
an02031: Live Streaming Sound Card Example

an02031: Live Streaming Sound Card Example

Publication Date: 2025/7/9
Document Number: XM-015221-AN v2.0.0

IN THIS DOCUMENT

1 Introduction . 1
2 Setup . 3
3 Running the GUI . 5
4 Saving, Loading and Code Generation . 10
5 Running the GUI Manually . 10
6 Building the App and Host App from Source . 11
7 Updating the GUI or Modifying the DSP . 11
8 Translations . 14
9 Appendix: GUI APIs . 15

1 Introduction

This application note demonstrates how to use lib_audio_dsp to create a live streaming
sound card application. The device captures sound from both a USB source and a mi-
crophone, outputting through USB and analog outputs. The sound is processed through
a series of Digital Signal Processing (DSP) stages, which can be tuned on the host ma-
chine. The application includes an autogenerated Graphical User Interface (GUI) that
allows parameters to be adjusted in real-time. It also describes how to modify the DSP
pipeline and GUI for custom applications.

Note

Some software components in this tool flow are prototypes and will be updated in
Version 2 of the library. The underlying Digital Signal Processing (DSP) blocks are
however fully functional. Future updates will enhance the features and flexibility of
the design tool.

The sound card features the following DSP stages:

· reverb

· denoising

· ducking

· and EQ.

It could be used for applications such as:

· Live streaming to social media

· Podcasting

· Gaming

· General purpose headset

The application has the following inputs and outputs:

1

an02031: Live Streaming Sound Card Example

· Stereo analogue input microphone

· Stereo input over USB

· Stereo analogue output for headphones/speakers

· Stereo output over USB for livestreaming/recording.

The DSP pipeline is shown below:

Fig. 1: DSP Pipeline

The audio performance of the demo is:

· 48 kHz sampling rate

· 6 sample latency (0.125 ms), excluding ADC & DAC filter (56 samples/ 1.15 ms latency
including filters)

2

an02031: Live Streaming Sound Card Example

2 Setup

This section guides the user through installing all the necessary components for setting
up the application, from both a software and hardware point of view.

2.1 Prerequisites

The following are required before setting up the application:

· Python 3.12 (recommended) or above.

· XMOS XTC Tools v15.3 (recommended) or above.

· XMOS Multichannel Audio Evaluation Kit (XMOS XK-AUDIO-316-MC-AB).

2.2 Hardware Setup

Connect the XMOSMCAB to the host computer using theUSB DEVICE port. For flashing
the board, also connect the DEBUG port. The DEBUG port can be disconnected once the
device has been flashed.

Connect a microphone to the IN 1/2 jack, and headphones to the OUT 1/2 jack.

Note

The microphone input is a stereo TRS jack. This means a balanced mic should not
be used, as the stereo inputs are summed, and for a balanced signal this results in
total signal cancellation.

Note

A low-impedance microphone or one with a powered preamplifier is recommended
to ensure a strong signal for processing. Otherwise, the signal may be too weak for
proper handling. Alternatively, users can manually add a fixed gain stage near the
beginning of the pipeline.

See the Fig. 2 for an example hardware setup.

3

https://www.xmos.com/software-tools
https://www.xmos.com/xk-audio-316-mc-ab

an02031: Live Streaming Sound Card Example

Fig. 2: USB Multichannel Audio Evaluation Kit Setup

2.3 Software Setup

Acompiled binary is provided, and the device can be flashed fromaXMOSXTCcommand
prompt using:
xflash app_an02031\bin\app_an02031.xe

To build from source, refer to the section Saving, Loading and Code Generation.

2.4 Installing the libusb Driver on Windows

The first time the device is used on Windows, the libusb driver must be installed. This is
done using the third-party tool Zadig.
These steps are only required once and they must be executed while the firmware is
running on the device.
1. Open Zadig and select XMOSControl (Interface 3) from the list of devices. If the device

is not present, ensure Options -> List All Devices is checked.
2. Select libusb-win32 from the list of drivers in the right hand spin box as shown in Fig.

3.
3. Click the Install Driver button and wait for the installation to complete.

