
AN03002: XCORE Port Buffering

AN03002: XCORE Port Buffering

Publication Date: 2025/3/8
Document Number: XM-015260-AN v1.0.0

IN THIS DOCUMENT

1 Overview . 1
2 Using a Buffered Port . 1
3 Synchronising Clocked I/O on Multiple Ports . 4
4 Summary of Buffering Behavior . 5

1 Overview

The XMOS architecture provides buffers that can improve the performance of programs
that perform input or output on clocked ports. This document describes how to use
these buffers and is intended to be read in conjunction with application notes

· AN03000: XCORE Input and Output, and

· AN03001: XCORE Clocked Input and Output.

In addition, the reader should be familiar with the concept of ports as described in

· AN03007: XCORE Ports, and

· AN02039: Ports, Pins, and the XN file.

A port buffer can hold data output by the processor until the next falling edge of the port’s
clock, allowing the processor to execute other instructions during this time. It can also
store data sampled by a port until the processor is ready to input it. Using these buffers,
a single processing thread can perform I/O operations on multiple ports in parallel.

2 Using a Buffered Port

Fig. 1 shows a block diagram of an example comprising 8-bit data input on port 8A and
an 8-bit output on port 8B, with a clock on port 1A. Both input and output are buffered,
and share the same clock.

2.1 Programming a Buffered Port

The following programme uses a buffered port function to decouple the sampling and
driving of data on ports from a computation.
#include <xcore/port.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t inP = XS1_PORT_8A;
port_t outP = XS1_PORT_8B;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
port_start_buffered(inP, 8);
port_start_buffered(outP, 8);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);

(continues on next page)

1

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an3001.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html

AN03002: XCORE Port Buffering

port_in()

port_out()

configure_in_port

configure_out_port

configure_clock_src

PROCESSORCLOCK BLOCKSPORTS

Port 1A

Port 8A

Port 8B

Clock

Block

1

Data signal

Data signal

Clock signal

Buffer

Buffer

Fig. 1: Port configuration diagram

(continued from previous page)
port_set_clock(inP, clk);
port_out(outP, 0);
port_set_clock(outP, clk);

clock_start(clk);

for (int i = 0; i < 10; i++) {
int x;
x = port_in(inP);
port_out(outP, x+1);

}
}

The programme configures the ports inP, outP and inClock as illustrated in Fig. 1.

The declarations:
port_t inP = XS1_PORT_8A;
port_t outP = XS1_PORT_8B;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

declare four resources, three ports (inP, outP, and inClock) and a clock-block (clk).
The ports are set to refer to port 8A, 8B, and 1A, and the clock block is set to
clock-block_1. These variables are constants that refer to four hardware blocks.

The first four lines of the the main program:
port_start_buffered(inP, 8);
port_start_buffered(outP, 8);
port_enable(inClock);
clock_enable(clk);

enable the four resources. Each resource must be enabled exactly once before it can be
used; when the chip boots all resources are dormant. The inClock and clk resources
are just enabled, whereas the inP and outP resources are set to be buffered with
a transfer width of eight bits. In this case, the port has eights pins, which means that
exactly one set of eight pin values can be buffered.

The following statements connect the ports and clock-block together:
clock_set_source_port(clk, inClock);

configures the 1-bit input port inClock to provide edges for the clock-block clk.

2

AN03002: XCORE Port Buffering

port_set_clock(inP, clk);

configures the input port inP to be clocked by the clock clk.
port_out(outP, 0);
port_set_clock(outP, clk);

configures the output port outP to be clocked by the clock clk, with an initial value of 0
driven on its pins. The clock block is then started with the statement:
clock_start(clk);

The remainder of the program is a simple for-loop that reads a value from the input port,
increments it, and writes the result to the output port.

Fig. 2 shows example input stimuli and expected output for this program. It also shows
the relative waveform of the statements executed in the for loop by the processor.

0x2 0x3 0x5

...

0x1 0x2 0x4 0x6

0x0

in()out() f() in()out() f() in()out() f()in() out() f()...

outP (8B)
data signal

inP (8A)
data signal

C-program

inClock (1A)
clock signal

Fig. 2: Waveform diagram relative to processor execution

The first three values input are 0x1, 0x2 and 0x4, and in response the values output are
0x2, 0x3 and 0x5.

