
AN02039: Ports, Pins, and the XN file

AN02039: Ports, Pins, and the XN file

Publication Date: 2025/2/25
Document Number: XM-015276-AN v1.0.1

IN THIS DOCUMENT

1 Introduction . 1
2 Pins . 1
3 Ports . 2
4 Linking Ports to Pins . 3
5 Which Ports to Use . 3
6 The port multiplexer . 4
7 The port map . 6
8 The XN-file . 7

The XMOS XCORE processor can interface electrical signals on a package pin to logical
signals in a program through a highly efficient low latency interface called a port.

In this documentwe describe themechanism that links ports to pins in detail, and explain
how to specify the desired pin-out of the device and how to select an appropriate device
for your problem.

This document ties together the tools documentation (on the nature of XN files), the
datasheets (that documents pins), and the port programming guides.

1 Introduction

The two important terms to distinguish are:

Pins
Pins are electrical connections on the XCORE package, Pins can typically be low
(0V) or high (VDDIO)

Ports
A port is a part of the XCORE that provides an abstraction of a pin. A port maps
electrical signals to logical levels, and provides elements for, for example, serialis-
ing data. A 0 value in the port corresponds to a low signal on the pin.

These two terms are described in more detail below, followed by a description of the
mechanism that links ports to pins, and then how to specify the desired pin-out of the
device.

2 Pins

Each tile on an XCORE device can support up to 64 I/O pins, so up to 128 I/O pins on a
standard dual-tile device. The number of I/O pins available on a specific device depends
on the package. For example, on xcore.ai devices the number of I/O pins is as follows

· QF60 package - 34 I/O pins

· TQ128 package - 78 I/O pins

· FB265 package - 128 I/O pins

1

https://www.xmos.com/documentation/XM-014363-PC/html/index.html
https://www.xmos.com/documentation/XM-015129-PC/html/rst/XU316-1024.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html

AN02039: Ports, Pins, and the XN file

Depending on the package, these pins may have different VDDIO voltages when driven
high.
The electrical characteristics of the pins are defined in the device’s datasheet, but in sum-
mary the main characteristics that can be changed under software control include:
· Direction (input or output)
· As Output - Drive strength (e.g. 2, 4, 8, 12 mA) - Slew rate control
· As Input - Schmitt trigger enable - Pull-up enable - Pull-down enable
If a pin is not configured it operates as an input with a weak pull-down resistor enabled.
These modes are set by the software with the details described in the programming
guides.
Pins are identified by a label of the form XnDmm where n is the tile number, and mm is the
pin number.
For example, X0D12 is pin 12 on tile 0, and X1D24 is pin 24 on tile 1.
This numbering scheme is consistent across all devices in the product family. However,
not all pins are available on all packages and the datasheet for the individual device pro-
vides a full list of the pins available along with the physical location of these pins on the
package.

3 Ports

A port is a logical abstraction of an I/O pin, or a group of I/O pins. Ports provide the
interface between the XCORE processor logic and the outside world.

3.1 Basic operation

At the basic level ports provide a mechanism to input or output logical values on the
device pins, and they can be configured to represent a range of different types of signals.
XCORE ports can be configured to either 1, 4, 8, 16 or 32 bits wide, and can operate as
inputs, outputs, or bidirectional signals.
Each port is identified by its width in bits and a letter, with the letter distinguishing be-
tween ports of the same width, as is shown in Table 1.

Table 1: Available Ports on an XCORE Device

Port Size Label Example Description Available Ports

1-bit 1A, 1B, …, 1P Single-bit digital I/O 16
4-bit 4A, 4B, …, 4E 4-bit parallel I/O 6
8-bit 8A, 8B, …, 8D 8-bit parallel I/O 4
16-bit 16A, 16B 16-bit parallel I/O 2
32-bit 32A 32-bit parallel I/O 1

Within each port the individual bits are labelled from 0 to the width of the port. For ex-
ample:
· Port 4A has bits 0, 1, 2, 3 which are identified as 4A0, 4A1, 4A2, 4A3
· Port 8B has bits 0, 1, …, 6, 7 which are identified as 8B0, 8B1, …, 8B6, 8B7
Architecturally, ports are typically referred to by a symbolic name and are labelled as
XS1_PORT_xywherexy is the port identifier from the table above (e.g. XS1_PORT_8B for
the second 8-bit port). These names can be used anywhere in C programs and Assembly
programs provided you include xs1.h.

