
AN03001: XCORE Clocked Input and Output

AN03001: XCORE Clocked Input and Output

Publication Date: 2025/3/11
Document Number: XM-015254-AN v1.0.0

IN THIS DOCUMENT

1 Generating a Clock Signal . 2
2 Using an External Clock . 4
3 Performing I/O on Specific Clock Edges . 6
4 Case Study: LCD Screen Driver . 7
5 Summary of Clocked Port Behavior . 9

Many data signal protocols require data to be sampled and driven on specific edges of
a clock. XCORE ports can be configured to use either an internally generated clock or
an externally sourced clock, and the processor can record and control on which edges
each input and output operation occurs. These operations can be directly expressed in
the input and output function calls that can use a timed parameter or yield a timestamp.

This document describes how to configure ports to function with clocks, and is part of
a group of application notes that describes ports. It is assumed that you have read the
basic use of ports:

· AN03000: XCORE Input and Output

Further details on ports can be found in

· AN03002: XCORE Port Buffering

· AN03003: XCORE Serialization and Strobing

· AN03007: XCORE Ports

· AN02039: Ports, Pins, and the XN file

· lib_xcore documentation

1

https://www.xmos.com/documentation/XM-015252-AN/html/doc/rst/an03000.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015262-AN/html/doc/rst/an03003.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

AN03001: XCORE Clocked Input and Output

1 Generating a Clock Signal

The waveform diagram shown in Fig. 1 shows an example of an data bus driven by a
port along with a clock signal. The rising edge of the clock signal would be used by an
external device to sample the data.

0x0 0x1 0x2

...

0x0 0x3
outP (8A)
data signal

outClock (1A)
clock signal

Port counter 11 12 13 14

Fig. 1: Waveform diagram

An output instruction from the XCORE processor causes the port to drive output data
on the next falling edge of its clock; the data is held by the port until another output is
performed.
To generate the waveform shown above, port 8A (outP) should be configured as an 8-bit
output while port 1A (outClock) is configured as a 1 bit clock signal as illustrated in Fig.
2.

port_out()

configure_out_port()

configure_port_

 clock_output()

PROCESSORCLOCK BLOCKSPORTS

outClock

Port 1A

outP

Port 8A

clk

CLK_BLK_1

Data signal

Clock signal

12.5 MHz

PINS

Fig. 2: Port configuration diagram

The programme below shows how to configure the port to implement the above con-
figuration, where the port is clocked at a rate of 12.5 MHz, outputting the corresponding
clock signal with its output data.
#include <xcore/port.h>
#include <xs1.h>

port_t outP = XS1_PORT_8A;
port_t outClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
port_enable(outP);
port_enable(outClock);
clock_enable(clk);

clock_set_divide(clk, 4); // divide by 8
port_out(outP, 0);
port_set_clock(outP, clk);
port_set_clock(outClock, clk);
port_set_out_clock(outClock);
clock_start(clk);

for(int i=0; i<5; i++) {
port_out(outP, i);

(continues on next page)

2

AN03001: XCORE Clocked Input and Output

(continued from previous page)
}

}

The declaration

xclock_t clk = XS1_CLKBLK_1;

declares a clock named clk, which refers to the clock block identifier XS1_CLKBLK_1.
Variables of the type xclock_t refer to physical entities, and care should be taken to
not use the same clock-block in two places.

The statement

clock_set_divide(clk, 4); // divide by 8

configures the clock clk to have a rate of 12.5 MHz. By default clock-blocks are clocked
from a 100 MHz reference clock, and setting the divider to 4 divides the clock by two
times that value for 100/(4x2)=12.5.

The statements:
port_out(outP, 0);
port_set_clock(outP, clk);

configure the output port outP to be clocked by the clock clk, with an initial value of 0
driven on its pins. Note that we set the port to 0 before change the clock to the new clock.
The new clock is not yet running, so we should be careful to not use that port between
setting it up and starting the clock.

The statements:
port_set_clock(outClock, clk);
port_set_out_clock(outClock);

cause the clock signal clk to be driven on the pin connected to the port outClock,
which a device connected to the XCORE can use to sample the data driven by the port
outP. The statement:
clock_start(clk);

causes the clock block to start producing edges.

A port also has an internal 16-bit counter, which is incremented on each falling edge of
its clock. This can be used to output data on specific clock edges as described later in
this document.

3

AN03001: XCORE Clocked Input and Output

2 Using an External Clock

When using an XCORE port as an input signal to the processor, it is often necessary to
synchronise the sampling of data to an external clock.
The waveform diagram shown in Fig. 3 shows an example of a 8-bit data bus sampled
by a port on the rising edge of an external clock.
Fig. 3 shows the port counter, clock signal, and example input stimuli.

0x7 0x5 0x3

...

