AN02034: Making a sample rate converter for xcore
(A
L5, XMos

AN02034: Making a sample rate converter for xcore
|

Publication Date: 2025/10/17
Document Number: XM-015244-AN v1.1.0

IN THIS DOCUMENT

1 Introduction to sample rate conversion 1
2 Finite Impulse Response (FIR) filters 4
3 Filterdesign 5
4 Implementing a down-sampling filter 10
5 Implementing an up-sampling filter 1
6 Headroom Considerations 14
7 Example application 14
8 Summary ... 15
9 Furtherreading 16

XMOS provides a library, lib_src which provides audio sample rate conversion (SRC) func-
tions for use on XCORE devices. This library supports most of the standard audio input
and output sample rates and has both Asynchronous (ASRC) and Synchronous (SSRC)
functions.

This application note provides a basic introduction to sample rate conversion and con-
tains example up- and down-samplers that enable the reader to create their sample rate
converters if the desired conversion is not provided by 1ib_src.

-
© Note

This document covers the design process for the Synchronous Sample Rate Con-
version only. Asynchronous Sample Rate Conversion requires a more complex algo-
rithm, users are advised to look at the ASRC component in 1ib_src. If this com-
ponent does not support the required rates, it is possible to use the synchronous
conversion functions described below to match your specific signals to those sup-
ported by the ASRC.

& J

1 Introduction to sample rate conversion

Digital processors typically store analogue signals as a sequence of Pulse Code Mod-
ulated, or PCM, samples. The PCM samples are sampled along a defined and precise
sample rate (for example, 48 kHz), and these points approximate the analogue signal as
shown in Fig. 1.

Sample rate conversion means that given a stream of samples sampled at one sample-
rate, they can be converted to a stream with a different sample-rate; so that it still sounds
(more or less) the same. The problem can be broken down into three steps:

» Down-sampling a signal by a precise integer value, for example 96 kHz to 48 kHz or

96 kHz to 32 kHz.

» Up-sampling a signal by a precise integer value, for example 48 kHz to 96 kHz or 32
kHz to 96 kHz.

1 7 N

Wy

https://www.xmos.com/libraries/lib_src

AN02034: Making a sample rate converter for xcore

2

Fig. 1: An analogue signal (green line) sampled at regular intervals (purple plusses).

Re-sampling a signal by a fractional value, for example, 32 kHz to 48 kHz or 48 kHz to
441 kHz;

This document restricts itself to sample rates that are synchronous to each other. Syn-
chronous sample rate conversion assumes that the source and target frequencies are
derived from the same source clock.

Asynchronous sample rate conversion deals with sample rates based on two indepen-
dent clock sources with a variable skew between them.

1.1 Basics of down-sampling by a precise integer value

The principle of down-sampling is simple: remove some of the samples. For example, if
it is desired to down-sample by 2x, every other sample should be deleted. In general, to
down-sample by a factor of N, N-T samples out of every N should be deleted.

The problem is that this downsampling process creates aliases of high-frequency com-
ponents in the input signal in the down-sampled signal. For example, take the signal
shown in Fig. 2. Assuming downsampling from 96 kHz to 48 kHz, and that every other
sample is deleted.

The original signal comprised two sine waves; a 4 kHz sine wave and a 47 kHz sine wave.
The down-sampling process has not affected the 4 kHz sine wave; however, the 47 kHz
sine wave has been converted into a 1 kHz sine wave. Removing N-7 out of every N
samples folds up higher frequencies into the lower frequencies.

This folding is shown graphically in Fig. 3. This figure shows a spectrogram of signal
strength at various frequencies, and show how these are folded up. In this example
the signal is down-sampled by 4x, and each quarter of the spectrum is folded onto the
previous quarters much like a paper map would fold up. None of the higher frequencies
disappear as such, and they are folded onto lower frequencies. Any higher frequencies
may obliterate the signal in the lower frequencies the user is interested in.

When downsampling by an even factor any very high-frequency signals close to the
Nyquist frequency (the highest frequency that can be represented at the input sample
rate), get folded to a value close to 0 kHz. When downsampling by an odd factor, the
highest frequencies end up on the new Nyquist frequency.

To avoid audible artefacts, one must therefore filter out any high-frequency signals before
the downsampling. Thatis, if down-sampling from 96 to 24 kHz, first filter out any signals
between 12 kHz and 48 kHz in the input 96 kHz signal, and then every other sample can
be safely removed. As will be seen later, there are trade-offs to be made in this filtering
process.

To down-sample by 8x there are four choices:
Three times down-sample by 2x (2x2x2 = 8)

7
2y

AN02034: Making a sample rate converter for xcore

B

Fig. 2: A signal sampled at 96 kHz (top image) and 48 kHz (bottom image) by removing
every other sample.

Fig. 3: Frequency folding when downsampling 4x, from 96 to 24 kHz sample rates.