2.2 Buffered Port Hardware Logic

Fig. 3 illustrates the buffering operation in the hardware. It shows the processor exe-
cuting the for loop that outputs data to the port. The port buffers this data so that the
processor can continue executing subsequent instructions while the port drives the data
previously output for a complete period. On each falling edge of the clock, the port takes
the next byte of data from its buffer and drives it on its pins. As long as the instructions
in the loop execute in less time than the port’s clock period, a new value is driven on the
pins on every clock period.

 port_out()

for(...)

FIFO
Timing and
Comparator
Logic

Output
latch

PORTPROCESSOR PINS

0x2 0x3 0x5 ...

...

drive

value driven on pins
value output

to port

Fig. 3: Port hardware logic

3

AN03002: XCORE Port Buffering

The fact that the first input statement is executed before a rising edge means that the
input buffer is not used. The processor is always ready to input the next data before it
is sampled, which causes the processor to block, effectively slowing itself down to the
rate of the port. If the first input occurs after the first value is sampled, however, the input
buffer holds the data until the processor is ready to accept it and each output blocks until
the previously output value is driven.

Caution: Timed operations represent time in the future. Thewaveformand compara-
tor logic allows timed outputs to be buffered, but for timed and conditional inputs the
buffer is emptied before the input is performed.

3 Synchronising Clocked I/O on Multiple Ports

By configuring more than one buffered port to be clocked from the same source, a sin-
gle thread can cause data to be sampled and driven in parallel on these ports. The pro-
gramme below first synchronises itself to the start of a clock period, ensuring the maxi-
mum amount of time before the next falling edge, and then outputs a sequence of 8-bit
character values to two 4-bit ports that are driven in parallel.
#include <xcore/port.h>
#include <xcore/clock.h>
#include <xs1.h>

port_t p = XS1_PORT_4E;
port_t q = XS1_PORT_4F;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
int count;
port_start_buffered(p, 4);
port_start_buffered(q, 4);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);
port_out(p, 0);
port_out(q, 0);
port_set_clock(p, clk);
port_set_clock(q, clk);

clock_start(clk);

port_out(p, 0);
count = port_get_trigger_time(p) + 3;
port_set_trigger_time(p, count);
port_set_trigger_time(q, count);

for (char c='A'; c<='Z'; c++) {
port_out(p, (c & 0xF0) >> 4);
port_out(q, (c & 0x0F));

}
}

The statements:
port_out(p, 0);
count = port_get_trigger_time(p) + 3;
port_set_trigger_time(p, count);
port_set_trigger_time(q, count);

cause the processor to set both ports to start outputting on a “safe” edge in the future. As
the input clock is running asynchronous to our program, the first clock edge may arrive
at any time, but by picking an edge ahead (in this case three clocks), we now have time
to start the for-loop and ensure that both port_out calls in the for-loop are executed
before clock edge number three arrives. From there on, the calls to port_out will work
on the same clock edge.

Fig. 4 shows the data output by the processor and driven by the two ports.

4

AN03002: XCORE Port Buffering

0x4 0x4 0x4

...

0x0

f()...

0x7
p (4A)
data signal

C-program

inClock (1A)
clock signal

0x1 0x2 0x30x0 0x7
q (4B)
data signal

'A' 'B' 'C'0x00 0x7
p::q (4A::4B)
effective 8-bit signal

out()out() out()out()out()out() out()out()out()out()out()out() out()out()out()out() conf()conf()

Fig. 4: Processor synchronizing data on two output ports

4 Summary of Buffering Behavior

The semantics for I/O on clocked buffered ports are summarised as follows.

Output Statements

· An output inserts data into the port’s FIFO. If there is no room for the data (the FIFO is
full) the processor waits until there is room and then inserts data.

· At most one data value is removed from the FIFO and driven by the port per period of
its clock.

· A timed output inserts data into the port’s FIFO for driving when the port counter
equals the specified time. The processor waits if the FIFO is full.

· A timestamped output causes the processor to wait until the output is driven (required
to determine the timestamp value).

· If the FIFO is empty, then the data driven on one edge continues to be driven on sub-
sequent edges.

Input Statements

· At most one value is sampled by the port and inserted into its FIFO per period of its
clock. If the FIFO is full, its oldest value is dropped tomake room for themost recently
sampled value.

· An input removes data from a port’s FIFO. If the FIFO is empty, the processor waits for
data.

· Timed and conditional inputs cause any data in the FIFO to be discarded and then
behave as in the unbuffered case.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

5

	Overview
	Using a Buffered Port
	Synchronising Clocked I/O on Multiple Ports
	Summary of Buffering Behavior

