AN03000: XCORE Input and Output

XMOS

ANO03000: XCORE Input and Output

Publication Date: 2025/3/11
Document Number: XM-015252-AN v1.0.0

IN THIS DOCUMENT

1 Overview 1
2 Data Output 2
3 Datalnput 3
4 Waiting for a Conditiononan InputPin 4
5 Controlling I/0 Data Rates with Timers 5
6 Case Study: UART (Part1) 7
7 Responding to Multiple Inputs 8
8 Case Study: UART (Part2) 9
9 Furtherinformation 1l

1 Overview

Input and output (I/0) operations are fundamental to embedded systems, enabling them
to interact with the physical world. The XMOS XCore processor provides a simple and
efficient way to perform 1/0 operations through the use of a logical abstraction called a
port.

A port connects a processor to one or more physical pins and as such defines the inter-
face between a processor and its environment. The port logic can drive its pins high or
low, or it can sample the value on its pins, optionally waiting for a particular condition.

Ports are not memory mapped; instead they are accessed using dedicated instructions
that make it easy to express operations on ports. Fig. Tillustrates these operations.

XS1_PORT_xx <]

port_in()

XS1_PORT_xx

port_out()

Pins PROCESSOR
Fig. 1: Input and Output Operations

In the XCORE architecture, ports are typically referred to by a symbolic name and are
labelled as XS1_PORT_xy where xy is port identifier as described in ANO3007: XCORE
Ports.

Data rates can be controlled using hardware timers that delay the execution of the in-
put and output instructions for a defined period and the processor can also be made to

1 X
VAN

https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html

ANO03000: XCORE Input and Output

wait for an input from more than one port, enabling multiple 1/0 devices to be interfaced
concurrently.

The following sections describe how to perform basic /0 operations on ports followed
by more advanced operations such as conditional input and controlling I/0 rates with
timers. A case study is included which demonstrates how to implement a UART function
using XCORE ports.

2 Data Output

The most basic form of I/0 operation is to output a value to a port. A simple program
that toggles a pin high and low is shown below.

#include <xsT1.h>
#include <xcore/port.h>

port_t p = XS1_PORT_1A;

int main(void) {
port_enable(p);
port_out(p, 1);
port_out(p, 0);

The declaration
port_t p = XS1_PORT_1A;
declares an output port named p, which refers to the 1-bit port identifier 1A. The value

XS1_PORT_1A is defined in the header file <xs1.h>.

One can give the ports different names by either using a #define or by giving them a
name in a board-description file, also known as an XN file. Names from the latter are
defined in a generated header file <platform.h>. This allows you to use more intuitive
names for ports such as PORT _UART_TX and PORT_LED_A. Further details on using XN
files can be found in AN02039: Ports, Pins, and the XN file.

The statement
port_enable(p);

switches the port on. By default ports are dormant and cannot be used until they are
enabled.

The statement
port_out(p, 1);

outputs the value 11to the port p, causing the port to drive its corresponding pin high. The
port continues to drive its pin high until execution of the next statement

port_out(p, 9);

which outputs the value 0 to the port, causing the port to drive its pin low. Fig. 2 shows
the signals generated by this program.

https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html

ANO03000: XCORE Input and Output

port_out(p, 1);
pon_oqu,Ox;>

high
p (1A) ZIg — \

low

Fig. 2: Output waveform diagram

The pin is initially not driven; after the first output is executed it is driven high; and after
the second output is executed it is driven low.

Note: The functionality described above applies equally to ports of any width. In general,
when outputting to an n-bit port, the least significant n bits of the output value are driven
on the pins and the rest are ignored.

The timings of the output are not controlled in any way in this example; they happen
nanoseconds after the program executes the statement. Output timings can be made
precise, either to a wall clock or to an application clock, this is discussed in ANO3007:
XCORE Clocked Input and Output

It is good practice to not use the same port in two variables, as each port should only be
used by one thread. Passing a port to a function is allowed as normal.

3 Data Input

An XCORE port can also sample the values on the device pins, and the width of the port
determines the number of pins that are sampled in a single operation, and these samples
are converted to a value for further processing.

For example, the program below continuously samples the 4 pins of an input port, driving
an output port high whenever the sampled value exceeds 9.