» First down-sample by 2x and then 4x (2x4 = 8)
» First down-sample by 4x and then 2x (4x2 = 8)
» or down-sample by 8x in one step

There is no easy answer to which one is best; typically, going in smaller steps is compu-
tationally cheaper. This will be returned to later in the filter design section.

1.2 Basics of up-sampling by a precise integer value

Up-sampling is as easy as down-sampling. To up-sample by a factor N, N-7 zero values
should be introduced after each input sample, and multiply each input sample by N. The
former creates the new sample rate and ensures no attenuation of the input volume.

If the simplest case is examined, up-sampling by a factor of 2, a zero is introduced in
every other sample, it can be seen that a significant amount of high-frequency noise is

3 7
Wy

AN02034: Making a sample rate converter for xcore

added into the input signal. Similar to the down-sampling case, aliases of the input signal
have been created into the output signal, but the spectrum has now been unfolded.

That is, in the case of 48 kHz to 96 kHz, all frequencies between 0 and 24 kHz are aliased
onto frequencies between 24 kHz and 48 kHz. In the case of going from 32 kHz to 96
kHz, the input signals between 0 and 16 kHz are unfolded onto 32 kHz to 16 kHz and 32
kHz to 48 kHz.

To up-sample faithfully, a low-pass filter should be run over the output of the up-sampler,
and remove any frequencies above the original Nyquist frequency. The same trade-offs
apply to these filters. Note that on down-sampling the input signal is filtered, whereas on
up-sampling the output signal is filtered.

1.3 Resampling by a fractional value

In many cases input and output sample rates are not integer multiples of each other. For
example, it may be desired convert from 32 kHz to 48 kHz or from 48 kHz to 44.1 kHz;
the former is a ratio of 1.5, and the latter is a ratio of 0.91875; an integer ratio of 147/160.

In order to re-sample by a fractional value, firstly up-sample by a whole integer value,
and then down-sample by a whole integer value. Up-sampling should be to the Least-
Common-Multiple (LCM) of the two frequencies (the smallest integer that is a multiple
of the input and output sample rates). In between two low-pass filters need to be run, one
after the up-sampler, and one before the down-sampler. These filters may be combined
into a single filter with a cut-off at the lowest of the two Nyquist frequencies.

For example, the first example case (32 -> 48 kHz) can be achieved by up-sampling from
32 kHz to 96 kHz and then down-sampling to 48 kHz. This requires an upsampling by
a factor of 3 (insert two zeroes between every sample), then filter to remove anything
below 16 kHz, and then downsampling by a factor of 2 (remove every other sample). The
net effect is that one sample is added every two samples.

The second example case (48 -> 44.1 kHz) will require an up-sample by a factor 147 to a
sample rate of 7,056,000 Hz; then to filter this signal to remove anything below 22,050
Hz, and then down-sample by a factor of 160 down to 44.1 kHz. This may appear like a
vast amount of work, but the filter has a larger number of zeroes as inputs and can be
optimised to a manageable size. This will be discussed later in the document.

2 Finite Impulse Response (FIR) filters

A common and straightforward method to construct a filter is to create an FIR filter. An
FIR filter has N “taps”; a tap is simply a number that is multiplied by. When applying a
filter, one multiplies tap k with sample k, and sum all the results together. That is, one
computes the inner product of the filter f with the last N samples:

o[k] = i[k-N+1] = f[0] + i[k-N+2] % f[1] + i[k-N+3] = f[2] + ... + i[k] = f[N-1]

In other words, one needs the most recent N input samples and to calculate an inner
product with the filter of N elements to compute one output sample. Another way to
look at it is shown in Fig. 4 where the input comes from the left, and is delayed by one
sample by each blocks marked z". The current sample is multiplied by f[61], the next
most recent sample is multiplied with [5] etc. The results are added together and form
the output value.

The values of f govern what filter is created. For example, a (very bad) averaging filter
can be created by setting flk] to be 1/N. The next section will deal with filter design.

For now, it is assumed that all values are real numbers, and that the coefficients of f
add up to 1.0. That way, the average signal strength will not change. For an efficient
implementation, one may use integer arithmetic, and one may choose to implement a
gain by multiplying all values of f by some constant.

7
2y

AN02034: Making a sample rate converter for xcore

ikl 7 ifk-1] 7 ik-2)

ikl z1

6] f5] fl4]

Fig. 4: Filtering with a 7 tap filter.

[t must be ensured that the coefficients are applied in the correct order. A convention
may be that the newest sample is in i[k] and the oldest sample is in i[k-N+1], and that the
coefficients of f are stored with f{0] applied to the oldest sample and f[N-1] to the newest
sample. Ordering is not an issue if f is designed to be symmetric, but, as will be seen
later, polyphase filters are never symmetric.

