AN02036: Making an LED glow using Pulse Density Modulation

2 MOS

ANO02036: Making an LED glow using Pulse Density Modulation

Publication Date: 2025/10/8
Document Number: XM-015273-AN v1.1.0

IN THIS DOCUMENT

1 Modulation. 1
2 GlowanLEDUsingaTimer. 2
3 UsingaPortClock 3
4 Variable Glow 4
5 Example application 4
6 SUMMArY . . . 5

This application note describes how to control the brighness of an LED by implementing
a Pulse Density Modulator, or PDM. This note focuses on the xcore aspects (I/0 and
timing) and we give a brief explanation on how a PDM is implemented.

Descriptions are provided of different, equally valid, methods to implement this on an
xcore. The method chosen for ultimate deployment will typically depend on how it is
integrated in a system.

1 Modulation

In the code below we use Pulse Density Modulation to glow the LED. In Pulse Density
Modulation you, on a clock beat, drive either a high signal or a low signal. You do this so
that the average signal over many clock beats is the desired output.

The code we use implements a very basic Pulse Density Modulator that is suitable for
glowing an LED. Let us assume that the level that we want the LED to glow at is a real
number in the range [0..1] inclusive, where 0 means completely off, and 1 means com-
pletely on.

The trick is to maintain a fraction of time that we have yet to be on for. This is an accumu-
lated error. On every clock-beat we add the level that we want to be at to the accumulated
error, and if the result is 1.0 or more we switch the LED on for that next beat. Otherwise
we switch the LED off for that beat:

» Add level to the accumulated error

» If the accumulated error is 1.0 or more then the LED must be ON for a clock-beat, and
subtract we record this by subtracting 1.0 from the accumulated error

» Else LED is OFF for one clock-beat

Assuming that we want to drive 0.65 as a value, we go through the following sequence:

AN02036: Making an LED glow using Pulse Density Modulation

Error Level Error+Level Output New Error

0.0 0.65 0.65 OFF 0.65
065 0.65 130 ON 0.30
030 0.65 0095 OFF 0.95
095 065 160 ON 0.60
060 0.65 125 ON 0.25
025 0.65 0.90 OFF 0.90
090 0.5 155 ON 0.55
0.55 065 120 ON 0.20
020 0.5 085 OFF 0.85

..and so on. You can see that the LED seems to be mostly going through a sequence ON
ON OFF, (2/3, or 0.667); with the occasional extra OFF it will be on for 13 out of every 20
clock beats

In order to implement this, we have not used real numbers but instead integers in the
range [0..100] inclusive, where 0 is OFF, and 100 is OFF. This means that the level can be
seen as a percentage:

#include <xcore/port.h>

#include <xcore/clock.h>
#include <platform.h>

port_t led = PORT_LEDS;

void glow_fixed_simple(int percentage) {
int accumulator = 0;
for(int i = 0; i < 10000000; i++) {
int on;
accumulator += percentage;
if (accumulator >= 100) {
on = 1;
accumulator -= 100;
} else {
on = 0;

}
port_out(led, on);
}
¥

There is one line in the code above which is not standard C, which is the function call
port_out(led, on). Thiscall outputs (drives) the value found in the variable on onto
the port foundin 1led. Inthis case, led is a global variable that refers to the port on which
the LEDs are connected. If on is the value 1, then a high VDDIO signal will be driven, if
on is the value 8, then VSS (0 V) will be driven.

More information on xcore ports can be found in ANO3000: xcore Input and Output and
ANO03007: xcore Ports.

2 Glow an LED Using a Timer

The above modulator switches the LED on and off, but the period of ON and OFF depends
on the length of time executed in each of the branches of the IF statement.

We can make this precise by using a timer. We increment the timer at some fixed interval,
and we wait for each next interval before we drive the port on or off.

#include <xcore/hwtimer.h>
#include <xcore/port.h>

void glow_fixed_timer(int percentage) {
hwtimer_t tmr = hwtimer_alloc();
int accumulator = 0;
int next_time = hwtimer_get_time(tmr);
for(int i = 0; i < 5000; i++) { // five seconds
int on;

(continues on next page)

2 Y,

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html

AN02036: Making an LED glow using Pulse Density Modulation

(continued from previous page)

accumulator += percentage;
if (accumulator >= 100) {
on = 1;
accumulator -= 100;
} else {
on = 0;
}

next_time += 100000; // 1 ms
hwtimer_set_trigger_time(tmr, next_time);

(void) hwtimer_get_time(tmr);

port_out(led, on);

hwtimer_free(tmr);

}

There are four calls involved in the timer. The first call hwtimer_alloc() allocates a
hardware timer from the pool of timers. There is an associated hwtimer_free(tmr)
at the end of the function to put the timer back in the pool.

