
AN02015: Run-time DSP control in a USB Audio Application

AN02015: Run-time DSP control in a USB Audio Application

Publication Date: 2025/6/27
Document Number: XM-015114-AN v2.0.1

IN THIS DOCUMENT

1 Introduction . 1
2 Getting Started . 1
3 Application Overview . 3
4 Creating the Control and GPIO Threads . 4
5 References . 8
6 Support . 9

1 Introduction

Note: Some software components in this tool flow are prototypes and will be updated
in Version 2 of the library. The underlying Digital Signal Processing (DSP) blocks are
however fully functional. Future updates will enhance the features and flexibility of the
design tool.

This application note is complementary to “AN02014: Integrating a Generated Audio DSP
Pipeline into a USB Audio Application”. The goal is to show how to read andwrite the DSP
configuration at run-time; building dynamic features into the application. The application
associated with this note makes use of the buttons and LEDs on the XK-AUDIO-316-MC-
AB to implement an active speaker application with volume control and bass boost. The
DSP pipeline also computes the RMS power of the signal and displays this on the 4 LEDs
to provide a simple VU meter.

2 Getting Started

2.1 Requirements

Before running this application note ensure the following applications are installed on
your system:

· XTC 15.3.1

· CMake >= 3.21.0

· Python 3.12

· Graphviz, ensuring the dot executable available on your PATH.

The following hardware is required:

· XK-AUDIO-316-MC-AB

· 2 Micro-USB cables

· An audio device with a 3.5 mm jack (e.g. speakers or headphones)

1

https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/software-tools/
https://cmake.org/download/
https://www.python.org/
https://graphviz.org/download/
https://www.xmos.com/xk-audio-316-mc-ab

AN02015: Run-time DSP control in a USB Audio Application

2.2 Running the example

First, connect the XK-AUDIO-316-MC-AB to your computer with both the “DEBUG” and
“USB DEVICE” Micro-USB ports as shown in Fig. 1.

Fig. 1: XK-AUDIO-316-MC-AB with both USB cables connected and a pair of speakers
connect to OUT 1/2

Once connected follow these steps:

1. Open a terminal and activate the XTC enviroment (see XTC getting started). Option-
ally, create a Python virtual environment and activate it.

2. Get the source code for this app note from https://www.xmos.com/
application-notes/

3. Navigate to the root directory of this app note and install the Python requirements:

go to the directory of this app note
cd an02015

install python requirements
pip install -Ur requirements.txt

for users in China, a pip mirror will give faster downloads
pip install -Ur requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

4. Start the Jupyter notebook from the app_an02015 directory. Jupyter Notebook is
an interactive Python editor which was installed via the pip command in the previous
step.

cd app_an02015
jupyter notebook

5. If this does not automatically open a browser window, then copy the URL from the
output of jupyter that starts with http://127.0.0.1 and navigate to it in your
web browser.

6. Open “dsp.ipynb” on the web interface by double-clicking on the file name.

7. Execute all the cells in the notebook by selecting “Run all cells” from the “Run” menu.

This final step will display a diagram that represents the provided simple DSP pipeline.
It will then generate the xcore source code, build the application, and run it on the con-
nected device. A screenshot of the notebook after successful completion is shown in
Fig. 2. The device will appear on the connected computer as a stereo USB audio device
named “XMOS xCORE.ai MC (UAC2.0)”, supporting recording and playback.

When audio is played to the USB device from the host PC, the output can be heard by
connecting a speaker or headphones to the “OUT 1/2” jack on the XK-AUDIO-316-MC-AB.
Button 0 will toggle bass boost; button 1 increases the volume; button 2 decreases the

2

https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/software-tools/
https://www.xmos.com/xtc-install-guide
https://docs.python.org/3/library/venv.html#venv-def
https://www.xmos.com/application-notes/
https://www.xmos.com/application-notes/
https://www.python.org/
https://jupyter.org/
https://jupyter.org/
https://www.xmos.com/xk-audio-316-mc-ab

AN02015: Run-time DSP control in a USB Audio Application

volume. The LEDs will show the signal power level, when no audio is playing all the LEDs
will be off.

Caution: To get all 4 LEDs to illuminate the signal will have to be very loud! Take
special care when connecting headphones to the XK-AUDIO-316-MC-AB.

Fig. 2: The notebook after running successfully

3 Application Overview

The application accompanying this note is largely the same as that in AN02014. It is an
sw_usb_audio application with a DSP pipeline generated using the generation tools from
lib_audio_dsp. The DSP pipeline and I2S both run on tile 1. On the XK-AUDIO-316-MC-AB
the buttons and LEDs are connected to ports 4E and 4F respectively, both on tile 0. The
run-time control guide associatedwith lib_audio_dsp describes the DSP control interface
that can be used to modify the DSP configuration. The main constraint is that this must
be done from the same tile as the DSP threads. Accessing the ports for the buttons
and LEDs must be done the tile that they are connected to, tile 0. Hence, this application
required an additional 2 threads compared to the base application fromAN02014. These
threads are show in Fig. 3.

The DSP pipeline for this application is shown in Fig. 4. It contains the following stages,
all of which are stereo:

3

https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://www.xmos.com/xk-audio-316-mc-ab
https://github.com/xmos/lib_audio_dsp

AN02015: Run-time DSP control in a USB Audio Application

Fig. 3: System thread diagram

· Volume control (vol_ctl): Adjust the volume of the input signal.
· 8 band parametric EQ (peq): Configurable PEQ to adjust for the listeners preference

or to account for the speaker response.
· Low pass filter (lpf), fixed gain (bass_boost) and limiter (bass_sw): This path takes

the low frequencies and applies a boost to them. The fixed gain sets the magnitude
of the boost. The output limiter reduces the level of the bass boost for large signals,
avoiding overloading the loudspeaker at the output. This output limiter can be used
to adjust the level of the bass boosted signal before it is summed with the bypass
signal. Adjusting the limiter threshold can have the effect of enabling or disabling the
bass boost effect. A low limiter threshold will mean the bass boost path is always held
to a small signal level.