3 Filter design

All three re-sampling methods require a low-pass filter to be designed to remove any
frequencies above the Nyquist frequency of the input or output signal. The filter may
be run before down-sampling, after up-sampling, or between up-sampling and down-
sampling.

3.1 Design of a low-pass filter and its application to down-sampling

Afilter is called a low-pass filter if it lets through all signals with frequencies below some
cutoff frequency, and it removes all signals above that frequency. An ideal low-pass filter
cannot be constructed as that would require infinite compute, so instead low pass filters
are approximated to have the following properties:

A gain of 0 dB below a first cut-off frequency; this is the pass-band.

A ripple of no more than, say, 0.1dB for any frequencies in this pass-band. That is, the
low-frequency signals may have a little bit of gain or attenuation, but at a level that is
not perceptible.

A strong attenuation of, say, -120 dB of signals with a frequency above a second cut-
off frequency, called the stop-band. Those signals are attenuated so strongly that any
aliases will not be perceptible in the output signal.

Some attenuation between the two cut-off frequencies; this is an area of no concern.

An example low-pass filter response is shown in Fig. 5. This filter was designed using an
on-line FIR design tool <http://t-filter.engineerjs.com>. This particular filter was designed
to convert from 384 kHz to 192 kHz and not attenuate any signals below 24 kHz. Note
that the attenuation of signals over 96 kHz is -150 dB or better, the ripple below 24 kHz
is tiny (0.07 dB), and signals between 24 kHz and 96 kHz is variable - a “don't care”. The
final thing to note is that this filter requires a very modest number of FIR filter taps: only
31. The tap values for this filter are as follows:

0.000012655763070268956
0.0001144368956127061
0.0005222575167540901
0.0015503056579715265
0.003206743194403911
0.004441310178041441
0.0027511574458392177
-0.004624415198892449
-0.0174382058234831
-0.028890699962555182
-0.025632812530463855
0.005899831447759155
0.06892545234870025
0.14890438350333784
0.2167916423815637
0.24348744648423895

(continues on next page)

http://t-filter.engineerjs.com

AN02034: Making a sample rate converter for xcore

ripple bounds
desired gain
N actual gain

-100

0 25000 50000 75000 100000 125000 150000 175000

(%) add passband (4 add stopband | lpredefined % sampling freq. | 384000 Hz
desired #taps 31
OHz | 24000 Hz 1 0.1d8 | 007dB (I actual #taps 31

96000 Hz | 192000 Hz 0 -150dB |-150.77 dB [T} BESIORIERTER

Fig. 5: Frequency response of a low-pass filter, 384 -> 192 kHz.

(continued from previous page)

0.2167916423815637
0.14890438350333784
0.06892545234870025
0.005899831447759155
-0.025632812530463855
-0.028890699902555182
-0.0174382058234831
-0.004624415198892449
0027511574458392177
004441310178041441
003206743194403911
0015503056579715265
0005222575167540901
0001144368956127061
000012655763070268956

COOOO®®

Whilst this filter is designed to go from 384 kHz to 192 kHz, it can also be used to go
from, say 768 kHz to 384 kHz (it will not attenuate signals down to 48 kHz in that case).
However, it cannot be used to go from 192 kHz to 96 kHz, as that would start attenuating
audible signals in the 12 kHz range.

A filter can be designed that goes from 192 kHz to 96 kHz that will not attenuate signals
below 24 kHz, and an example is shown in Fig. 6. Note that to achieve the same levels
of ripple and attenuation using more taps (more compute, memory, and a higher signal
latency) are required: 48 taps rather than 31.

To go from 96 kHz to 48 kHz another trade-off needs to be made; the lower cut-off fre-
quency has to be reduced from 24 kHz, as the pass-band and stop-band must have a gap
between them. A pass-band of 0..20 kHz has been selected, and a stop-band of 24..48
kHz as a compromise. Note that the stop-band must include the Nyquist frequency to
attenuate those signals, and the compromise involves allowing some of the frequencies
that are close to audible to be removed. This filter needs 169 taps and the response is
shown in Fig. 7.

A path has now been constructed to down-convert from 768 kHz to 48 kHz as follows:
» 768 kHz input sample rate, 31-tap filter, down-sample 2x, 384 kHz output

6 7
Wy

AN02034: Making a sample rate converter for xcore

s0
I ripple bounds.
| desired gain
I actual gain
o
-50
-100
-150
-200
250
o 10000 20000 30000 40000 50000 60000 70000 80000 80000
) add passband) add stopband | lpredefined % | sampling freq. 192000 Hz
desired #taps minimum
OHz | 24000 Hz 1 0148 | 00408 |[T aclual #taps| 49
| 48000Hz | 96000Hz | 0 | 15008 |-1546848] |

DESIGN FILTER

Fig. 6: Frequency response of a low-pass filter, 192 -> 96 kHz.