2

AN02039: Ports, Pins, and the XN file

3.2 Advanced Port Operations

XCORE ports are, however, much more powerful than simple digital I/O pins. Each
XCORE port can operate as a small state machine that provides deterministic, hardware
timed, parallel processing of signals, ensuring that the signals are processed in real-time
with low latency.
Ports can be configured to perform more complex operations such as:
· Serialisation and deserialisation of data
· Clocking data in and out
· Reading and writing data in a single clock cycle
· Strobing data
· Buffering data
· Triggering events when data is available
These advanced port operations can be used to implement a wide range of interface
protocols, and they operate without the need for core processor resoureces.
These advanced port operations are described inmore detail in the port application notes
and the tools programming guide.

4 Linking Ports to Pins

The reason to separate ports and pins is that multiple ports (and possibly other signals)
may map onto a single pin. For example, on xcore.ai, pin X0D31 is connected to port 4F
(bit 3), port 8C (bit 5), port 16B (bit 5), and the LPPDR interface (DQ3). The 0 in X0D31
means that all ports it is connected to are on Tile 0, the 31 is just a label that makes each
pin unique.
For each XMOS product family, the mapping between pins on the one hand and ports
and other functions on the other hand is the same for every member of the family. That
is, X0D31 will have the same mapping on all packages. However, not all packages may
make X0D31 available as a physically accessable pin. The largest package brings out all
pins, the smallest package brings out only a small subset of pins.

5 Which Ports to Use

We now look at how to select the appropriate port for a particular task. The design de-
cisions of which port to use will depend on the both the nature of the signal and the
application requirements.
The following guidelines can be used to help select the appropriate type of port.
Within a tile, all 1-bit ports are interchangeable, all 4-bit ports are interchangeable, all 8-bit
ports are interchangeable, and both 16-bit ports are interchangeable. That means, if you
need a 1-bit port you can pick any of them; there is no preference for a particular port. The
choice whether to pick a 1-bit or 16-bit port depends on the signal that the port carries:
· Clock Signals that you need to clock data in and out must be on a 1-bit port, and so

must strobe (data-valid) signals.
· Data signals of serial protocols are typically on 1-bit ports as that enables you to let

the port logic to do the serialisation and deserialisation.
· Data signals on an N-bit bus should be on an N-bit port, as that enables you to input

and output data to the bus in one synchronised operation, and/or to serialise wider
data onto a narrower bus.

· Slow signals (LEDs, buttons, reset signals etc.) can be on any port. However, you need
to make sure that all signals on a port are either all driven (outputs) or all sampled
(inputs). Ports cannot do a bit of both.

3

https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-014363-PC/html/prog-guide/index.html

AN02039: Ports, Pins, and the XN file

· Signal groups that belong to one interface should be using ports on the same tile.

For example, if an Ethernet MII Rx signal has a clock, 4-bit data, data-valid, and error
signal then you would use one 4-bit port and three 1-bit ports; all on the same tile.

If you also need an MII Tx signal with a similar set-up, you need another 4-bit port and
three more 1-bit ports all on one tile. There may be value to keep the Rx and Tx part on
the same tile too - that is an application decision.

6 The port multiplexer

From Table 1 we see that there are a total of 136 signals on one tile. That is too many
signals since each tile has only 64 GPIO pins available. To resolve this, some of the ports
are multiplexed (muxed) onto the same pin.

Each tile has its own multiplexer. For example, XnD18 is connected to bit 2 of port 4D,
bit 4 of port 8B, and bit 12 of port 16A. These are visualised for the QF60A/B package in
Fig. 1 where we have drawn the multiplexers for X0D07 (tile 0) and X1D18 (tile 1).

