ANO02031: Live Streaming Sound Card Example

2 MOS

ANO020371: Live Streaming Sound Card Example

Publication Date: 2025/4/3
Document Number: XM-015221-AN v1.0.0

IN THIS DOCUMENT

1 Introduction 1
2 Setup 3
3 Runningthe GUI 5
4 Saving, Loading and Code Generation 9
5 Building the App from Source 9
6 Updating the GUI or Modifyingthe DSP 9

1 Introduction

This application note demonstrates how to use lib_audio_dsp to create a live streaming
sound card application. The device captures sound from both a USB source and a micro-
phone, outputting through USB and analog outputs. The sound is processed through a
series of Digital Signal Processing (DSP) stages, which can be tuned on the host machine.
The application includes a Graphical User Interface (GUI) that allow these adjustments.

Note: Some software components in this tool flow are prototypes and will be updated
in Version 2 of the library. The underlying Digital Signal Processing (DSP) blocks are
however fully functional. Future updates will enhance the features and flexibility of the
design tool.

The sound card features the following DSP stages:

> reverb

» denoising

» ducking

» and EQ.

It could be used for applications such as:

» Live streaming to social media

» Podcasting

» Gaming

» General purpose headset

The application has the following inputs and outputs:
» Stereo analogue input microphone

» Stereo input over USB

» Stereo analogue output for headphones/speakers
» Stereo output over USB for livestreaming/recording.

ANO02031: Live Streaming Sound Card Example

The DSP pipeline is shown below:

‘ —» Volume »{ EQ > Denoise -» Reverb » + 17—
Q Loopback
- —O/O—
v Monitor
—
|: —>
—>1 Volume —>»| Ducking » —

Fig. 1: DSP Pipeline

The audio performance of the demo is:
48 kHz sampling rate

6 sample latency (0.125 ms), excluding ADC & DAC filter (56 samples/ 1.15 ms latency
including filters)

ANO02031: Live Streaming Sound Card Example

2 Setup

This section guides the user through installing all the necessary components for setting
up the application, from both a software and hardware point of view.

2.1 Prerequisites

The following are required before setting up the application:
Python 3.10 (recommended) or above.
Windows PC.
XMOS Multichannel Audio Evaluation Kit (XMOS MCAB).

2.2 Hardware Setup

Connect the XMOS MCAB to the host computer using the USB DEVICE port. For flashing
the board, also connect the DEBUG port. The DEBUG port can be disconnected once the
device has been flashed.

Connect a microphone to the IN 1/2 jack, and headphones to the OUT 1/2 jack.

Note: The microphone input is a stereo TRS jack. This means a balanced mic should
not be used, as the stereo inputs are summed, and for a balanced signal this results in
total signal cancellation.

Note: A low-impedance microphone or one with a powered preamplifier is recom-
mended to ensure a strong signal for processing. Otherwise, the signal may be too weak
for proper handling. Alternatively, users can manually add a fixed gain stage near the
beginning of the pipeline.

See the Fig. 2 for an example hardware setup.

Fig. 2: USB Multichannel Audio Evaluation Kit Setup

https://www.xmos.com/xk-audio-316-mc-ab

ANO02031: Live Streaming Sound Card Example

2.3 Software Setup
A compiled binary is provided, and the device can be flashed from a XMOS XTC command
prompt using:

xflash app_an02031\bin\app_an02031.xe

To build from source, refer to the section Saving, Loading and Code Generation.
2.4 Installing the libusb Driver on Windows
The first time the device is used on Windows, the libusb driver must be installed. This is

done using the third-party tool Zadig.

These steps are only required once and they must be executed while the firmware is
running on the device.

1. Open Zadig and select XMOS Control (Interface 3) from the list of devices. If the device
is not present, ensure Options -> List All Devices is checked.

2. Select libusb-win32 from the list of drivers in the right hand spin box as shown in Fig.
3.

3. Click the Install Driver button and wait for the installation to complete.

Ed Zadig - X
Device Options Help

XMOS Control (Interface 3) ~ [edit
Driver I (NONE) | = [libusb-win32 (v1.2.7.3) | - More Information
WinUSB (libusb)
USBID libusb-win32
. Install Driver hd libusbK
Welb= E WinUSB (Microsoft)

7 devices found.