2.5 Adding udev Rules on Linux

For the host application to have access to the XMOS device on Linux, a udev rule must
be added. An example rules file is provided in the host directory of the application note,
and can be copied to the appropriate location on the host machine as follows
Copy the udev rules file to the appropriate location
sudo cp host/99-xmos-dsp.rules /etc/udev/rules.d/

Reload the udev rules and trigger them
sudo udevadm control --reload-rules
sudo udevadm trigger

4

an02031: Live Streaming Sound Card Example

Fig. 3: Selecting the libusb-win32 driver in Zadig for the Control Interface

3 Running the GUI

3.1 Initial Use

Windows

In Windows Explorer, double click on tuning.cmd. This will initialise the Python virtual
environment and install requirements. If prompted by Windows Defender, choose “More
info” > “Run anyway”. Once this is done it will open the GUI.

Note

Customers in China may wish to use tuning_cn.cmd instead. This will use
https://pypi.tuna.tsinghua.edu.cn/simple for retrieving Python pack-
ages instead of https://pypi.python.org/simple, whichmay give increased
download speeds.

Linux and MacOS

In a terminal, execute tuning.sh. This will initialise the Python virtual environment and
install requirements. Once this is done it will open the GUI.

OnMacOS, if a security warning appears, in Finder openhost/bin/dsp_host_macos.
This should open a terminal and print [Process completed]. Then retry running
tuning.sh in a terminal.

Note

Customers in China may wish to use tuning_cn.sh instead. This will use https:
//pypi.tuna.tsinghua.edu.cn/simple for retrieving Python packages in-
stead of https://pypi.python.org/simple, which may give increased down-
load speeds.

The GUI has 4 tabs described below.

5

an02031: Live Streaming Sound Card Example

3.2 End Customer Interface

These are the controls exposed to the final customer. This tab is customised to the ap-
plication to only expose the controls that are required by the end user. control logic could
alternatively be implemented via GPIO. When changing the DSP pipeline, the widgets on
this tab may disappear if the parameters they control are not present in the new pipeline.

Fig. 4: GUI Control Tab

The controls perform the following functions:

· Volume sliders: control the volume of the input/output with optional mute.

· Reverb slider: control wet/dry mix of the reverb.

· Reverb button: enable/disable the reverb.

· Denoise button: enable noise suppression on the microphone.

· Ducking button: reduce the volume of the music when there is signal on the micro-
phone.

· Monitor button: when on, send the same output to the USB and headphone outputs.
When off, do not send the microphone output to the headphones.

· Loopback button: when on, send the USB input back to the USB output. Otherwise
just send the microphone signal over USB.

6

an02031: Live Streaming Sound Card Example

3.3 Algorithm Tuning Parameters

This tab exposes the lower level tuning parameters to a DSP product engineer for tuning
before final production. This tab exposes all the available control parameters in the DSP
pipeline, and is autogenerated from the JSON file. When changing the DSP pipeline, this
tab will be automatically updated to reflect the new parameters.

Fig. 5: GUI Configuration Tab

7

an02031: Live Streaming Sound Card Example

3.4 Parametric EQ

This tab shows the EQ being applied to the microphone signal. The type and parame-
ters of each biquad can be set, and the frequency response of the cascade is calculated
from it. This tab is autogenerated from the JSON file, and will be updated when the DSP
pipeline is changed.

Fig. 6: GUI Equaliser Tab

8

an02031: Live Streaming Sound Card Example

3.5 Pipeline Graphic

This tab contains an image of the DSP pipeline.

Fig. 7: GUI Pipeline Tab

9

an02031: Live Streaming Sound Card Example

4 Saving, Loading and Code Generation

Once the parameters have been tuned to the desired values, they can be saved as a JSON
file by clicking the “Save” button. Other sets of parameters can be loaded from the JSON
file by using the “Load” button.

During loading, the checksum of the DSP pipeline defined in the JSON file is compared
against the checksum generated from the current DSP pipeline defined in pipeline.
py. If the checksums match, the current DSP pipeline is updated with the new parame-
ters.

If the checksumsdo notmatch, awarning is given to indicate that the pipelines differ. The
loaded JSON file may still be compatible with the GUI if the exposed tuning parameters
defined in tuning_gui.py have remained the same, and the DSP stages they interact
with still exist. If the loaded JSON file is not compatible with the current version of the
GUI an error is given, and a different version of the GUI needs to be used. Either way, the
user must still reflash the device with the regenerated DSP pipeline code.