X0D051

1
6

31

X
0
D
4
0

4
6

X0D072

1
7

X1D13 32

X
0
D
3
9

4
7

X0D013

1
8

X1D16 33

X
0
D
4
2

4
8

4

1
9

34

4
9

X0D105

2
0

X1D17 35

X
0
D
4
1

5
0

X0D006

2
1

X1D18 36

X
0
D
4
3

5
1

X0D117

2
2

X1D19 37

5
2

8

2
3

38

X
1
D
3
4

5
3

X1D009

2
4

X1D22 39

X
0
D
3
0

5
4

X1D0110

2
5

X0D29 40

X
0
D
3
1

5
5

X1D0911

2
6

X0D35 41

X
0
D
3
2

5
6

12

2
7

42

5
7

X1D1013

2
8

X0D36 43

X
0
D
3
3

5
8

X1D1114

2
9

X0D37 44

X
0
D
0
4

5
9

15

3
0

X0D38 45

X
0
D
0
6

6
0

Tile 0 Tile1

XS1_PORT_4B[3]

XS1_PORT_8A[5]

XS1_PORT_16A[5]

XS1_PORT_32A[25]

XS1_PORT_4D[2]

XS1_PORT_8B[4]

XS1_PORT_16A[12]

Xlink 0 out 0

Fig. 1: Visualisation of the multiplexer in a QF60A/B package

The full structure of the multiplexed port signals on a single tile is shown in the table
below:

Nr 1-bit Port 4-bit Port 8-bit Port 16-bit Port 32-bit Port Pin Label

1 1A XnD00
2 1B XnD01
3 4A0 8A0 16A0 32A20 XnD02
4 4A1 8A1 16A1 32A21 XnD03

continues on next page

4

AN02039: Ports, Pins, and the XN file

Table 2 – continued from previous page

Nr 1-bit Port 4-bit Port 8-bit Port 16-bit Port 32-bit Port Pin Label

5 4B0 8A2 16A2 32A22 XnD04
6 4B1 8A3 16A3 32A23 XnD05
7 4B2 8A4 16A4 32A24 XnD06
8 4B3 8A5 16A5 32A25 XnD07
9 4A2 8A6 16A6 32A26 XnD08
10 4A3 8A7 16A7 32A27 XnD09
11 1C XnD10
12 1D XnD11
13 1E XnD12
14 1F XnD13
15 4C0 8B0 16A8 32A28 XnD14
16 4C1 8B1 16A9 32A29 XnD15
17 4D0 8B2 16A10 32A30 XnD16
18 4D1 8B3 16A11 32A31 XnD17
19 4D2 8B4 16A12 XnD18
20 4D3 8B5 16A13 XnD19
21 4C2 8B6 16A14 XnD20
22 4C3 8B7 16A15 XnD21
23 1G XnD22
24 1H XnD23
25 1I XnD24
26 1J XnD25
27 4E0 8C0 16B0 XnD26
28 4E1 8C1 16B1 XnD27
29 4F0 8C2 16B2 XnD28
30 4F1 8C3 16B3 XnD29
31 4F2 8C4 16B4 XnD30
32 4F3 8C5 16B5 XnD31
33 4E2 8C6 16B6 XnD32
34 4E3 8C7 16B7 XnD33
35 1K XnD34
36 1L XnD35
37 1M 8D0 16B8 XnD36
38 1N 8D1 16B9 XnD37
39 1O 8D2 16B10 XnD38
40 1P 8D3 16B11 XnD39
41 8D4 16B12 XnD40
42 8D5 16B13 XnD41
43 8D6 16B14 XnD42
44 8D7 16B15 XnD43
45 32A00 XnD49
46 32A01 XnD50
47 32A02 XnD51

continues on next page

5

AN02039: Ports, Pins, and the XN file

Table 2 – continued from previous page

Nr 1-bit Port 4-bit Port 8-bit Port 16-bit Port 32-bit Port Pin Label

48 32A03 XnD52
49 32A04 XnD53
50 32A05 XnD54
51 32A06 XnD55
52 32A07 XnD56
53 32A08 XnD57
54 32A09 XnD58
55 32A10 XnD61
56 32A11 XnD62
57 32A12 XnD63
58 32A13 XnD64
59 32A14 XnD65
60 32A15 XnD66
61 32A16 XnD67
62 32A17 XnD68
63 32A18 XnD69
64 32A19 XnD70