Fig. 3: Selecting the libusb-win32 driver in Zadig for the Control Interface

ANO02031: Live Streaming Sound Card Example

3 Running the GUI

3.1 Initial Use

In Windows Explorer, double click on tuning.cmd. This will initialise the Python virtual
environment and install requirements. Once this is done it will open the GUI.

Note: Customers in China may wish to use tuning_cn.cmd instead. This will use
https://pypi.tuna.tsinghua.edu.cn/simple for retrieving Python packages
instead of https://pypi.python.org/simple, which may give increased down-
load speeds.

The GUI has 4 tabs described below.

3.2 End Customer Interface

These are the controls exposed to the final customer. In this implementation, USB con-
trol commands are used over EPQ. The same control logic could alternatively be imple-
mented via GPIO.

A DSP Controller - o x

Control Confiquration Equaliser Pipeline

Microphone Music Headphone Output Reverb
Volume Volume Volume Volume Wet/Dry

Mute Mute Mute Mute
Denoise | [Ducking | [Monitor] [[tospbac | JL AAOS

Load Save Generate Code

Fig. 4: GUI Control Tab

ANO02031: Live Streaming Sound Card Example

The controls perform the following functions:

» Volume sliders: control the volume of the input/output with optional mute.
» Reverb slider: control wet/dry mix of the reverb.

» Reverb button: enable/disable the reverb.

» Denoise button: enable noise suppression on the microphone.

>

Ducking button: reduce the volume of the music when there is signal on the micro-
phone.

» Monitor button: when on, send the same output to the USB and headphone outputs.
When off, do not send the microphone output to the headphones.

» Loopback button: when on, send the USB input back to the USB output. Otherwise
just send the microphone signal over USB.

3.3 Algorithm Tuning Parameters

This tab exposes the lower level tuning parameters to a DSP product engineer for tuning
before final production.

DSP Controller - [m] x
Control Configuration Equaliser Pipeline
Reverb
7 \ - \ s \ 7 \ 7 \
\ \ f \ \ \
[) [\ (\ [) [\
\ \ 5 / \ \
.4 . - .4 .
Damping: 0.50 Decay: 0.50 Early Diffusion: 0.50 Late Diffusion: 0.50 Bandwidth: 8000.00
SN . N N e N
\ \ f \ \
[) [\ (\ [)
\ \ \ \ \
- S N S
Predelay: 15.00 ‘Width: 1.00 Pregain: 0.50 ‘Wet/Dry mix: 0.50
Ducking
/ N e . PG / N
\ \ f \ \
|) \ | { | |)
\ \ / \ / \
- ~ - -
Threshold (dB): ~40.00 Attack (s): 0.01 Release (s} 0.50 Ratio 5.00
Denoise
/ N e . P / N
\ \ f \ \
| J | I i | | J
\ \ / AS / \
o S - e
Threshold (dB): -45.00 Attack (s): 001 Release (s): 0.12 Ratio: 3.00
Load Save Generate Code

Fig. 5: GUI Configuration Tab

ANO02031: Live Streaming Sound Card Example

3.4 Parametric EQ

This tab shows the EQ being applied to the microphone signal. The type and parameters
of each biquad can be set, and the frequency response of the cascade is calculated from
it.

I3 DSP Controlle - O X

Control Configuration ~ Equaliser Pipeline

~
biquad_lowshelf i Peq Frequency Response

qfactor |0,

20

10 4

biquad_constant q v

filter_freq |125.00

Magnitude (dB)
o
N

-104

qfactor |2
—20 T T T T T T T T
n
biquad_constant_q v
filter_freq |250.00

qfactor |2,

Phase (rad)
<

boost_db |6.00

biquad_constant_q v N I I I I I I I I
20 50 100 200 500 1000 2000 5000 10000 20000

filter_freq [500.00 [Frequency (Hz)
afsctor 212 2] v

Load Save Generate Code

Fig. 6: GUI Equaliser Tab

ANO02031: Live Streaming Sound Card Example

3.5 Pipeline Graphic

This tab contains an image of the DSP pipeline.