#include <xs1.h>
#include <xcore/port.h>

port_t inP = XST_PORT_4A;
port_t outP = XST_PORT_TA;

int main(void) {
int x;
port_enable(inP);
port_enable(outP);
while (1) {
x = port_in(inP);
if (x > 9)
port_out(outP, 1);
else
port_out(outP, 9);
)

}

The declaration

port_t inP = XS1_PORT_4A;

declares an input port named inP, which refers to the 4-bit port identifier 4A.

https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an03001.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an03001.html

ANO03000: XCORE Input and Output

The statement
x = port_int(inP);

inputs the value sampled by the port inP into the variable x. Fig. 3 shows example input
stimuli and expected output for this program.

inP (4A)
input signal 0x8 X OxA X 0x2 X 0x5

W

outP (1A)
output signal

Fig. 3: Input waveform diagram

The program continuously inputs from the port inP: when 0x8 is sampled the output is
driven low, when OxA is sampled the output is driven high and when 0x2 is sampled the
output is again driven low. Each input value may be sampled many times, depending on
the relative speed of the program and the I/0.

4 Waiting for a Condition on an Input Pin

XCORE ports are however much more powerful that simple digital I/0 pins.

For example an input operation can be made to wait for one of two conditions on a pin:
equal to or not equal to some value. Fig. 4 shows an input signal triggering an action
when it changes.

counter (4A)
output signal 4(0x1 X 0x2 X 0x3

ANy

oneBit (1A)
input signal

Fig. 4: Conditional input waveform diagram

This is implemented by the program below which uses a conditional input to count the
number of transitions on its input pin.

Note: The program below has an #include <xcore/port.h> statement which is
required to use these more advanced input functions.

#include <xs1.h>
#include <xcore/port.h>

port_t oneBit = XS1_PORT_1A;
port_t counter = XST_PORT_4A;

int main(void) {

int x;

int i = 0;

port_enable(oneBit) ;

port_enable(counter);

x = port_in(oneBit);

while (1) {
port_set_trigger_in_not_equal(oneBit, x);
x = port_in(oneBit);
port_out(counter, ++i);

}

The statement

ANO03000: XCORE Input and Output

port_set_trigger_in_not_equal(oneBit, x);

instructs the port oneBit to not allow further inputs until the value on its pins is not
equal to x. The subsequent port_in(oneBit) will then block before sampling and
providing it to the processor to store in . In a 1-bit port there is only two values that are
each other's complement, but on wider ports (eg, 4-bit) one can trigger on any pattern.

As another example, the sequence required to wait for an Ethernet preamble on a 4-bit
portis:

port_set_trigger_in_equal(ethData, 0xD);
(void) port_in(ethData);

Note: The processor must complete an input operation from the port once a condition
is met, even if the input value is not required. This is expressed in C by casting the result
of port_into void.

Using a conditional input is more power efficient than polling the port in software, be-
cause it allows the processor to idle, consuming less power, while the port remains active
monitoring its pins.

5 Controlling I/0 Data Rates with Timers

A timer is a special type of port used for measuring and controlling the time between
events. A timer has a 32-bit counter that is continually incremented at a rate of 100MHz
and whose value can be input at any time. An input on a timer can also be delayed until
a time in the future.

Note: The timer functions are enabled with the #include <xcore/hwtimer.h>
statement in a programme.

The code below uses a timer to control the rate at which a 1-bit port is toggled.

#include <xs1.h>
#include <xcore/port.h>
#include <xcore/hwtimer.h>

#define DELAY 50000000
port_t p = XS1_PORT_1A;

int main(void) {
unsigned state = 1, time;
port_enable(p);
hwtimer_t t = hwtimer_alloc();
time = hwtimer_get_time(t);
while (1) {
port_out(p, state);
time += DELAY;
hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);
state = !state;

hwtimer_free(t);
The declaration
hwtimer_t t = hwtimer_alloc();

declares a timer named t, obtaining a timer resource from the XCORE's pool of available
timers.

ANO03000: XCORE Input and Output

The statement
time = hwtimer_get_time(t);

inputs the value of t's counter into the variable time. This variable is then incremented
by the value DELAY, which specifies a number of counter increments. The timer has a
period of 10 ns, giving a time in the future of 50,000,000 * 10 ns = 0.5 s.

Similar to ports, we can ask the timer to set a trigger time that stops the timer from
providing input values until the trigger time has passed:

hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);

waits until this time is reached, completing the input just afterwards. The input is required
and is where the program will wait.