M ripple bounds
| desired gain
M actual gain

0 5000 10000 15000

e —)

OHz | 20000Hz | 1 0148
| 240001z | 48000HZ | 0 | 1508

00168 | {T]
-17\usus|ﬁ'|

20000 25000

30000

sampling freq.

96000 Hz

desired #taps

minimum

actual #aps

169

DESIGN FILTER

Fig. 7: Frequency response of a low-pass filter, 96 kHz -> 48 kHz.

40000

AN02034: Making a sample rate converter for xcore

» 384 kHz input sample rate, 31-tap filter, down-sample 2x, 192 kHz output
» 192 kHz input sample rate, 48-tap filter, down-sample 2x, 96 kHz output
» 96 kHz input sample rate, 169-tap filter, down-sample 2x, 48 kHz output

Note that the filters only have to compute the samples that are actually used, so the
filters run at the output sample rate. That means that computationally the following is
required:

» 31x 384,000 = 11,904,000 taps/second for the first filter, 40 us delay

» 31x192,000 = 5,952,000 taps/second for the second filter, 80 us delay
» 48 x 96,000 = 4,608,000 taps/second for the third filter, 161 us delay

» 169 x 48,000 = 8,112,000 taps/second for the final filter, 3.5 ms delay

» A total of 30,576,000 taps/second, a total delay of 3.9 ms.

25

Il

25

ripple bounds
desired gain
I actual gain

50

75

-100

0 50000 100000 150000 200000 250000 300000 350000

(%) add passband (4 add stopband | lpredefined % sampling freq. 768000 Hz
I G AREE I Cesvec aps i
OHz | 20000 Hz 1 0.1d8 | 008dB [T aclual #itaps 895

24000 Hz | 384000 Hz 0 1208 -119.29.dB [I] EAEED

Fig. 8: Frequency response of a low-pass filter, from 768 kHz -> 48 kHz.

Instead of this four-stage approach, other approaches can be attempted. For example,
a filter could instead be designed that is suitable to go from 768 kHz to 48 kHz in one
step, shown in Fig. 8. The filter design software struggles with this, and a compromise
on the attenuation of the stop-band is required - it is set to -120 dB. At this point, a filter
is constructed that requires 895 taps, hence:

» 768 kHz input sample rate, 895-tap filter, down-sample 16x, 48 kHz output

The filters run at the output sample rate. That means that the computational require-
ments are:

» 895 x 48,000 = 42,960,000 taps/second for the filter, 1.16 ms delay

Note that the computational cost has increased slightly; performance is poorer, but it
benefits from a smaller delay in the signal. Indeed, to get the same performance, many
more taps would be required in the filter.

8 7
Wy

AN02034: Making a sample rate converter for xcore

3.2 Using the same filters for up-sampling

The same filters that were designed for down-sampling can be used for upsampling.
The computational requirements are slightly different, so it is assumed that the filter
coefficients discovered before are used, but implement filters specific for upsampling.

As previously described, when up-sampling, first insert zeroes and then apply the filter.
This means that the filter will multiply with a signal that has a zero in every other input
value (assuming an up-sample by 2x). If a signal is upsampled with sample values i[0],
i(1],i[2], i[3], ... and, say, a 7-tap filter is applied - one gets the following outputs 00, 01, 02,
03:

ol6] = ile] x f[e] + o

X i[1] x f[2] + 0 x f[3] + i[2] x f[4] + @ x f[5] + i[3] x f[6]
o[7] = 8 x f[B] + i[1] x
X
X

]+ i

1+ 0 x f[2] + i[2] x f[3] + @ x f[4] + i[3] x f[5] + @ x f[6]

1 + i[2] x f[2] + @ x f[3] + i[3] x f[4] + @ x f[5] + i[4] x f[6]
] +8 x f[2] + i[3] x f[3] + @ x f[4] + i[4] x f[5] + @ x f[6]

o[8] = i[1] x f[@] + @
o[9] = 8 x f[8] + i[2]

©

Note that for the even output values a four-tap filter is applied f[0], f[2], f[4],
f[6] , whereas for the odd output values a three-tap filter is applied f[1], f[3],
f[5]. Thisis called poly-phase filtering, and in this case there are two phases with even
and odd filter values. A diagram of this is shown in Fig. 9. If, instead, it was up-sampled
by 3x, this would result in three phases a first phase f[@], f[3], f[6], a second
phase f[2], f[5],andathirdphase f[1], f[4].

5]
! o[2"k+1]
i3 5o

ITk]
z Oats

o[2°K]

f6] f0]

Fig. 9: Polyphase upsampling by a factor of 2 with a 7-tap filter.