Once the parameters are fully configured, the autogenerated C should be updated
by clicking the “Generate Code” button in the GUI. By default this selects the folder
app_an02031\src\generated_dsp. The application can then be rebuild by follow-
ing the steps in Building the App and Host App from Source.

Alternatively the code can be generated from the command line, see the steps inUpdating
the DSP Pipeline. This may be useful for regenerating the code as part of a CMake step.

5 Running the GUI Manually

Instead of using the provided scripts, the GUI can be run manually. To create the Python
virtual environment, navigate to the app note directory and run the following commands
in a terminal or command prompt.

Windows

python -m venv .tuning_venv
.tuning_venv\Scripts\activate

pip install -Ur requirements.txt

Linux and MacOS

python -m venv .tuning_venv
source .tuning_venv\bin\activate

pip install -Ur requirements.txt

On secondary runs, the virtual environment can be reactivated with the command:

Windows

.tuning_venv\Scripts\activate

Linux and MacOS

source .tuning_venv/bin/activate

To run the GUI, ensure the virtual environment is active and then execute:
python tuning_gui.py

10

an02031: Live Streaming Sound Card Example

6 Building the App and Host App from Source

The app is supplied with a full sandbox and compiled app and host apps. Modifications
to the DSP pipeline or parameters will require rebuilding, which can be done as described
below.

6.1 Application

In an XTC Tools 15.3 prompt, navigate to the app note directory, then create and acti-
vate a Python virtual environment as described in Running the GUI Manually. Then run
Xcommon Cmake to initialise the sandbox:
cd an02031
cmake -G "Unix Makefiles" -B build

To build the app, run:
cmake --build build

Finally, to run it:
xrun app_an02031\bin\app_an02031.xe

Or, to permanently flash it
xflash app_an02031\bin\app_an02031.xe

6.2 Host application

With the application built and with the Python virtual environment and XTC Tools envi-
ronment active, navigate to the host application directory and configure CMake:
cd host
cmake -B build

To build the host app, run:
cmake --build build

This will generate the host application in the bin directory, where it is then referenced by
the tuning GUI. On Windows, this will also ensure that libusb-1.0.dll is copied to the bin
directory as a requirement for the app.

7 Updating the GUI or Modifying the DSP

This application note provides a fixed DSP pipeline and a GUI designed to interact with it.
Users may wish to modify or extend the provided DSP pipeline and correspondingly up-
date theGUI. The following sections detail the procedures for accomplishing these tasks.
For decoupling the Python GUI from the DSP pipeline, a JSON file is used to describe the
complete pipeline and parameters.

7.1 Updating the DSP Pipeline

Should it be necessary, the first step involves updating the DSP pipeline. The pipeline
is defined in the file live_streaming_sound_card_pipeline.py and utilizes the
lib_audio_dspPython library to generate a pipeline. The library includes its owndocumen-
tation in the Using the Tool section, which can be consulted to implement any required
modifications.
Once the pipeline is updated, the JSON file can be regenerated by calling:
python live_streaming_sound_card_pipeline.py

After updating the pipeline, the C sources need to be regenerated. Either use the auto-
matically created .tuning_venv, or create a Python virtual environment as described

11

https://www.xmos.com/file/lib_audio_dsp
https://www.xmos.com/documentation/XM-015103-UG/html/doc/rst/01_tool_user_guide/using_the_tool.html

an02031: Live Streaming Sound Card Example

in Running the GUIManually. Then, execute the following command to generate the code
for the default JSON file:
python tuning_gui.py --code-gen

To use a different JSON file, the path to the file can be passed in:
python tuning_gui.py --code-gen path/to/tuning.json

This command will update the generated DSP sources saved in app_an02031/src/
generated_dsp. Subsequently, use CMake to compile the new application using the
steps described in Building the App and Host App from Source. The device will need to
be reflashed with the updated DSP pipeline code.

7.2 Updating the GUI

This section addresses the addition or removal of widgets in the GUI. The GUI is a
straightforward Python application utilizing PySide, a Python binding for the Qt frame-
work. The GUI is defined in “tuning_gui.py”. This defines the bespoke application code
for the GUI.