The eighth line tells us that bit 3 of port 4B is multiplexed on bit 5 of port 8A, bit 5 of port
16A, and bit 25 of port 32A; and it is called XnD07, where n is 0 or 1 depending on the tile
that the ports are on.
You notice that the mux structure is designed so that the narrowest port takes prece-
dence. That is, if you use port 8A to drive data, then pins 16A[0..7] are not driven out.
If you also drive port 4D, then that will knock out pins 16A[10..13] too. If you do chose
to drive a signal on 16A it will only show on pins XnD16, XnD17, XnD20, and XnD21. On
inputting data, all data goes to all pins; but it will only make sense to sample them on the
ports for which the data was intended.
In addition to the port multiplexer that governs GPIO pins there may be another second
multiplexer on the edge of the chip that can multiplex XLINK signals (the communica-
tions network), LPDDR-1 (extendedmemory), and the application PLL onto the GPIO pins.
In the example in Fig. 1 X1D18 has an XLINK signal multiplexed on it.
All port muxes are set automatically when a port is enabled. When you enable an XLINK,
LPPDR, or the application PLL, it will automatically mux the pin to those, taking prece-
dence over any port(s) out that may be mapped to the same pin. The precise mapping
depends on the device family, and it is shown in the datasheet for the particular product.
Finally, the MIPI PHY and USB PHY are muxed in to a selection of ports. The USB PHY is
hard-wired to ports 8A and 8B, and ports 1E, 1F, 1H, 1I, 1J, and 1K. If you enable the USB
PHY these ports should not be used by application code. You can still use ports 4A, 4B,
4C, and 4D; despite them being multiplexed with 8A and 8B, they are bypassed for the
USB PHY. So six 1-bit ports are taken over by the USB PHY when enabled. Similarly, the
MIPI PHY uses ports 8A, 1E, 1I, and 1O. Themuxing structures are shown in the datasheet.
Note that the USB and MIPI ports are only being muxed if the USB PHY and/or MIPI PHY
are enabled.

7 The port map

To summarise, in order to pick the appropriate IO pins we have seen three constraints:
· Pick the right port-width for the particular IO task

6

AN02039: Ports, Pins, and the XN file

· Pick the right tile to colocate IO pins (informed by the software stack)

· Pick a port that is not muxed on a pin that is already in use

If there is a choice, you may want to pick a port that is in a convenient location on the
chip. For example, you will note that the QSPI pins are all located together on the top
left-hand corner of the chip.

A tool that can help in solving these constraints is the port-map. The port-map for a pack-
age is a spreadsheet that lists the pins available on that package, themultiplex structure,
pins potentially occupied by USB andMIPI etc. The portmap is available from the landing
page of the particular product, and are linked below:

· xcore.ai QF60A/B port map

· xcore.ai TQ128 port map

· xcore.ai FB265 port map

An excerpt of the portmap of the QF60 packages is shown in Fig. 2. The left-most
columns show the port multiplexer, then there is a list of internal pin functions, then the
IO rail, the pin name, and the pin number on the particular package. Ports that may be
unavailable are coloured green, yellow, and blue.

xcore.ai portmap

xcore.ai PORT MAP Key: Port unavailable if USB enabled on that tile

Port unavailable if MIPI enabled

Port unavailable if MIPI or USB enabled

Note 1: I/O rail supply column only applies in packages where VDDIO is split into L, R and T. Please refer to the product datasheet.