It is interesting to note that the total number of taps required is the input sample rate
times the filter length, and that these are spread out over the output samples. This can
now be summarised and an up-sampler from 48 to 768 kHz can be created as follows:

48 kHz input sample rate, up-sample 2x, 169-tap filter, 96 kHz output
96 kHz input sample rate, up-sample 2x, 48-tap filter, 192 kHz output
192 kHz input sample rate, up-sample 2x, 31-tap filter, 384 kHz output
384 kHz input sample rate, up-sample 2x, 31-tap filter, 768 kHz output

Note that the filters only have to compute the samples actually used, so the filters run at
the output sample rate. That means that computationally the following is required:

169 x 48,000 = 8,112,000 taps/second for the final filter, 3.5 ms delay
48 x 96,000 = 4,608,000 taps/second for the third filter, 161 us delay
31x192,000 = 5,952,000 taps/second for the second filter, 80 us delay
31 x 384,000 = 11,904,000 taps/second for the first filter, 40 us delay

A total of 30,576,000 taps/second, a total delay of 3.9 ms.

77, S
2y

AN02034: Making a sample rate converter for xcore

3.3 Fractional sample-rate conversion

This is largely left as an area for the reader to explore. However, to give an idea, 48,000
Hz to 44,100 Hz conversion is briefly examined. As previously stated, this comprises up-
sampling by 147, filtering, and downsampling by 160. Note that 147 and 160 are relatively
prime (if not, common factors would have to be divided out), so the filter will need to no-
tionally operate at 7,056,000 Hz and have a cut-off frequency of approximately 20,000
t0 22,050 Hz.

These sorts of filters may contain many thousands of taps, but given that they operate
on a signal that is almost exclusively zeroes (146 zeroes for every non-zero), and given
that only one in 160 values actually needs computing, these filters mostly use a lot of
memory to store but not a prohibitive amount of compute despite the very high notional
intermediate frequency. The thousands of taps will be cut into 147 different phases, each
phase may be 31 or 32 taps only (assuming a 4,600 tap filter).

Normally the phases are applied in decreasing order phase 146, phase 145, phase 144, ...,
phase 1, phase 0, phase 145 etc. But given that the task is downsampling and therefore
only interested in every 160th sample, phase 146 is initially applied, then phase (146-160)
mod 147 = 133, then phase (133-160) mod 147 = 120, etc. Tracking which samples these
phases are applied to is slightly fiddly.

One will typically use one of the pre-defined filters in 1ib_src for this purpose.
4 Implementing a down-sampling filter

There are many ways to practically implement a down-sampling filter for XCORE. This
section describes three options:

Using standard “C" code
Use the XMOS lib_xcore_math library
Use the XCORE assembly language

Most of these will use integer arithmetic. One could use floating point in C, but given
that the signal arrives as an integer sample (over any audio interface), and leaves as an
integer sample, one may as well do all the arithmetic in the integer domain.

The convention used when calculating a FIR is that the numbers are represented as a
sign bit, a magnitude bit, a binary point, and 30 bits precision below the binary point. As
long as all FIR coefficients are stored in this format, the maths will work out just fine.

This section discusses a single down-sampling filter with 31 taps, as that suffices to con-
vert from 768 to 192 kHz; from there on one can use 1ib_src to go to lower frequencies,
as that has been optimised to convert to Hi-Fi standards.

4.1 Implementing a down-sampler in C

The simplest and easiest to understand approach is to write the down-sampler in plain
C. The code for this is shown below:

int32_t ds_history[DS_COEFFICIENTS];

int ds_simple(int sample®, int samplel) {
ds_history[DS_COEFFICIENTS-2] = sample®;
ds_history[DS_COEFFICIENTS-1] = samplel;
int64_t accumulator = 0;
for(int i = 0; i < DS_COEFFICIENTS; i++) {
accumulator += ((ds_coefficients[i] * (int64_t) ds_history[i]));

)
memmove (ds_history, ds_history + 2, (DS_COEFFICIENTS -2) % sizeof(int32_t));
return (accumulator + (1<<29)) >> 30;

¥

An array is declared that stores the last 31 samples, the two samples are stored at the
end of this array; the code calculates the inner product (explained below), and finally the
array is copied down a bit using memmove.

10 7 N

https://www.xmos.com/libraries/lib_xcore_math

AN02034: Making a sample rate converter for xcore

In order to calculate the inner product the code creates a 64-bit accumulator, and adds a
full 32 x 32 into 64 bit product to the accumulator, whilst iterating over the data and the
coefficients. Once it has calculated a full precision sum a rounding bit is added to it, and
then it is shifted down by 30 bits because each of the coefficients had been shifted up
by 30 bits.

This solution is simple to explain, but it is not very fast; it takes approximately 834 in-
structions for each call to this function. Assuming a fully loaded 600 MHz XCORE that
would be 11.12 us per sample, limiting this to a 90,000 Hz target sample rate.