I3 DSP Controller - o X

Control Configuration Equaliser Pipeline

0 o)

Loopback

A
—
sl L3 2 6

||||'||\|l-
L5

Load Save Generate Code

Fig. 7: GUI Pipeline Tab

ANO02031: Live Streaming Sound Card Example

4 Saving, Loading and Code Generation

Once the parameters have been tuned to the desired values, they can be saved as a JSON
file by clicking the “Save” button. Other sets of parameters can be loaded from the JSON
file by using the “Load” button. During loading, the saved checksum in the JSON file is
compared against the checksum generated from the pipeline defined in pipeline.py.
If they do not match, a warning is given to indicate that the pipelines differ. The loaded
JSON file may still be compatible with the GUI if the exposed tuning parameters defined
in params . py have remained the same, and the DSP stages they interact with still exist.
If the loaded JSON file is not compatible with the current version of the GUI an error is
given. This usually means that pipeline.py and params.py have been changed, and
a different version of the GUI needs to be used.

Once the parameters are fully configured, the autogenerated C should be updated
by clicking the “Generate Code” button in the GUI. By default this selects the folder
app_an02031\src\generated_dsp. The application can then be rebuild by follow-
ing the steps in Building the App from Source.

Alternatively the code can be generated from the command line, see the steps in Updating
the DSP Pipeline. This may be useful for regenerating the code as part of a CMake step.

5 Building the App from Source

The app is supplied with a full sandbox and compiled app. Modifications may require
rebuilding, which can be done as described below.

Inan XTC Tools 15.3 prompt, navigate to the app note directory, then create and activate
a Python virtual environment, and install lib_audio_dsp:

python -m venv .venv
.venv\Scripts\activate
pip install -e lib_audio_dsp\python

Then run Xcommon Cmake to initialise the sandbox:

cd an@2031
cmake -G "Unix Makefiles" -B build

To build the app, run:

cmake --build build

Finally, to run it:

xrun app_an@82031\bin\app_an02031.xe

Or, to permanently flash it
xflash app_an02031\bin\app_an02031.xe

6 Updating the GUI or Modifying the DSP

This application note provides a fixed DSP pipeline and a GUI designed to interact with
it. Users may wish to modify or extend the provided DSP pipeline and correspondingly
update the GUI. The following sections detail the procedures for accomplishing these
tasks.

6.1 Updating the DSP Pipeline

Should it be necessary, the first step involves updating the DSP pipeline. The pipeline
is defined in the file tuning_utility\pipeline.py and utilizes the lib_audio_dsp
Python library to generate a pipeline. The library includes its own documentation, which
can be consulted to implement any required modifications.

Prior to generating sources, it may be necessary to update the parameter model, which
is defined in tuning_utility\params.py. This file defines a class named Params

K Y,

https://www.xmos.com/file/lib_audio_dsp

ANO02031: Live Streaming Sound Card Example

that contains the tuning data for the named stages in the pipeline. Initially, “tuning_gui.py”
will invoke pipeline() to create an instance of Pipeline. Subsequently, it will
instantiate Params and invoke the function update_from_tuning_params from
“pipeline.py” to adjust the pipeline with the tuning parameters.

When updating the pipeline, it is likely the checksum will change. This may give errors
when trying to reuse a tuning. json file. Removing or renaming the default tuning.
json should resolve most issues. Note that if the pipeline is different, but the params.py
is the same, the new pipeline may be compatible with the GUI despite the pipeline differ-
ence.

To regenerate the sources for the updated pipeline, create a Python virtual environment
and install the required dependencies specified in “requirements.txt” using pip. Then,
execute the following command to generate the code for the default JSON file:

python tuning_gui.py --code-gen

To use a different JSON file, the path to the file can be passed in:

python tuning_gui.py --code-gen path/to/tuning.json

This command will update the generated DSP sources. Subsequently, use CMake to
compile the new application in the usual manner.

6.2 Updating the GUI

This section addresses the addition or removal of widgets in the GUI. The GUI is a
straightforward Python application utilizing PySide, a Python binding for the Qt frame-
work. The GUI is defined in “tuning_gui.py”.

Within “tuning_gui.py”, the DSPWindow class is defined. This class is a QMainWindow
to which all widgets are added. The DSPWindow class contains a state attribute that
tracks the current parameter values. All widgets must update this state through one of
its update methods. To ensure the widget remains current when the value it controls may
be updated elsewhere, it should connect to the STATE_CHANGED signal. This signal is
emitted whenever any parameters change.

»2MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any

claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this

document are the trademarks or registered trademarks of their respective owners.

10 y,

	Introduction
	Setup
	Running the GUI
	Saving, Loading and Code Generation
	Building the App from Source
	Updating the GUI or Modifying the DSP

