
AN03003: XCORE Port Serialisation and Strobing

AN03003: XCORE Port Serialisation and Strobing

Publication Date: 2025/3/8
Document Number: XM-015262-AN v1.0.0

IN THIS DOCUMENT

1 Overview . 1
2 Serialising Output Data using a Port . 1
3 Deserialising Input Data using a Port . 2
4 Input Data Accompanied by a Data Valid Signal . 3
5 Data Output with a Data Valid Signal . 4
6 Case Study: Ethernet MII . 6
7 Summary . 11

1 Overview

The XMOS architecture provides hardware support for operations that frequently arise
in communication protocols. For example a port can be configured to perform serializa-
tion, useful if data must be communicated over ports that are only a few bits wide, and
strobing, which is useful if data is accompanied by a separate data valid signal.
Offloading these tasks to the ports frees up more processor time for executing compu-
tations.
This application note describes how to use the serialization and strobing capabilities of
XCORE ports and is intended to be read in conjunction with application notes
· AN03000: XCORE Input and Output,
· AN03001: XCORE Clocked Input and Output, and
· AN03002: XCORE Port Buffering.
In addition, the reader should be familiar with the concept of XCORE ports as described
in
· AN03007: XCORE Ports, and
· AN02039: Ports, Pins, and the XN file.

2 Serialising Output Data using a Port

Aclocked port can serialize data, reducing the number of instructions required to perform
an output. This is done using an extension to the buffered port mechanism described in
AN03002: XCORE Port Buffering and is enabled by including the #include <xcore/
port.h> and #include <xcore/clock.h> directives in your code.
The example programme below outputs a 32-bit value onto 8 pins, using a clock to de-
termine how long each 8-bit value is driven on the output pins.
#include <xcore/port.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t outP = XS1_PORT_8A;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

(continues on next page)

1

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html

AN03003: XCORE Port Serialisation and Strobing

(continued from previous page)
int main(void) {

port_start_buffered(outP, 32);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);
port_out(outP, 0);
port_set_clock(outP, clk);

clock_start(clk);

port_out(outP, 0xAA00FFFF);
port_out(outP, 0x12345678);
port_out(outP, 0x55AAA111);
port_sync(outP); // Used to wait before stopping the program

}

The declaration

port_start_buffered(outP, 32);

configures the port outP to drive 8 pins from a 32-bit shift register. The second param-
eter, 32, specifies the number of bits that are transferred in each output operation (the
transfer width). Fig. 1 shows the data driven by this program.

0xAA00FFFF
outP (8A)
buffer

C-program

inClock (1A)
clock signal

out()out() x = f(x); // Say, 0x12345678out()conf()

...

 x = f(x);out() x = f(x); // eg, 55AAA111 out()...blocked, buffer full... x = f(x); ...
......

...

outP (8A)
shift register

...

0xFF 0xFF 0x000x00
outP (8A)
data signal 0x78 0x560xAA ...

0x12345678 0x55AAA111

AA00FFFF __AA00FF ___AA00 ______AA 12345678 ..56

Fig. 1: Serialized output waveform diagram

By offloading the serialization to the port, the processor has only to output once every 4
clock periods. On each falling edge of the clock, the least significant 8 bits of the shift
register are driven on the pins; the shift register is then right-shifted by 8 bits.

Note: Ports used for serializationmust be initialisedwith the port_start_buffered.

3 Deserialising Input Data using a Port

As the complement to the functionally described above, an XCORE port can deserialize
data, reducing the number of instructions required to input data. The programme below
performs a 4-to-8 bit conversion on an input port, controlled by a 25 MHz clock.
#include <xcore/port.h>
#include <xcore/clock.h>
#include <stdio.h>
#include <xs1.h>

port_t inP = XS1_PORT_4C;
port_t outClock = XS1_PORT_1E;
xclock_t clk25 = XS1_CLKBLK_1;

int main(void) {
port_start_buffered(inP, 8);
port_enable(outClock);
clock_enable(clk25);

clock_set_divide(clk25, 2); // divide by 4, 25 MHz
port_set_clock(inP, clk25);