7.2.1 Main Window

The core GUI functionality is implemented in the DspWindow class in python/
tuning_utility/core.py. This combines the PySide GUI functionality with the DSP
pipeline statemanagement and hardware control. It is recommended to inherit from this
class when creating custom GUIs for DSP pipelines:
from tuning_utility.core import DspWindow

class An02031Window(DspWindow):

def __init__(self, params: DspJson, code_gen_dir: Path):
super().__init__(params, code_gen_dir, title="DSP Controller")

Create the tabs and widgets here

7.2.2 Layouts

A Layout is required to arrange the widgets in the GUI. Some common layouts are shown
below. Additional examples can be found in the PySide documentation
from PySide6.QtWidgets import QVBoxLayout, QHBoxLayout, QGridLayout

Vertical layout
v_layout = QVBoxLayout()
v_layout.addWidget(widget1)
v_layout.addWidget(widget2)

Horizontal layout
h_layout = QHBoxLayout()
h_layout.addWidget(widget1)
h_layout.addWidget(widget2)

Grid layout
grid_layout = QGridLayout()
grid_layout.addWidget(widget1, 0, 0) # Row 0, Column 0
grid_layout.addWidget(widget2, 0, 1) # Row 0, Column 1

Finally, set the layout on a widget or window
main_widget = QWidget()
main_widget.setLayout(v_layout) # or h_layout, grid_layout, etc.

7.2.3 Widgets

The DSP GUI widgets are defined in the tuning_utility.widgets module. These
widgets are designed to be used to update the parameters of aDSP stage, andwill update
the DSP state and trigger control commands from the host to the device.

Typically, the widgets are initialised with:

12

https://doc.qt.io/qtforpython-6/examples/example_widgets_layouts_basiclayouts.html

an02031: Live Streaming Sound Card Example

· A reference to the DspState object, which is used to manage the global DSP state.

· The name of a stage in the DSP pipeline. This should match the name of the stage
when it was added to the pipeline with p.stage(StageType, input, name).

· The name of the parameter to control. The available parameters for each stage are
defined in a pydantic model, which is documented in the DSP Stages section of the
lib_audio_dsp documentation. This also describes the valid parameter ranges, which
are used to set the range of the widget.

A simple GUI application can just add widgets to the main window.
from tuning_utility.core import DspWindow
from tuning_utility.widgets import XSlider, XButton, XComboBox

def __init__(self, params: DspJson, code_gen_dir: Path):
super().__init__(params, code_gen_dir, title="DSP Controller")

Create the main widget and layout
self.main_widget = QWidget()
main_layout = QVBoxLayout()

Create a slider for controlling the volume
volume_slider = XSlider(self.state, "music_volume", "gain_db")
main_layout.addWidget(volume_slider)

Create a button to toggle a feature on/off
mute_button = XButton(self.state, "music_volume", "mute_state")
main_layout.addWidget(mute_button)

set the layout on the main widget
and set it as the central widget of the window
self.main_widget.setLayout(main_layout)
self.setCentralWidget(self.main_widget)

To change the label of a widget, the title parameter can be passed to the widget. To
change the range of a widget, the widget_range can be set:
XSlider(self.state, "stage_name", "parameter_name", title="custom_name", widget_range=(min, max))

To add all the parameters of a stage to the GUI, theStageParameterGroupboxwidget
can be used. This will automatically create a group box with all the parameters of the
stage, constrained to their default ranges.
from tuning_utility.widgets import StageParameterGroupbox

Create a group box for the stage parameters
stage_groupbox = StageParameterGroupbox(self.state, "stage_name")
main_layout.addWidget(stage_groupbox)

For biquad filters, the BiquadWidget can be used to control the parameters of the bi-
quad filter. This widget will create a dropdown to select the type of filter, and allow control
of the relevant parameters for each biquad type.
from tuning_utility.widgets import BiquadWidget

Create a biquad widget for the stage
biquad_widget = BiquadWidget(self.state, "biquad_stage_name")
main_layout.addWidget(biquad_widget)

7.2.4 Tabs

A more complex GUI application could use tabs to organise the widgets into different
tabs. The AN02031Window class does this, and is documented in the Appendix: GUI
APIs section at the endof this document. Using tabs can be helpful, as it allowParametric
andGraphic EQs to be givenmore space for plotting the frequency response. An example
of this can be seen in the make_tabs() method of the AN02031Window class. For
more information on tabs, refer to the PySide documentation on QTabWidget.