0x1
inP (8A)
data signal

inClock (1A)
clock signal

Port counter 11 12 13 14

Fig. 3: Waveform diagram

An input instruction by the processor causes the port to sample data on the next rising
edge of its clock. The values input are 0x7, 0x5, 0x3, 0x1 and 0x0.
The program configures the ports inP and inClock as illustrated in Fig. 4.

port_in()

configure_in_port()

configure_clock_src()

PROCESSORCLOCK BLOCKSPORTS

inClock

Port 1A

inP

Port 8A

clk

CLK_BLK_1

Data signal

Clock signal

PINS

Fig. 4: Port configuration diagram

The following programme illustrates how to configures the port to synchronise the sam-
pling of data to an external clock as shown in Fig. 4.
#include <xcore/port.h>
#include <xs1.h>

port_t inP = XS1_PORT_8A;
port_t inClock = XS1_PORT_1A;
xclock_t clk = XS1_CLKBLK_1;

int main(void) {
int data[5];
port_enable(inP);
port_enable(inClock);
clock_enable(clk);

clock_set_source_port(clk, inClock);
port_set_clock(inP, clk);

clock_start(clk);
for (int i=0; i<5; i++) {

data[i] = port_in(inP);
}
for (int i=0; i<5; i++) {

printf("%d\n", data[i]);
}

(continues on next page)

4

AN03001: XCORE Clocked Input and Output

(continued from previous page)

}

The program configures the ports inP and inClock as illustrated in Fig. 4.

The statement:
clock_set_source_port(clk, inClock);

configure the 1-bit input port inClock to provide edges for the clock clk. An edge
occurs every time the value sampled by the port changes.

The statement:
port_set_clock(inP, clk);

configures the input port inP to be clocked by the clock clk.

5

AN03001: XCORE Clocked Input and Output

3 Performing I/O on Specific Clock Edges

It is often necessary to perform an I/O operation on a port at a specific time with respect
to its clock. This allows ports to directly generate some more complex waveforms.

As an example, consider the waveform diagram shown in Fig. 5.

...

toggle
data signal

Clock

Port counter 11 12 13 14 15 16 17 1810 19 21 22 2320

Fig. 5: Waveform diagram

In this waveform the signal on an output port is changed on the third and fifth clock cycle.

To do this we need to use the port counter capability built into the port. The port counter
is a 16-bit counter that is incremented on the falling edge of the clock. On intermediate
edges for which no value is provided, the port continues to drive its pins with the data
previously output.

The example function below drives a pin high on the third clock period and low on the
fifth.
#include <xcore/port.h>

void doToggle(port_t toggle) {
int count;
port_out(toggle, 0);
count = port_get_trigger_time(toggle); // timestamped output
for(int i = 0; i < 20; i++) {

count += 3;
port_set_trigger_time(toggle, count);
port_out(toggle, 1); // timed output
count += 2;
port_set_trigger_time(toggle, count);
port_out(toggle, 0); // timed output

}
}

The statement

count = port_get_trigger_time(toggle);

obtains the timestamp of the output. The preceding call outputted the value 0 to the port
toggle, and this function reads the value of the port-counter into the variable count the
value of the port counter when the output data is driven on the pins. The program then
increments count by a value of 3 and performs a timed output by calling the following
two functions:
port_set_trigger_time(toggle, count);
port_out(toggle, 1);

The first call instructs the port towait with its next output until its counter equals the value
count+3 (advancing three clock periods) and to then perform its output. The last three
statements delay the next output by two clock periods. Fig. 5 shows the port counter,
clock signal and data driven by the port.

6

AN03001: XCORE Clocked Input and Output

4 Case Study: LCD Screen Driver

LCD screens are found in many embedded systems. The principal method of driving
most screens is the same, although the specific details vary from screen to screen. Fig.
6 illustrates the operation of an LCD screen, including the waveform requirements for
transmitting a single frame of video.

...

DTMG

DCLK

DATA

240 pixels

column 0

240 pixels

column 1

240 pixels

column 319

THBP THFP THBP THFP THBP THFP TVFPTVBP

320 columns

2
4
0

ro
w
s

Fig. 6: LCD Screen Driver Example

The screen has a resolution of 320x240 pixels. It requires pixel data to be provided in
column order with each value driven on a specific edge of a clock. The signals are as
follows:
· DCLK is a clock signal generated by the driver, which must be configured within the

range of 4.85 MHz to 7.00MHz. The value chosen determines the screen refresh rate.
· DTMG is a data valid signal which must be driven high whenever data is transmitted.
· DATA carries 18-bit RGB pixel data to the screen.
The specification requires that pixel values for each column are driven on consecutive
cycles with a 55 cycle delay between each column and a 4235 cycle delay between each
frame.
LCD screens are usually driven by dedicated hardware components due to their clocking
requirements. Implementing an LCD screen driver in C is easy due to the clock synchroni-
sation supported by the XMOS architecture. The required port configuration is illustrated
in Fig. 7.
The ports DATA and DTMG are both clocked by an internally generated clock, which is
made visible on the port DCLK. The program below defines a function that configures
the ports in this way.
#include <xcore/port.h>
#include <xcore/clock.h>
#include <xcore/channel.h>
#include <xs1.h>