(continues on next page)

2

AN03003: XCORE Port Serialisation and Strobing

(continued from previous page)
port_set_clock(outClock, clk25);
port_set_out_clock(outClock);
clock_start(clk25);

int data[10];
for(int i = 0; i < 10; i++) {

data[i] = port_in(inP);
}
for(int i = 0; i < 10; i++) {

printf("<%02x>\n", data[i]);
}

}

The programme configures inP to be a 4-bit wide port (XS1_PORT_4C) with an 8-bit
transfer width (the 8 in port_start_buffered(inP, 8)), meaning that two 4-bit
values can be sampled by the port before they must be input by the processor.
As with serialized output, the deserializer reduces the number of instructions required to
obtain the data. Fig. 2 shows example input stimuli and the period during which the data
is available in the port’s buffer for input.

0x28
inP (4A)
shift register

C-program

inClock (1A)
clock signal

conf()

...

 x = f(x); in()...blocked, buffer empty...

...

...

0x8 0x2 0xA
in4 (8A)
data signal 0x4 0x90x7 ...

0x_8

 assignment, for-loop

0x7A0x_A

in()

0x28
inP (4A)
buffer 0x7A

0x_4

...
 assignment,blocked, buffer empty...

Fig. 2: Deserialized input waveform diagram

Data is sampled on the rising edges of the clock and, when shifting, the least significant
4-bits are read first. The sampled data is available in the port’s buffer until the next time
that the shift register is full. The first two values input are 0x28 and 0x7A.

4 Input Data Accompanied by a Data Valid Signal

A clocked port can interpret a ready-in strobe signal that determines the validity of
the accompanying data. This functionally can be enabled by including the #include
<xcore/port_protocol.h> directive in your code.
The programme below inputs data from a clocked port only when a ready-in signal is
high.
#include <xcore/port.h>
#include <xcore/port_protocol.h>
#include <xcore/clock.h>
#include <xs1.h>
#include <stdio.h>

port_t inP = XS1_PORT_4C;
port_t inReady = XS1_PORT_1B;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
port_start_buffered(inP, 8);
port_enable(inReady);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);
port_protocol_in_strobed_slave(inP, inReady, clk);
clock_start(clk);

int data0 = port_in(inP);
int data1 = port_in(inP);

(continues on next page)

3

AN03003: XCORE Port Serialisation and Strobing

(continued from previous page)
printf("%02x %02x\n", data0, data1);

}

The statement

port_protocol_in_strobed_slave(inP, inReady, clk);

configures the input port inP to be sampled only when the value sampled on the port
inReady equals 1. The ready-in port must be 1-bit wide. Fig. 3 shows example input
stimuli and the data input by this program.

0x28
inP (4A)
shift register

C-program

inClock (1B)
clock signal

conf()

...

 x = f(x); in()...blocked, buffer empty...

...

...

0x8 0x2 0xA
inP (4A)
data signal 0x7 ...

0x_8

assignment

0x7A0x_A

in()

0x28
inP (4A)
buffer 0x7A

...

inReady (1A)
strobe signal

assignment...blocked, buffer empty...

Fig. 3: Input data with data valid signal

Data is sampled on the rising edge of the clock whenever the ready-in signal is high. The
port samples two 4-bit values and combines them to produce a single 8-bit value for
input by the processor; the data input is 0x28. XCORE devices have a single-entry buffer,
which means that data is available for input until the ready-in signal is high for the next
two rising edges of the clock.