7.2.5 Advanced Usage

Many of the widgets inherit from PySide classes, for documentation on these please
refer to the PySide documentation (https://doc.qt.io/qtforpython-6/index.html).

13

https://www.xmos.com/documentation/XM-015103-UG/html/doc/rst/05_api_reference/stages/index.html
https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/QTabWidget.html
https://doc.qt.io/qtforpython-6/index.html

an02031: Live Streaming Sound Card Example

When creating custom widgets, it is recommended to inherit from the
tuning_utility.widgets.XWidget or tuning_utility.widgets.
XFiniteWidget classes, which provide a consistent interface for updating the
DSP state and connecting to the hardware.

If using a different GUI framework, the tuning_utility.core.DspState class can
be used as a reference for managing the DSP state and hardware control.

For a list of GUI APIs, see the Appendix: GUI APIs section at the end of this document.

8 Translations

The tuning_utility package includes support for translations of the GUI. These are
implemented via Qt’s translation system, allowing the GUI to be translated to various
languages. The snippet below shows how to register the provided translations with the
application.
from tuning_utility.translations import register_translations
app = QApplication(sys.argv)

register_translations(app)

window = An02031Window(json_obj, code_gen_dir)

8.1 Translating GUI strings

The GUI strings for the tuning utility are managed using the Qt translation system. The
translations are stored in .ts files, which are XML files containing the strings used in the
GUI and their translations.

To ensure a string is in the translation system, it must be wrapped in the
QCoreApplication.translate() function. For ease of use when using parameter
names from lib_audio_dsp, the function tuning_utility.translations.tr_str
is provided. This wraps the QCoreApplication.translate() function in a Python
dictionary, allowing strings from lib_audio_dsp to be translated.
from tuning_utility.translations import tr_str

Example usage
label_text = tr_str("Parameter Name")

Alternatively, you can use the QCoreApplication.translate() directly
from PySide6.QtCore import QCoreApplication
label_text = QCoreApplication.translate("Context", "Parameter Name")

If the translation does not exist in the dictionary, the original string will be returned, and
a warning will be logged to the console.

Note that on WSL, Chinese fonts are not installed by default, so they may need to be
installed by calling:
sudo apt-get update
sudo apt-get install fonts-noto-cjk

8.2 Adding/updating new locales

To generate a new locale or update an existing one, you can use the translations.py
script. This script will extract the strings from the GUI and generate a new locale file or
update an existing one.

The locale files are stored in the locale directory, and the script will update a .ts file.
To update all the locales if the GUI has been modified, run the following command:
python translations.py -generate

14

an02031: Live Streaming Sound Card Example

This will update all the .ts files in the locale folder. To create a new locale, copy the en.
ts file and rename it to the desired locale code (e.g., fr.ts for French). Then, you can
translate the strings in that file.

The .ts files are XML files that contain the strings used in the GUI. For ease of transla-
tion, these can be converted to .csv files using the ts2csv.py script. This will create
a CSV file with the strings and their translations, which can be edited in a spreadsheet
application. Note the file encoding is UTF-8.

After editing, you can convert the CSV file back to a .ts file using the csv2ts.py script.
This will generate a new .ts file with the updated translations. Ensure the language tag
<TS version="2.1" language="fr"> line in the .ts file is updated to reflect the
correct language code.

Once the translations are in the .ts files, they can be be compiled using the command:
python translations.py -compile

This will compile the .ts files into .qm binary files, which are used by the application for
translations.

9 Appendix: GUI APIs

class tuning_utility.core.DspWindow(
params: DspJson,
code_gen_dir: Path,
title=’XMOS DSP Controller’,

)
Bases: QMainWindow
Main window for the DSP controller application.
This sets up the DSP state machine, and initializes a separate thread for the device
control through the host application. It also provides buttons for loading and saving
DSP parameters, generating code.

Parameters

· params (DspJson) – The DSP parameters loaded from a JSON
file.

· code_gen_dir (Path) – The directory where the generated DSP
code will be saved.

· title (str, optional) – The title of the main window, by default “DSP
Controller”

class tuning_utility.widgets.StageParameterGroupbox(state,
stage_name,
label=None)

Bases: QGroupBox
A group box containing all the runtime controllable parameters for a DSP stage.
BiquadWidget, XComboBox, and XDial widgets are used for the controls

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

· label (str, optional) – The label to display below the groupbox. De-
faults to stage_name.