4.2 Implementing a down-sampler using lib_xcore_math

Another reasonably simple method uses 1ib_xcore_math; a general purpose library
that uses the vector unit on XCORE.Al to speed up computations. The code for this is
shown below:

filter_fir_s32_t filter_fast;
int32_t fast_history[DS_COEFFICIENTS];

void ds_fast_init() {
filter_fir_s32_init(&filter_fast, fast_history, DS_COEFFICIENTS, ds_coefficients, 8);
¥

int ds_fast(int sample@, int samplel) {
filter_fir_s32_add_sample(&filter_fast, sample@);
return filter_fir_s32(&filter_fast, samplel);

}

Like before, the code declares an array that stores the last 31 samples, but it must also
declare a filter variable of type filter_fir_s32_t. The code initialises the filter with
the history array, coefficients, and number of taps, and after that it can compute the result
of the filter using a call to filter_fir_s32(). Before it does that it needs to add the
first sample using filter_fir_s32_add_sample().

This solution is nearly an order of magnitude faster than the simple C code, it takes 95
instructions for each call to this function. Assuming a fully loaded 600 MHz XCORE that
would be 1.25 us per sample, limiting this to an 800,000 Hz target sample rate. Fast
enough for a stereo 786 kHz source to a 384 kHz target.

4.3 Implementing a down-sampler using assembly and the vector-unit

Finally, one can resort to assembly code for full performance. This uses exactly the same
algorithm that 1ib_xcore_math uses, but is specialised to just work for filters of size
31; and it assumes that nothing overflows.

The code for this is shown in ds_vpu.S, and an explanation is beyond the scope of
this document. The ISA explains the operation of each of the instructions. It is in-
cluded to show the performance of this solution: it is just more than twice as fast as
lib_xcore_math, taking approximately 44 thread cycles per call. Assuming a fully
loaded 600 MHz XCORE that would be 0.58 us per sample, limiting this to an 1,700,000
Hz target sample rate. Fast enough for a four-channel 786 kHz source to a 384 kHz
target.

5 Implementing an up-sampling filter

All strategies for downsampling can also be applied to upsampling. The same conven-
tions are used for the FIR coefficients, this section implements an up-sampler with the
same coefficients.

The first thing that needs to happen is to construct the phases of the polyphase filter. As
the task is to upsample by a factor of 2 this results in two phases. The first phase uses
all the odd elements of the filter, and the second phases uses all the even elements of the
filter. Given that the code adds samples to the end of the buffer, and notionally it will add
N-1 zero samples after each input. So the first element that is desired to be computed

11 77
3

AN02034: Making a sample rate converter for xcore

shall use the last coefficient, and then in steps of N, the lower coefficients. The second
element desired to be computed shall use the last-but-one coefficient, and then in steps
of N lower coefficients, and so on. This leads to the following two arrays of coefficients:

#define CONVERT_FP(x) ((int)((2#x) * (1<<38)))

int32_t us_coefficients_phase®[(US_COEFFICIENTS+1)/2] = {
CONVERT_FP(0.0001144368956127061),
CONVERT_FP(0.0015503056579715265),
CONVERT_FP(0.004441310178041441),
CONVERT_FP(-0.004624415198892449),
CONVERT_FP(-0.028890699962555182),
CONVERT_FP(0.005899831447759155),
CONVERT_FP(0.14890438350333784),
CONVERT_FP(0.24348744648423895),
CONVERT_FP(0.14890438350333784),
CONVERT_FP(0.005899831447759155)
CONVERT_FP(-0.0828890699902555182),
CONVERT_FP(-0.004624415198892449),
CONVERT_FP(0.004441310178041441),
CONVERT_FP(0.0015503056579715265),
CONVERT_FP(0.0001144368956127661),
0

b3

int32_t us_coefficients_phasel[(US_COEFFICIENTS+1)/2] = {
CONVERT_FP(0.0800012655763078268956),
CONVERT_FP(0.0005222575167540901),
CONVERT_FP(0.003206743194403911),
CONVERT_FP(0.0027511574458392177),
CONVERT_FP(-0.0174382058234831),
CONVERT_FP(-0.0825632812530463855),
CONVERT_FP(0.06892545234876025),
CONVERT_FP(0.2167916423815637),
CONVERT_FP(0.2167916423815637),
CONVERT_FP(0.06892545234876025),
CONVERT_FP(-0.025632812530463855),
CONVERT_FP(-0.08174382058234831),
CONVERT_FP(0.0027511574458392177),
CONVERT_FP(0.003206743194403911),
CONVERT_FP(0.0005222575167540901),
CONVERT_FP(0.000012655763078268956),

I

Both phases are half the length, but as inserting half zeroes would apply a 0.5x gain to
the signal; this is compensated for by multiplying all coefficients by 2x.

To up-sample the system needs to apply the first phase on the historical data to calculate
the first output sample, and then apply the second phase on the same historical data to
calculate the second output sample. One can see that for N phases, N output samples
can be computed for each input sample.