5 Data Output with a Data Valid Signal

A clocked port can generate a ready-out strobe signal whenever data is output. The pro-
gramme below causes an output port to drive a data valid signal whenever data is driven
on a 4-bit port.
#include <xcore/port.h>
#include <xcore/port_protocol.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t outP = XS1_PORT_4D;
port_t outR = XS1_PORT_1C;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
port_start_buffered(outP, 8);
port_enable(outR);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);
port_protocol_out_strobed_master(outP, outR, clk, 0);
clock_start(clk);

port_out(outP, 0x58);
f();
port_out(outP, 0x12);
port_out(outP, 0x34);

}

The statement

port_protocol_out_strobed_master(outP, outR, clk, 0);

4

AN03003: XCORE Port Serialisation and Strobing

configures the output port outP to drive the port outR high whenever data is output.
The ready-out port must be 1-bit wide. Fig. 4 shows the data and strobe signals driven
by this program.

0x58
outP (4A)
buffer

C-program

inClock (1B)
clock signal

out()out() f()out()conf()

...

out() out() ...
......

...

outP (4A)
shift register

...

0x8 0x5 0x50x0
outP (4A)
data signal 0x1 0x40x2 ...

0x12 0x34

0x58 0x_5 0x12 0x_1

outR (1A)
strobe signal

0x34

Fig. 4: Output data with data valid signal

The port outputs the first value as two 4-bit values over two clock periods, raising the
ready-out signal during this time. In this example, the processing function f() has taken
so long that the next valid data was a clock late, so the strobe is low for a clock period,
then high again to drive subsequent values out.

It is also possible to implement control flow algorithms that output data using a ready-
in strobe signal and that input data using a ready-out strobe signal; when both signals
are configured, the port implements a symmetric strobe protocol that uses a clock to
handshake the communication of the data.

Note: On XCORE devices, ports that output on a strobe must be started using
port_start_buffered().

5

AN03003: XCORE Port Serialisation and Strobing

6 Case Study: Ethernet MII

A single thread on an XCORE device can be used to implement a full duplex 100 Mbps
Ethernet Media Independent Interface (MII) protocol. This protocol implements the data
transfer signals between the link layer and physical device (PHY). The signals are shown
in Fig. 5.

RX_CLK

RX_DV

RX_D

RX_ERR

4
//

TX_CLK

TX_EN

TX_D

TX_ERR

4
//

X
C
o
re

p
o
rt
s

XCore
MII

Ethernet
PHY

Fig. 5: MII signal diagram

6.1 MII Transmit

Fig. 6 shows the transmission of a single frame of data to the PHY. The error signal
TX_ERR is rarely used and omitted for simplicity.

...TX_CLK

TX_EN

TX_D[3:0] CRCCRCCRCCRCDataDataData5 5 5 5 5 D

preamble 64-1500 bytes cyclic reduncancy check

Fig. 6: MII transmit waveform diagram

The signals are as follows:

· TX_CLK is a free running 25MHz clock generated by the PHY.

· TX_EN is a data valid signal driven high by the transmitter during frame transmission.

· TX_D carries a nibble of data per clock period from the transmitter to the PHY. The
transmitter starts by sending a preamble of nibbles of value 0x5, followed by two nib-
bles of values 0x5 and 0xD. The data, which must be in the range of 64 to 1500 bytes,
is then transmitted, least significant bit first, followed by four bytes containing a CRC.

Fig. 7 illustrates the port configuration required to serialize the output data and produce
a data valid signal.

The port TX_D performs a 32-to-4 bit serialization of data onto its pins. It is synchronised
to the 1-bit port TXCLK and uses the 1-bit port TX_EN as a ready-out strobe signal that
is driven high whenever data is driven. In this configuration, the processor has only to

6

AN03003: XCORE Port Serialisation and Strobing

TX_CLK

TX_EN

TX_D[3:0]

PORT 1J

PORT 1K

PORT 4B

Serializer Buffer port_out()

CLKBLK_1

PORTS CLOCK BLOCKS PROCESSOR

clock

strobe

data

XCORE

 //
32

//
4

Fig. 7: MII transmit port configuration

output data once every eight clock periods and does not need to explicitly output the data
valid signal. The programme below defines and configures the ports in this way.
#include <xcore/port.h>
#include <xcore/port_protocol.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t TX_D = XS1_PORT_4B;
port_t TX_EN = XS1_PORT_1K;
port_t TX_CLK = XS1_PORT_1J;
static xclock_t clk = XS1_CLKBLK_1;

void miiConfigTransmit() {
port_start_buffered(TX_D, 32);
port_enable(TX_CLK);
port_enable(TX_EN);
clock_enable(clk);

clock_set_source_port(clk, TX_CLK);
port_protocol_out_strobed_master(TX_D, TX_EN, clk, 0);
clock_start(clk);