Fig. 5 shows the data driven by this program.

t(counter) 4,194,000,000 4,244,000,000 4,294000000 499,032,704 999,032,704 1,499,032,704 1,999,032,704 2,499,032,704 2,999,032,704

AU s e

0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s 0.5s

Fig. 5: Timed output waveform diagram

The function hwtimer_set_trigger_time treats the timer's counter as having two
separate ranges, as illustrated in Fig. 6.

after
t
time time-231
0 t t 2821
time-231 time

Fig. 6: Range of hwtimer_set_trigger_time

All values in the range (time- 2 CL time-1) are considered to come before time,
with values in the range (time+1, .., time+ 2 % -1,0, ., time- 2 *') consid-
ered to come afterwards. If the delay between the two input values fits in 31 bits,
hwtimer_set_trigger_time is guaranteed to behave correctly, otherwise it may be-
have incorrectly due to overflow or underflow. This means that a timer can be used to
measure up to a total of 2°'/100,000,000 = 21 s.

A subtle error may be introduced by inputting the new time instead of ignoring it with a
castto void, asin:

hwtimer_set_trigger_time(t, time);
time = hwtimer_get_time(t);

Even thought the the processor completes when the time is reached, the inputted value
may be slightly higher, incrementing the value of time by a small additional amount.
This means that the timing slowly skids.

Note that using a timer is a great way to provide signals that are timed approximately,
typically without an application clock. This includes, for example, a UART. For signals

o Y,

ANO03000: XCORE Input and Output

that are accompanied by an application clock, and for signals that require precise timing,
one should use clocked 1/0. Clocked 1/0 enables ports to input and output a signal at
precisely defined times and this functionality is described in ANO3001: XCORE Clocked
Input and Output.

6 Case Study: UART (Part 1)

A Universal Asynchronous Receiver/Transmitter (UART) component translates data be-
tween parallel and serial forms for communication over two 1-bit wires at fixed data rates.
Each bit of data is driven for the time defined by the data rate, and the receiver must sam-
ple the data during this time.

Fig. 7 shows the transmission of a single byte of data at a rate of 115200 bits/s.

™0 Nstat /B0 X B1 X B2 X B3 X B4 X B5 X 86 X 87 Y stop

8.68us 8.68us 8.68us 8.68us 8.68us 8.68us 8.68us 8.68us 8.68us 8.68us

Fig. 7: UART timing diagram

The quiescent state of the wireis high. A byte is sent by first driving a start bit (0), followed
by the eight data bits and finally a stop bit (1). A rate of 115200 bits/s means that each
bit is driven for 1/115200 = 8.68 us.

UARTSs are often implemented with microcontrollers by using interrupts to schedule
memory-mapped input and output operations. Implementing a UART with an XMOS de-
vice is easy due to its dedicated I/O instructions. The program below defines a UART
transmitter that outputs data on a 1-bit.

void transmitter(port_t TXD) {
unsigned byte, time;
port_enable(TXD);
hwtimer_t t = hwtimer_alloc();

while (1) {
// get next byte to transmit
byte = get_byte(); // defined elsewhere
time = hwtimer_get_time(t);

// output start bit

port_out(TXD, 0);

time += BIT_TIME;
hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);

// output data bits

for (int i=0; i<8; i++) {
byte = port_out_shift_right(TXD, byte);
time += BIT_TIME;
hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);

i

// output stop bit

port_out(TXD, 1);

time += BIT_TIME;
hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);

hwtimer_free(t);
} // transmitter

The transmitter outputs a byte by first outputting a start bit, followed by a conditional
input on a timer that waits for the bit time to elapse; the data bits and stop bit are output
in the same way.

The output statement in the for loop
byte = port_out_shift_right(TXD, byte);

calls the function port_out_shift_right, whichright-shifts the value of by te by the
port width (1 bit) after outputting the least significant port-width bits. This operation is

/ Y,

https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an03001.html
https://www.xmos.com/documentation/XM-015254-AN/html/doc/rst/an03001.html

ANO03000: XCORE Input and Output

performed in the same instruction as the output, making it more efficient than performing
the shift as a separate operation afterwards.

The function below receives a stream of bytes over a 1-bit wire connected to a port RXD.

void receiver(port_t RXD) {
unsigned byte, time;
hwtimer_t t = hwtimer_alloc();
port_enable(RXD) ;

while (1) {
// wait for start bit
port_set_trigger_in_equal(RXD, 0);
(void) port_in(RXD);
time = hwtimer_get_time(t);
time += BIT_TIME/2;

byte = 0;
// input data bits
for (int i=0; i<8; i++) {
time += BIT_TIME;
hwtimer_set_trigger_time(t, time);
(void) hwtimer_get_time(t);
byte = port_in_shift_right(RXD, byte);
}

// input stop bit

time += BIT_TIME;
hwtimer_set_trigger_time(t, time);

(void) hwtimer_get_time(t);

(void) port_in(RXD);

put_byte(byte >> 24); // defined elsewhere

hwtimer_free(t);
} // receiver

The receiver samples the incoming signal, waiting for a start bit. After receiving this
bit, it waits for 1.5 times the bit time and then samples the wire at the midpoint of the
the first byte transmission, with subsequent bits being sampled at 8.68 us (BIT_TIME)
increments. The input statement in the for loop

byte = port_in_shift_right(RXD, byte);

calls the function port_in_shift_right, which first right-shifts the value of byte by
the port width (1 bit) and then inputs the next sample into its most significant port-width
bits. The expression in the final statement

putByte(byte >> 24);

right-shifts the bits in the integer byte by 24 bits so that the input value ends up in its
least significant bits.