port_t DCLK = XS1_PORT_1A;
port_t DTMG = XS1_PORT_1B;
port_t DATA = XS1_PORT_32A;
xclock_t clk = XS1_CLKBLK_1;

void lcdInit(void) {
port_enable(DCLK);
port_enable(DTMG);
port_enable(DATA);
clock_enable(clk);

clock_set_divide(clk, 8); // divide by 16 = 100/16 = 6.25 MHz
port_set_clock(DATA, clk);
port_set_clock(DTMG, clk);
port_set_clock(DCLK, clk);
port_set_out_clock(DCLK);
clock_start(clk);

}

The clock rate specified is 6.25MHz. The time required to transmit a frame is 4235 + 320
* (20 + 240 + 35) = 98,635 clock ticks, giving a frame rate of 6,250,000/98,635 = 63 Hz.

7

AN03001: XCORE Clocked Input and Output

port_iut()

port_out()

configure_out_port

configure_out_port

configure_clock_...

PROCESSORCLOCK BLOCKSPORTS

Port 1A

Port 1B

Port 32A

Clock

Block

1

12.5 MHz

DTMG

DATA

DCLK

PINS

Fig. 7: Port configuration diagram

The function below outputs a sequence of pixel values to the LCD screen on the clock
edges required by the specification.
void lcdDrive(chanend_t c) {

unsigned x, time;
port_out(DTMG, 0);
time = port_get_trigger_time(DTMG);
while (1) {

time += 4235;
for (int cols=0; cols<320; cols++) {

time +=20;
x = chan_in_word(c);
port_set_trigger_time(DTMG, time);
port_out(DTMG, 1);
port_set_trigger_time(DATA, time);
port_out(DATA, x); // pixel 1
for (int rows=1; rows<240; rows++) {

x = chan_in_word(c);
port_out(DATA, x); // pixels 1..239

}
port_set_trigger_time(DTMG, time+240);
port_out(DTMG, 0);
time += 35;

}
}

}

A stream of data is input from a channel end. The body of the while loop transmits
a single frame and the body of the outer for transmits each column. The program in-
structs the port DTMG to start driving its pin high when it starts outputting a column of
data and to stop driving afterwards.

An alternate solution is to configure the port DATA to generate a ready-out strobe signal
on DTMG (see AN03003: XCORE Port Serialisation and Deserialisation) and to remove
the two outputs to DTMG by the processor in the source code.

8

https://www.xmos.com/?s=XM-015262-AN

AN03001: XCORE Clocked Input and Output

5 Summary of Clocked Port Behavior

The semantics for inputs and outputs on clocked (unbuffered) ports are summarised as
follows.

Output to a port

· An output to a port causes data to be driven on the next falling edge of the clock. The
output blocks until the subsequent rising edge.

· A timed output to a port causes data to be driven by the port when its counter equals
the specified time. The output blocks until the next rising edge after this time.

· The data driven on one edge continues to be driven on subsequent edges for which
no new output data is provided.

Input from a port

· An input from a port causes data to be sampled by the port on the next rising edge of
its clock. The input blocks until this time.

· A timed input from a port causes data to be sampled by the port when its counter
equals the specified time. The input blocks until this time.

· A conditional input from a port causes data to be sampled by the port on each rising
edge until the sampled data satisfies the condition. The input blocks until this time,
taking the most recent data sampled.

SELECT_RES constructs

Input ports can be used in SELECT_RES constructs, a mechanism that allows a thread
to deal with multiple ports (and other resources) simultaneously. SELECT_RES is doc-
umented in the lib_xcore documentation, but here we note how SELECT_RES waits for
any one of the ports to become ready and complete the corresponding case:

· For an input, the port is ready at most once per period of its clock.

· For a timed input, the port is ready only when its counter equals the specified time.

· For a conditional input, the port is ready only when the data sampled satisfies the
condition.

· For a timed conditional input, the port is ready only when its counter is equal or greater
than the specified time and the value sampled satisfies the condition.

For a timestamped operation that records the value t, the next possible time that the
thread can input or output is t + 1.

Caution: On XCORE devices, all ports can be buffered. The resulting semantics,
which extend those given above, are discussed in AN03002: XCORE Port Buffering.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

9

https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html

	Generating a Clock Signal
	Using an External Clock
	Performing I/O on Specific Clock Edges
	Case Study: LCD Screen Driver
	Summary of Clocked Port Behavior