5.1 Implementing an up-sampler in C

Similar with the down-sampler, the simplest approach is to write the up-sampler in plain
C. The code for this is shown below:

int32_t us_history[US_COEFFICIENTS/2];

static int us_inner_product(int32_t coefficients[]) {
int64_t accumulator = 9;
for(int i = @; i < US_COEFFICIENTS/2; i++) {
accumulator += ((coefficients[i] * (int64_t) us_history[i]));

return (accumulator + (1<<29)) >> 30;

}

void us_simple(int out[2], int in_sample) {

us_history[US_COEFFICIENTS/2-1] = in_sample;

out[8] = us_inner_product(us_coefficients_phase®);

out[1] = us_inner_product(us_coefficients_phasel);

memmove (us_history, us_history + 1, (US_COEFFICIENTS/2 - 1) % sizeof(int32_t));
¥

The code declares an array that stores the last 16 samples; since it is notionally storing
zeroes between each sample it only needs half the filter-length. The code stores the new
sample at the end of the array, and then calculates the inner products with each of the
two phases to produce two outputs (explained below), and finally the code needs to copy
the array down one sample using memmove.

12 77
Wy

AN02034: Making a sample rate converter for xcore

To calculate the inner product the code creates a 64-bit accumulator, and adds a full
32 x 32 into 64-bit product to the accumulator, whilst iterating over the data and the
coefficients. Once it has calculated a full precision sum it adds a rounding bit to it, and
then it shifts down by 30 bits because each of the coefficients had been shifted up by 30
bits.

This solution is simple to explain, but not very fast; it takes approximately 600 instruc-
tions for each call to this function. Assuming a fully loaded 600 MHz XCORE that would
be 8 us per sample, limiting this to a 125,000 Hz source sample rate.

5.2 Implementing an up-sampler using lib_xcore_math

Code using 1ib_xcore_math is shown below:

filter_fir_s32_t filter@_fast;
filter_fir_s32_t filter1_fast;

int32_t fast@_history[(US_COEFFICIENTS+1)/2];
int32_t fast1_history[(US_COEFFICIENTS+1)/2];

void us_fast_init() {
filter_fir_s32_init(&filter0_fast, fast@_history, (US_COEFFICIENTS+1)/2, us_coefficients_phase@, 0);
filter_fir_s32_init(&filter1_fast, fastl_history, (US_COEFFICIENTS+1)/2, us_coefficients_phasel, 0);
¥

void us_fast(int out[2], int in_sample) {
out[0] = filter_fir_s32(&filter@_fast, in_sample);
out[1] = filter_fir_s32(&filter1_fast, in_sample);

The code needs two history buffers for each of the two filters, and to initialise both
filters. The code needs to initialise each filter with the history array, coefficients, and
number of taps, and after that it can compute the result of the filter using a call to
filter_fir_s32(). Note that it can calculate the two phases in the opposite or-
der; this is because 1ib_xcore_math assumes that coefficient[@] is used for
the most recent sample, whereas our plain C code assumes that coefficient[N] is
used for the most recent sample.

Because the filters are so small, the overhead of using 1ib_xcore_math is significant,
and it is only 4x faster than the plain C code. It takes 148 instructions for each call to this
function. Assuming a fully loaded 600 MHz XCORE, that would require 2 us per sample,
limiting this to a 500,000 Hz source sample rate. Fast enough for a mono 384 kHz to
768 kHz up-sampler.

5.3 Implementing an up-sampler using assembly and the vector-unit

Finally, one can resort to assembly code for full performance. This uses exactly the same
algorithm that 1ib_xcore_math uses, but is specialised to up-sampling. In particular,
it uses only one history buffer that is used to simultaneously calculate both phases of
the filter. The code given here works only for filters of size 16 and assumes that nothing
overflows.

For this to work, it needs to interleave the two phases of the filters, in blocks of eight
coefficients. This is shown below:

int32_t us_coefficients_interleaved[US_COEFFICIENTS+1] = {
CONVERT_FP(0.0001144368956127061),
CONVERT_FP(0.0015503056579715265),
CONVERT_FP(0.004441310178041441),
CONVERT_FP(-0.004624415198892449)
CONVERT_FP(-0.028890699962555182),
CONVERT_FP(0.005899831447759155),
CONVERT_FP(0.14890438350333784),
CONVERT_FP(0.24348744648423895),
CONVERT_FP(0.000012655763076268956), // phase 1
CONVERT_FP(0.08005222575167540901), // phase 1
CONVERT_FP(0.003206743194403911), // phase 1
CONVERT_FP(0.0027511574458392177), // phase 1

CONVERT_FP(-0.0174382058234831), // phase 1
CONVERT_FP(-0.025632812530463855), // phase 1
CONVERT_FP(0.06892545234876025), // phase 1

(continues on next page)

13 7 N
Wy

AN02034: Making a sample rate converter for xcore

(continued from previous page)