7 Responding to Multiple Inputs

The examples above implicitly require a separate execution thread for each input port.
However, the XCORE architecture allows a single thread to be used to detect events
on multiple ports, using the SELECT_RES macro which is defined in is defined in the
<xcore/select.h> header file.

A SELECT_RES construct allows the processor to wait for events on an arbitrary group
of resources, which can include both ports and timers. The code generated waits for an
event on any of the resources, and then executes the code associated with that event,
which is defined by a CASE_ macro. Full details on SELECT_RES can be found in the
lib_xcore documentation.

The program below illustrates the use of this construct. It processes inputs from two
streams of data from two separate ports using only a single thread. The availability of
data on one of these ports is signalled by the toggling of a pin, with data on another other
port being received at a fixed rate.

https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

ANO03000: XCORE Input and Output

#include <xs1.h>

#include <print.h>
#include <xcore/select.h>
#include <xcore/hwtimer.h>
#include <xcore/port.h>

#define DELAY_Q 2000

port_t toggleP = XS1_PORT_1A;
port_t dataP = XST1_PORT_4A;
port_t dataQ = XST1_PORT_4B;

int main(void) {
hwtimer_t t = hwtimer_alloc();
unsigned time, x = 0;
int data;
port_enable(toggleP) ;
port_enable(dataP);
port_enable(dataQ) ;

time = hwtimer_get_time(t);
time += DELAY_Q;
port_set_trigger_in_not_equal(toggleP, x);
hwtimer_set_trigger_time(t, time);
SELECT_RES(CASE_THEN(toggleP, p_toggled),
CASE_THEN(t, timer_expired)) {
p_toggled:
x = port_in(toggleP);
port_set_trigger_in_not_equal(toggleP, x);
data = port_in(dataP); // Input data from port P
printchar(data + '8"); // Do something with it
continue;

timer_expired:
time = hwtimer_get_time(t);
data = port_in(dataQ); // Input data form port Q
printchar(data + 'a'); // Do something with it
time += DELAY_Q;
hwtimer_set_trigger_time(t, time);
continue;

hwtimer_free(t);

}

The SELECT _RES construct continually performs an input on either the port toggleP or
the timer t, depending on which of these resources becomes ready to input first. Before
the SELECT_RES both are set with a trigger so that both are blocked from completing.

Inthe SELECT_RES two CASE_THEN are defined, one for each resource. Inside the code
for the SELECT_RES, the two cases are spelled out. Each case start with an input, and
each case ends by setting the trigger up appropriately.

If both inputs become ready at the same time, only one is selected, the other remaining
ready on the next iteration of the loop. After performing an input, the body of code below
itis executed. Each body is in this case terminated by a continue to ensure it continues
looping for more events.

Note: Case statements can only work on input operations, not output operations as
the XCORE architecture requires an output operation to complete but allows an input
operation to wait until it sees a matching output before committing to its completion.

Each port and timer may appear in only one of the case statements. This is because
the XCORE architecture restricts each port and timer resource to waiting for just one
condition at a time.

In this example, the processor effectively multi-tasks the running of two independent
tasks, and it must be fast enough to process both streams of data in real-time. If this is
not possible, two separate threads may be used to process the data instead

8 Case Study: UART (Part 2)

Using the SELECT _RES macro, the UART transmitter described in the Case study above
can be optimized to implement both the transmit and receive sides of a UART in a single
thread as shown below.