Features Pin name

BOARD SIG
1b 4b 8b 16b 32b

P1A0 xlink4_rx3 MISO SS IOL X0D00 6

P1B0 SS SS IOL X0D01 3 QSPI_CS_N

P4B0 P8A2 P16A2 P32A22 IO0 RXD2 TXD2 IOL X0D04 59 QSPI_D0

P4B1 P8A3 P16A3 P32A23 IO1 RXD3 TXD3 IOL X0D05 1 QSPI_D1

P4B2 P8A4 P16A4 P32A24 IO2 RXD4 TXD4 IOL X0D06 60 QSPI_D2

P4B3 P8A5 P16A5 P32A25 IO3 RXD5 TXD5 IOL X0D07 2 QSPI_D3

P1C0 xlink4_rx4 SCLK SCLK SCLK IOL X0D10 5 QSPI_CLK

P1D0 xlink4_rx2 MOSI MOSI IOL X0D11 7

P4F1 P8C3 P16B3 xlink3_tx0 IOR X0D29 40

P4F2 P8C4 P16B4 DQ4 IOT X0D30 54

P4F3 P8C5 P16B5 DQ3 IOT X0D31 55

P4E2 P8C6 P16B6 DQ2 IOT X0D32 56

P4E3 P8C7 P16B7 DQ1 IOT X0D33 58

P1L0 xlink3_tx1 IOR X0D35 41

P1M0 P8D0 P16B8 xlink3_tx2 IOR X0D36 43

P1N0 P8D1 P16B9 xlink3_tx3 IOR X0D37 44

P1O0 P8D2 P16B10 xlink3_tx4 CLK IOR X0D38 45

P1P0 P8D3 P16B11 A13 IOT X0D39 47

P8D4 P16B12 A12 IOT X0D40 46

P8D5 P16B13 A11 IOT X0D41 50

P8D6 P16B14 A10 IOT X0D42 48

P8D7 P16B15 A9 IOT X0D43 51

Port

XMOS Links App PLL QF60AI/O rail
SPI
Slave

Alternate Pin Function Internal Port Options

T
ile

0

LPDDR
QSPI
Master

SPI
Master

USBMIPI

Fig. 2: Excerpt from QF60 portmap

By filling in the final column on the right we can assign each IO function a pin and port.
In this case, we have assigned QSPI_CS_N, QSPI_CLK, QSPI_D0, QSPI_D1, QSPI_D2,
and QSPI_D3; the four signals required for QSPI.

8 The XN-file

An XMOS .xn file is an XML-based description that is used by the XTC tools to define
system configurations, hardware setups, and interconnections between different com-
ponents.

These files are essential when developing applications as they specify the configuration
of the target processor, includingmemory, clocks, bootmode and the port mapping. The
XTC tools use the data in the .xn file to generate the header files required to compile and
link a firmware application.

The .xn file is the place where we can collect all the port-data. We can assign names to
ports, and the tools create a platform.h file that we can include in our program to use
abstract port name.

For example, we can include the following lines in our target_board.xn file:

7

https://www.xmos.com/file/xcore_ai-qf60-package-port-map?version=latest
https://www.xmos.com/file/xcore_ai-tq128-package-port-map?version=latest
https://www.xmos.com/file/xcore_ai-fb265-package-port-map?version=latest

AN02039: Ports, Pins, and the XN file

<Port Location="XS1_PORT_1B" Name="PORT_SQI_CS"/>
<Port Location="XS1_PORT_1C" Name="PORT_SQI_SCLK"/>
<Port Location="XS1_PORT_4B" Name="PORT_SQI_SIO"/>

<Port Location="XS1_PORT_4C" Name="PORT_LEDS"/>
<Port Location="XS1_PORT_4D" Name="PORT_BUTTONS"/>

By including platform.h into our main program we can now write:
#include <xcore/port.h>
#include <platform.h>

port_t leds = PORT_LEDS;
port_t buttons = PORT_BUTTONS;

int main() {
while(1) {

int b = port_in(buttons);
port_out(leds, b);

}
}

And use the variable leds to refer to PORT_LEDS to refer to XS1_PORT_4C to refer to
pins X0D14, X0D15, X0D20 and X0D21, to refer to balls D4, D3, F1 and G2 on the FB265
package.

This mechanism allows us to write code that is independent of the actual pin numbers,
and allows us to easily change the the target package by changing the .xn file without
changing the code.

A full description of XN files can be found in the XTC tools documentation.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

8

https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tutorials/describe-a-target-platform/platform.html

	Introduction
	Pins
	Ports
	Linking Ports to Pins
	Which Ports to Use
	The port multiplexer
	The port map
	The XN-file