CONVERT_FP(0.2167916423815637), // phase 1
CONVERT_FP(0.14890438350333784) ,
CONVERT_FP(0.005899831447759155)
CONVERT_FP(-0.028890699902555182) ,
CONVERT_FP(-0.004624415198892449) ,
CONVERT_FP(0.004441310178041441),
CONVERT_FP(8.0015503056579715265) ,
CONVERT_FP(8.0001144368956127061) ,

8,

CONVERT_FP(0.2167916423815637), // phase 1
CONVERT_FP(0.068925452348760825), // phase 1
CONVERT_FP(-0.025632812530463855), // phase 1
CONVERT_FP(-0.0174382058234831), // phase 1
CONVERT_FP(0.0027511574458392177), // phase 1
CONVERT_FP(0.0032067431944083911), // phase 1
CONVERT_FP(0.0005222575167540901), // phase 1
CONVERT_FP(0.000012655763070268956), // phase 1

H

The code for this is shown in us_vpu.S, and an explanation is beyond the scope of
this document. The XCORE Al Instruction Set Architecture (ISA) explains the operation
of each of the instructions. It is included to show the performance of this solution: it is
nearly 5x faster than 1ib_xcore_math, taking approximately 34 thread cycles per call.
Assuming a fully loaded 600 MHz XCORE, that would be 0.45 us per sample, limiting this
to a 2,200,000 Hz source sample rate. Fast enough for a five-channel 384 kHz source to
a 786 kHz target.

6 Headroom Considerations

This application note has considered samples to be numbers with no top value. Inareal
system there is a maximum value for samples; for example +/- 1.0 when representing
them in floating point, or may be [-2**31..2**31-1] when using 32-bit integers. Sample
values cannot be outside this range, and if a signal is outside this range it will be clipped.

When re-sampling signals close to full scale, it is possible to run out of headroom in the
resulting signal. Consider a sine wave at fs/4. This can be validly sampled as [+1, +1,
-1, -1]. It can be seen that the maximum amplitude of the continuous sine wave will
exceed 1, but due to the sampling locations headroom has not been exhausted.

When upsampling this signal by a factor of 2, one gets the sequence [+1, +1.414,
+1, @, -1, -1.414, -1, 8]. It can be seen that this exceeds the maximum
sampled amplitude by a factor of 1.414 (3.01 dB), and will result in distortion.

The example shown above is arguably contrived, but in many cases re-sampling and
filtering may slightly increase the magnitude of the signal (even though the energy has
not increased). Sufficient headroom should be left on the signal before re-sampling to
avoid clipping.

7 Example application

7.1 Building the example

This section assumes that the XMOS XTC Tools have been downloaded and installed.
The required version is specified in the accompanying README.

Installation instructions can be found here.

Special attention should be paid to the section on Installation of Required Third-Party
Tools.

The application is built using the xcommon-cmake build system, which is provided with
the XTC tools and is based on CMake.

The an82034 software ZIP package should be downloaded and extracted to a chosen
working directory.

To configure the build, the following commands should be run from an XTC command
prompt:

14 77
Wy

https://www.xmos.com/file/the-xmos-xs3-architecture
https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

AN02034: Making a sample rate converter for xcore

cd an@2034
cd app_an02034
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software package. If any dependencies are
missing, they will be retrieved automatically during this step.

The application binaries should then be built using xmake:

xmake -j -C build

Binary artifacts (.xe files) will be generated under the appropriate subdirectories of the
app_an@2034/bin directory — one for each supported build configuration.

For subsequent builds, the cmake step may be omitted. If CMakeLists.txt or other
build files are modified, cmake will be re-run automatically by xmake as needed.

7.2 Running the example

From an XTC command prompt, the following command should be run from the
an02034/app_an02034 directory:

xrun --xscope ./bin/app_an02034.xe

Alternatively, the application can be programmed into flash memory for standalone exe-
cution:

xflash ./bin/app_an02034.xe

8 Summary

This application note presents how to construct a sample rate converter on XCORE. The
most important step is the filter design; it governs how much of the higher frequencies
end up in the noise floor (for down-sampling), or how much of the lower frequencies end
up in the high-frequency bands (for up-sampling).

Once the filter is designed, it can simply be applied when down-sampling. For up-
sampling, a polyphase filter has to be constructed. In terms of computational perfor-
mance, the examples presented enable multi-channel 384 to 768 kHz or 768 kHz to 384
kHz re-samplers.

15

7
2y

AN02034: Making a sample rate converter for xcore

9 Further reading

» XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

» XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

» XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

7, 3
L3, XMos

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

16 7 N
Wy

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

	Introduction to sample rate conversion
	Finite Impulse Response (FIR) filters
	Filter design
	Implementing a down-sampling filter
	Implementing an up-sampling filter
	Headroom Considerations
	Example application
	Summary
	Further reading