ANO03000: XCORE Input and Output

#include <xcore/select.h>
#include <xcore/hwtimer.h>
#include <xcore/port.h>

extern void putByte(int b);
extern int getByte();
extern int hasData();

void UART(port_t RX, int rxPeriod, port_t TX, int txPeriod) {
int txByte, rxByte;
int txI, rxI;
int rxTime, txTime;
int isTX = 0;
int isRX = 0;
hwtimer_t tmrTX
hwtimer_t tmrRX
port_enable(RX) ;
port_enable(TX);
port_out(TX, 1);

hwtimer_alloc(
hwtimer_alloc(

D
)i

while (1) {
if (!isTX && hasData()) {
isTX = 1;
txI = 0;
txByte = getByte();
port_out(TX, 0); // transmit start bit
txTime = hwtimer_get_time(tmrTX) + txPeriod;

}

if (isRX) {
hwtimer_set_trigger_time(tmrRX, rxTime);
port_clear_trigger_in(RX);

} else {
port_set_trigger_in_equal(RX, ©);

if (isTX)
hwtimer_set_trigger_time(tmrTX, txTime);

SELECT_RES(CASE_GUARD_THEN(RX, 'isRX, start_receiver)
CASE_GUARD_THEN(tmrRX, isRX, receive_bit),
CASE_GUARD_THEN(tmrTX, isTX, transmit_bit)) {

start_receiver:

(void) port_in(RX);

rxTime = hwtimer_get_time(tmrRX) + rxPeriod * 3 / 2;
isRX = 1;

rxI = @;

rxByte = 0;

break;

receive_bit:

(void) hwtimer_get_time(tmrRX);

if (rxI < 8) {
rxByte = port_in_shift_right(RX, rxByte);
rxI++;
rxTime += rxPeriod;

} else { // receive stop bit
(void) port_in(RX); // Can be deleted
putByte(rxByte >> 24);
isRX = 0;

break;

transmit_bit:
(void) hwtimer_get_time(tmrTX);
if (txI < 8)
txByte = port_out_shift_right(TX, txByte);
else if (txI == 8)
port_out(TX, 1); // send stop bit
else
isTX = 0;
TxI++;
txTime += txPeriod;
break;

}

hwtimer_free(tmrTX);
hwtimer_free(tmrRX);

The variables 1sTX, txI, isRX and rxI determine which parts of the UART are active
and how many bits of data have been transmitted and received.

The while loop first checks whether the transmitter is inactive with data available to
transmit, in which case it outputs a start bit and sets the timeout for outputting the first
data bit.

Before the SELECT_RES statement we set up the potential conditions under which we
want to continue. The receiver may continue if either a start-bit is received (and we aren't
receiving already), or if it is time to sample the next data bit (and we are receiving):

10 y,

ANO03000: XCORE Input and Output

if (isRX)

hwtimer_set_trigger_time(tmrRX, rxTime);
else

port_set_trigger_in_equal(RX, 0);

The transmitter may continue if we are transmitting and it is time to transmit the next bit:

if (isTX)
hwtimer_set_trigger_time(tmrTX, txTime);

In the SELECT _RES set-up we define the three cases, each with a guard:

CASE_GUARD_THEN(start_receiver, !isRX, RX)
CASE_GUARD_THEN(receive_bit, isRX, tmrRX)
CASE_GUARD_THEN(transmit_bit, isTX, tmrTX)

The first case is the case where we start the receiver; this case shall only be executed
when we are not already receiving and if the RX port is ready (based on its trigger). The
second case is for when we are receiving and the receiver-timer indicates that the next bit
is ready. The final case is the case for which we are transmitting and the transmit-timer
indicates that the next bit is ready.

Inside the SELECT_RES statement we find the three sections of code.

The body of the first case picks up the start-bit, and then calculates when the first data
bit should be sampled.

The body of the second case inputs the next bit of data and, once all bits are input, it
stores the data and sets 1sRX back to zero. It also adjusts the time for the next bit

The body of the third case outputs the next bit of data and, once all bits are output, it
sets isTX to zero. It also adjusts the time for the next bit.

9 Further information

This document is one of a group of application notes that describes XCORE ports.
The other documents in this group are:

ANO03007: XCORE Ports

AN03002: XCORE Port Buffering

ANO03003: XCORE Serialization and Strobing

ANO02039: Ports, Pins, and the XN file

For detailed information on the programming XCORE ports, the lib_xcore documentation
is recommend as a reference.

»MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any

claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this

document are the trademarks or registered trademarks of their respective owners.

1 y,

https://www.xmos.com/documentation/XM-015272-AN/html/doc/rst/an03007.html
https://www.xmos.com/documentation/XM-015260-AN/html/doc/rst/an03002.html
https://www.xmos.com/documentation/XM-015262-AN/html/doc/rst/an03003.html
https://www.xmos.com/documentation/XM-015276-AN/html/doc/rst/an02039.html
https://www.xmos.com/documentation/XM-014363-PC/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

	Overview
	Data Output
	Data Input
	Waiting for a Condition on an Input Pin
	Controlling I/O Data Rates with Timers
	Case Study: UART (Part 1)
	Responding to Multiple Inputs
	Case Study: UART (Part 2)
	Further information