}

The function below outputs a frame of data to the MII ports. For simplicity, the error
signals and CRC are ignored. We assume that the frame length is stored in the first four
bytes.
#include <xcore/select.h>

void miiTransmitFrame(char *cpkt) {
int numBytes, tailBytes, tailBits, data;

int *pkt = (int *)cpkt;

/* Input size of next packet */
numBytes = *pkt++;
tailBytes = numBytes % 4;
tailBits = tailBytes * 8;

/* Output row of 0x5s followed by 0xD */
port_out(TX_D, 0xD5555555);

/* Output 32-bit words for serialization */
for (int i=0; i<numBytes-tailBytes; i+=4) {

data = *pkt++;
port_out(TX_D, data);

}

/* Output remaining bits of data for serialization */
if (tailBits != 0) {

data = *pkt;
port_out_part_word(TX_D, data, tailBits);

}

(continues on next page)

7

AN03003: XCORE Port Serialisation and Strobing

(continued from previous page)
printstr("Done\n");

}

The programme first gets the size of the frame in bytes. It then outputs a 32-bit preamble
to TX_D, which is driven on the pins as nibbles over eight clock periods. On each iteration
of the for loop, the next 32 bits of data are then output to TX_D for serialising onto the
pins. This gives the processor enough time to get around the loop before the next block
of data must be driven.

The final statement

port_out_part_word(TX_D, data, tailBits);

performs a partial output of the remaining bits of data that represent valid frame data.

6.2 MII Receive

Fig. 8 shows the reception of a single frame from the PHY. The error signal RXER is omit-
ted for simplicity.

...RX_CLK

RX_DV

RX_D[3:0] CRCCRCCRCCRCDataDataData5 5 5 5 5 D

preamble 64-1500 bytes cyclic reduncancy check

Fig. 8: MII receive waveform diagram

The signals are as follows:

· RX_CLK is a free running clock generated by the PHY.

· RX_DV is a data valid signal driven high by the PHY during frame transmission.

· RX_D carries a nibble of data per clock period from the PHY to the receiver. The re-
ceiver waits for a preamble of nibbles of values 0x5, followed by two nibbles with
values 0x5 and 0xD. The actual data is then received, which is in the range of 64 to
1500 bytes, least significant nibble first, followed by four bytes containing a CRC.

8

AN03003: XCORE Port Serialisation and Strobing

Fig. 9 illustrates the port configuration required to deserialize the input data when a data
valid signal is present.

RX_CLK

RX_DV

RX_D[3:0]

PORT 1H

PORT 1I

PORT 4A

Deserialiser Buffer port_in()

CLKBLK_2

PORTS CLOCK BLOCKS PROCESSOR

clock

strobe

data

XCORE

 //
32

//
4

..._pinseq()//
1

Fig. 9: MII receive port configuration

The port RX_D performs a 4-to-32-bit deserialization of data from its pins. It is synchro-
nised to the 1-bit port RX_CLK and uses the 1-bit port RX_DV as a ready-in strobe signal
that causes data to be sampled only when the strobe is high. In this configuration, the
port can sample eight values before the datamust be input by the processor, and the pro-
cessor does not need to explicitly wait for the data valid signal. The programme below
defines and configures the ports in this way.
#include <xcore/port.h>
#include <xcore/port_protocol.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t RX_D = XS1_PORT_4A;
port_t RX_DV = XS1_PORT_1I;
port_t RX_CLK = XS1_PORT_1H;
static xclock_t clk = XS1_CLKBLK_2;

void miiConfigReceive() {
port_start_buffered(RX_D, 32);
port_enable(RX_DV);
port_enable(RX_CLK);
clock_enable(clk);

clock_set_source_port(clk, RX_CLK);
port_protocol_in_strobed_slave(RX_D, RX_DV, clk);
clock_start(clk);