15

an02031: Live Streaming Sound Card Example

class tuning_utility.widgets.XSlider(
state,
stage_name,
stage_parameter,
label=None,
widget_range=None,
scale=None,

)
Bases: XFiniteWidget, QWidget
A vertical slider widget for adjusting a finite-range parameter. Synchronizes the
slider’s value with a parameter in the application state.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

· stage_parameter (str) – The name of the parameter in the stage
to control.

· label (str, optional) – The label to display above the slider. Defaults
to the stage name.

· widget_range (tuple or list, optional) – The minimum and maxi-
mum values for the slider. If not provided, inferred from the pa-
rameter’s field constraints.

· scale (float, optional) – The scaling factor between the widget
value and the parameter value. If not provided, inferred from the
parameter’s type and range.

slider
The dial widget for adjusting the parameter value. See the QSlider documen-
tation for more details.

Type
QSlider

class tuning_utility.widgets.XButton(state, stage_name, stage_parameter,
label=None)

Bases: XWidget, QPushButton
A toggle button widget for boolean or integer parameters. Reflects the parameter’s
value as checked/unchecked and updates the parameter in the state when clicked.
This inherits from the QPushButton class. See the QPushButton documentation
for more details.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

· stage_parameter (str) – The name of the parameter in the stage
to control.

· label (str, optional) – The text to display on the button. Defaults
to the capitalized parameter name.

class tuning_utility.widgets.XComboBox(state, stage_name,
stage_parameter, label=None)

Bases: XWidget, QComboBox

16

https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/QSlider.html
https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/QPushButton.html

an02031: Live Streaming Sound Card Example

A dropdown box widget for selecting a finite set of options.
This inherits from the QComboBox class. See the QComboBox documentation for
more details.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

· stage_parameter (str) – The name of the parameter in the stage
to control.

· label (str, optional) – The text to display on the button. Defaults
to the capitalized parameter name.

class tuning_utility.widgets.XDial(
state,
stage_name,
stage_parameter,
label=None,
widget_range=None,
scale=None,

)
Bases: XFiniteWidget, QWidget
A rotary dial widget for adjusting a finite-range parameter. Synchronizes the dial’s
value with a parameter in the application state and displays the current value as a
label.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

· stage_parameter (str) – The name of the parameter in the stage
to control.

· label (str, optional) – The label to display below the dial. Defaults
to None.

· widget_range (tuple or list, optional) – The minimum and maxi-
mum values for the dial. If not provided, inferred from the param-
eter’s field constraints.

· scale (float, optional) – The scaling factor between the widget
value and the parameter value. If not provided, inferred from the
parameter’s type and range.

dial
The dial widget for adjusting the parameter value. See the QDial documenta-
tion for more details.

Type
QDial

class tuning_utility.widgets.BiquadWidget(state, stage_name)
Bases: XWidget, QWidget
A widget for a biquad filter stage. This widget contains a combobox for selecting
the filter type, and a set of scrollboxes for the parameters. When the filter type is
changed, the parameters are updated to match the selected filter type.

Parameters

17

https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/QComboBox.html
https://doc.qt.io/qtforpython-6/PySide6/QtWidgets/QDial.html

an02031: Live Streaming Sound Card Example

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

class tuning_utility.widgets.PeqTab(state, stage_name)
Bases: XWidget, QWidget
A widget for the PEQ stage. This widget contains a combobox for selecting the
filter type, and a set of scrollboxes for the parameters, and a plot of the frequency
response.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

class tuning_utility.widgets.Geq10bTab(state, stage_name)
Bases: XWidget, QWidget
A widget for the GEQ stage. This widget contains sliders for the gains in each
frequency band, and a plot of the frequency response.

Parameters

· state (object) – The application state object, which must provide
STATE_CHANGED signal and state access.

· stage_name (str) – The name of the stage in the state graph to
which this widget is bound.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

18

	Introduction
	Setup
	Running the GUI
	Saving, Loading and Code Generation
	Running the GUI Manually
	Building the App and Host App from Source
	Updating the GUI or Modifying the DSP
	Translations
	Appendix: GUI APIs

