_t that will contain the output
» input — Array of int8_t that contains the input
» length — Length of the input and output arrays

void camera_swap_dims(
uint8_t *image_in, uint8_t *image_out, const unsigned height, const un-
signed width, const unsigned channels,

Swaps image dimensions from [X][y][z] to [yl[z][x].
Parameters

image_in - Input image
image_out — Output image
height - Image height

>
>
>
» width - Image width



lib_camera: XCORE Camera Library

» channels — Number of channels

void camera_rotate90(
void *dst_img, void *src_img, const int16_t h, const int16_t w, const int16_t
ch,

Rotates an RGB image 90 degrees clockwise, assumes both src and dst
images are previously allocated, and input image pointer cant be reused
for the output image. Input image dimensions are [height][width][channell,
and only int8 or uint8 types are supported. Output image dimensions are
[width][height][channel], and they are of the same type as the input image.

Parameters

v

dst_img — Destination image

src_img — Source image (only uint8 or int8 types are sup-
ported)

h — Image height

w — Image width

ch = Number of channels

v

vVvyy

7.3 Sensors

This module provides a high-level class for the camera sensor. It includes set of methods
that the library needs in order to configure and control the camera sensor.

group Camera Sensor Base API
Functions and classes to control camera sensors.

struct i2c_line_t
#include <sensor_base.hpp> 12C line structure.

struct i2c_table_t
#include <sensor_base.hpp> 12C table structure.

struct i2c_config_t
#include <sensor_base.hpp> 12C configuration structure.

class SensorBase
#include <sensor_base.hpp> Base class for camera sensors.

Subclassed by sensor::IMX219
Public Functions

SensorBase(i2c_config_t _conf)
Construct new SensorBase

O Note

This will initialize 12C interface

Parameters
_conf — 12C master config to use for the sensor control
virtual int initialize()

Initialize sensor.

28 y,



lib_camera: XCORE Camera Library

O Note

This is a virtual function, and will have to be implemented in the de-
rived class

virtual int stream_start()
Start data stream.

O Note

This is a virtual function, and will have to be implemented in the de-
rived class

virtual int stream_stop()
Stop data stream.

© Note

This is a virtual function, and will have to be implemented in the de-
rived class

virtual int set_exposure (uint32_t dBGain)
Set sensor exposure.

O Note
This is a virtual function, and will have to be implemented in the de-
rived class
Parameters
dBGain — Exposure gain in dB, can enable different types of
camera gain

virtual int configure()
Set sensor resolution, binning mode, and RAW format.

O Note

This is a virtual function, and will have to be implemented in the de-
rived class

virtual void control(chanend_t c_control)
Control thread intry, will initialise and configure sensor inside.

© Note

This is a virtual function, and will have to be implemented in the de-
rived class

Parameters
c_control - Control channel

virtual int set_test_pattern(uint16_t pattern)
Set test pattern.

29 4



lib_camera: XCORE Camera Library

O Note

This is a virtual function, and will have to be implemented in the de-
rived class

Parameters
pattern — Test pattern to set
virtual int check_sensor_is_connected()

Check if sensor is connected.

© Note

This is a virtual function, and will have to be implemented in the de-
rived class

Returns
0 if succeeded, -1 if failed

7.4 1/0

The I/0 module includes a set of functions to read and write image data from or to a host
PC. It supports various image formats.

group Functions related to file I/0 operations for camera data

Functions

void camera_io_write_file(char *filename, uint8_t *data, const size_t size)
Dumps data into a file, can be lossy if done over xscope.
Parameters

» filename — Name of the file
» data — Data to write
» size — Size of the data

void camera_io_read_file(char *filename, uint8_t *data, const size_t size)
Reads data into an array.
Parameters

» filename — Name of the file
» data — Datatoreadto
» size — Size of the file

void camera_io_write_image_file(
char *filename, uint8_t *image, const size_t height, const size_t width, const
size_t channels,

Writes binary image file.

© Note

Image has to be in [height][width][channel] format

Parameters

30 4



lib_camera: XCORE Camera Library

filename — Name of the image
image — Pointer to the image data
height - Image height

width - Image width

channels — Number of channels

\ A A A A 4

void camera_io_write_bmp_file(
char *filename, uint8_t *image, const size_t height, const size_t width, const
size_t channels,

Writes bmp image file.

© Note

Image has to be in [height][width][channel] format

Parameters

filename — Name of the image
image — Pointer to the image data
height - Image height

width - Image width

channels — Number of channels

vVVvyvyYy

v

voidwrite_bmp_greyscale(
char *filename, uint8_t *image, const size_t height, const size_t width,

Writes greyscale bmp image file.

© Note

Image has to be in [height][width] format

Parameters

» filename — Name of the image
» image — Pointer to the image data
» height - Image height

» width - Image width

2 MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

31 y,



	Overview
	Purpose
	Supported Hardware
	Key features
	High-level Architecture
	Additional Resources

	Architecture
	Components
	Image Processing Blocks
	Image Processing Pipeline
	Capture Sequence Diagram

	Getting Started
	RGB Capture Example
	Hardware Requirements
	Hardware Setup
	Software Requirements
	Software Setup
	Related Documentation

	Configuration
	Logging Options
	Default Settings
	Image Configuration
	Adding Support for the xcore.ai Evaluation Kit
	Adding Support for Other Boards
	Adding a New Sensor

	Troubleshooting
	Common Issues

	Contributing
	Modifying or Adding an ISP component

	API Reference
	Camera
	ISP
	Sensors
	I/O