}

The function below receives a single error-free frame and stores it in an array. For sim-
plicity, the error signal and CRC are ignored.
#include <xcore/select.h>

void miiReceiveFrame(char *pkt) {
int data, tail;
int *o = ((int*)pkt)+1;
int bytes = 0;

// Wait for start of frame
port_set_trigger_in_equal(RX_D, 0xD);
(void) port_in(RX_D);
port_set_trigger_in_equal(RX_DV, 0);

// Receive frame data/crc
SELECT_RES(

CASE_THEN(RX_DV, last_data),
CASE_THEN(RX_D, data_arrived))

{
data_arrived:

(continues on next page)

9

AN03003: XCORE Port Serialisation and Strobing

(continued from previous page)
// input next 32 bits of data
data = port_in(RX_D);
*o++ = data;
bytes += 4;
SELECT_CONTINUE_NO_RESET;

last_data:
(void) port_in(RX_DV);
// Input any bits remaining in port
tail = port_endin(RX_D);
bytes += tail>>3;
if (tail > 32) {

tail -= 32;
data = port_in(RX_D);
*o++ = data;

}
data = port_in(RX_D);
*o++ = data >> (32-tail);
*(int *)pkt = bytes;
return;

}
}

The processor waits for the last nibble of the preamble (0xD) to be sampled by the port
RX_D:
port_set_trigger_in_equal(RX_D, 0xD);
(void) port_in(RX_D);

We then set up a trigger for the data valid signal RX_DV to go low. We then enter a
structure that can select from two choices:

· Data may have arrived on RX_D: the data is input, stored, the byte counter is in-
creased and the SELECT_CONTINUE_NO_RESET goes around the select structure
again (waiting for more data)

· The last data may have arrived (because RX_DV triggered), in which case we must
first acknowledge that RX_DV was triggered, and then we need to deal with the final
nibbles of data.
An effect of using a port’s serialization and strobing capabilities together is that the
ready-in signal may go low before a full transfer width’s worth of data is received.
Hence, the last_data label may arrive when there is still data in the port.
The statement:

tail = port_endin(RX_D);

causes the port RX_D to respond with the remaining number of bits not yet input. It
also causes the port to provide this data on the subsequent inputs, even though the
data valid signal is low and the shift register is not yet full.
XCORE devices provide a single-entry buffer up to 32-bits wide and a 32-bit shift regis-
ter, requiring up to 64 bits of data being input over two input statements once the data
valid signal goes low. The last word may not be complete, and has to be manually
shifted right.

10

AN03003: XCORE Port Serialisation and Strobing

7 Summary

The semantics for I/O on a serialized port are as follows (where p refers to the port width
and w refers to the transfer width of a port):

· Anoutput of aw-bit value is driven overw/p consecutive clock periods, least significant
bits first. The ready-out signal is driven high on each of these periods.

· For a timed output, the port waits until its counter equals the specified time before
starting to serialize the data. The ready-out signal is not driven while waiting to serial-
ize.

· An input of a w-bit value is sampled over w/p clock periods, with earlier bits received
ending up in the least significant bits ofw. (If a ready-in signal is used, the clock periods
may not be consecutive.)

· For a timed input, the port provides the last p bits of data sampled when its counter
equals the specified time.

If a port is configured with a ready-in signal:

· Data is sampled only on rising edges of the port’s clock when the ready-in signal is
high.

If a port is configured with a ready-out signal:

· The ready-out signal is driven high along with the data and is held for a single period
of the clock.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

11

	Overview
	Serialising Output Data using a Port
	Deserialising Input Data using a Port
	Input Data Accompanied by a Data Valid Signal
	Data Output with a Data Valid Signal
	Case Study: Ethernet MII
	Summary