Timers run at 100 MHz (100,000,000 Hz). The function hwtimer_get_time(tmr)
gets the current value of the timer. We can add 100,000 to this timer value (100,000/100
MHz =1 ms) and then set this time up as the trigger. Now that the trigger is set, getting
the time will wait until the trigger time has been reached, and we can ignore the result as
we know that it is one millisecond later, and we adjust the LED value. As we only ever add
one millisecond at a time to the timer we never miss any time; this code will, on average,
run at exactly 1kHz, with a few nanoseconds of jitter on each edge.

Timers are documented in lib_xcore documentation.
3 Using a Port Clock

The final way to glow an LED we discuss is to use the port-clock. Each port has an
associated clock signal that is used to operate the port. The port can only change on a
positive clock edge, and by setting the port to be clocked at a known future edge we can
achieve the same effect as using the timer. We keep track of the number of the clock
edge in a variable clock_edge_number:

#include <xcore/port.h>
#include <stdint.h>

void glow_clocked(int percentage) {

static int accumulator = ©;
static uint16_t clock_edge_number = 0;
accumulator += percentage;
clock_edge_number += 50000;
port_set_trigger_time(led, clock_edge_number);
if (accumulator >= 1080) {

accumulator -= 100;

port_out(led, 1);
} else {

port_out(led, 9);

¥

In this code we have removed the for-loop, and instead glow_clocked () will have to be
called repeatedly. The variables accumulator and clock_edge_number have been
declared static so that their value is maintained across function calls. We set the
clock-edge-number at which we wish to output using port_set_trigger_time(),
and we add 50,000 to the clock edge number on every iteration. As a port is clocked by
default from a 100 MHz clock, this will result in @ PDM that runs at exactly 2 kHz, with
negligible jitter on the edges.

Port edges are only counted in a 16-bit number (the counter is therefore declared as a
uint16_t), so 65,535 is the highest step we can make. More information on clocked
ports can be found in ANO3001: xcore Clocked Input and Output. In particular, that doc-
ument tells you how to obtain the current clock-edge, or how to use clocks that are not
100 MHz.

https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an03001.html

AN02036: Making an LED glow using Pulse Density Modulation

4 Variable Glow

The previous two examples had a fixed level (eg, 65), in this example we pulse the value
gently at 1 Hz using a sine waveform. For this we call the function sinf in order to
calculate a raised sine wave. We use the API we defined earlier and use a clocked port
from the previous section for creating a glow:

#include <math.h>

void pulse() {
for(int i = 0; i < 10000; i++) { // five seconds
glow_clocked(560 + 50 * sinf(i / 2000.0 * 2 * 3.14));

}
5 Example application

5.1 Building the example

This section assumes that the XMOS XTC Tools have been downloaded and installed.
The required version is specified in the accompanying README.

Installation instructions can be found here.

Special attention should be paid to the section on Installation of Required Third-Party
Tools.

The application is built using the xcommon-cmake build system, which is provided with
the XTC tools and is based on CMake.

The anB2036 software ZIP package should be downloaded and extracted to a chosen
working directory.

To configure the build, the following commands should be run from an XTC command
prompt:

cd an62036
cd app_an02036
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software package. If any dependencies are
missing, they will be retrieved automatically during this step.

The application binaries should then be built using xmake:

xmake -j -C build

Binary artifacts (.xe files) will be generated under the appropriate subdirectories of the
app_an@2036/bin directory — one for each supported build configuration.

For subsequent builds, the cmake step may be omitted. If CMakeLists.txt or other
build files are modified, cmake will be re-run automatically by xmake as needed.

5.2 Running the example

From an XTC command prompt, the following command should be run from the
an02036/app_an82036 directory:

xrun ./bin/app_an02036.xe

Alternatively, the application can be programmed into flash memory for standalone exe-
cution:

xflash ./bin/app_an@82036.xe

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

AN02036: Making an LED glow using Pulse Density Modulation

6 Summary

This application note provides an overview of several techniques for controlling LED
brightness while demonstrating key xcore port operations. It covers the creation of a
modulator, the use of timers and port clocks, and methods for achieving smooth and
visually consistent LED illumination.

»MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

> Y,

	Modulation
	Glow an LED Using a Timer
	Using a Port Clock
	Variable Glow
	Example application
	Summary