· Adder: combines bass boost signal with bypass signal to create a signal with boosted
bass and unmodified higher frequencies.

· Limiter (lim): Compresses the output of the DSP pipeline to prevent clipping. The
limiter computes an envelope of the signal which can be read out via its envelope
parameter. This functionality will be used to determine which LEDs to light.

4 Creating the Control and GPIO Threads

In this application, the two thread entry functions (see Fig. 3) are gpio_task, defined in
“gpio_task.c”, and dsp_control, defined in “app_dsp.c”. Both functions take a chanend
as their only parameter which is used to communicate between the two tiles. To spawn
these threads the first step is to define the new channel in user_main.h, and then to place
the gpio function on tile 0, passing it one end of the channel. The other end of the channel
is passed to dsp_thread on tile 1. Below is an excerpt from “user_main.h”:
#define USER_MAIN_DECLARATIONS \

interface i2c_master_if i2c[1];\

(continues on next page)

4

AN02015: Run-time DSP control in a USB Audio Application

Fig. 4: DSP graph diagram, stage labels for use in control shown in brackets. Dashed
arrows indicate which stages will be accessed for the user interface

5

AN02015: Run-time DSP control in a USB Audio Application

(continued from previous page)
chan c_gpio;

#define USER_MAIN_CORES on tile[0]: {\
board_setup();\
xk_audio_316_mc_ab_i2c_master(i2c);\

}\
on tile[0]: gpio_task(c_gpio);\
on tile[1]: {\

{\
unsafe { i_i2c_client = i2c[0]; }\
dsp_thread(c_gpio);\

}\
}

4.1 The GPIO Thread

TheGPIO thread, in “gpio_task.c”makes use of lib_xcore to implement some basic button
logic. It also uses a hardware timer to trigger a periodic query of the current signal level
to update the LEDs.

4.2 The DSP Control Thread

Overview of control features

The DSP control thread is spawned in parallel with adsp_auto_pipeline_main in the
top level DSP function dsp_thread. dsp_thread is defined in app_dsp.c and shown
in the excerpt below. This structure ensures that the control thread and the DSP thread
will always be on the same tile.
void dsp_thread(chanend_t c_gpio) {

// Initialise the DSP instance and launch the generated DSP main function
// as well as the control thread
m_dsp = adsp_auto_pipeline_init();
PAR_JOBS(

PJOB(adsp_auto_pipeline_main, (m_dsp)),
PJOB(dsp_control, (c_gpio))

);
}

The DSP control thread entry function dsp_control, defined in app_dsp.c, is shown
below. This function implements a simple channel based server protocol that interfaces
with the GPIO thread on the other tile. This means that the thread is idle until it receives a
communication from the GPIO thread, then it reads from the channel to determine what
work is required. In this case the GPIO thread chooses from one of 4 operations:

1. BASS_BOOST_SW: Toggle the bass boost. The GPIO thread will request this when the
bass boost button is pressed. When this request is received it triggers the DSP control
thread to update the threshold in the bass_sw limiter.

2. VOLUME_UP: Increase the volume. This will be called when the volume up button is
pressed. On receiving this request the DSP control thread will read the current target
volume from the DSP volume control stage. Then the new volume is calculated and
written to the DSP stage.

3. VOLUME_DOWN: Decrease the volume. This will be called when the volume down but-
ton is pressed. The logic for volume down is the same as volume up.

4. GET_VU_LEVELS: The GPIO thread uses a hardware timer to call this periodically. On
reception the DSP control thread will read the energy level from the lim limiter and
convert this into a port value for the LEDs. This LED port value is sent back over the
channel to the GPIO thread.

DECLARE_JOB(dsp_control, (chanend_t));
void dsp_control(chanend_t c_gpio) {

xassert(NULL != m_dsp);

adsp_controller_t controller;
adsp_controller_init(&controller, m_dsp);

(continues on next page)

6

https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

AN02015: Run-time DSP control in a USB Audio Application

(continued from previous page)
bool bass_boost_status = false;

SELECT_RES(
CASE_THEN(c_gpio, on_c_gpio))

{
on_c_gpio: {

uint8_t ctrl = chan_in_byte(c_gpio);

switch(ctrl) {
case BASS_BOOST_SW: {

do_bass_boost(&controller, &bass_boost_status);
} break;
case VOLUME_UP: {

do_volume_control(&controller, true);
} break;
case VOLUME_DOWN: {

do_volume_control(&controller, false);
} break;
case GET_VU_LEVELS: {

uint8_t led_val = do_get_vu(&controller);
chan_out_byte(c_gpio, led_val);

} break;
default: {

xassert(false);
} break;

}
continue;

}
}

}

The control interfaces used to read and write to the DSP stages are discussed next.

Bass Boost

The bass boost functionality is implemented by adjusting the threshold of a lim-
iter which compresses the bass boosted signal. In this pipeline the bass boost
limiter has been given the label “bass_sw” and can be accessed via the identifier
bass_sw_stage_index. The limiter is defined in the Jupyter notebook as an instance
of LimiterPeak. The control commands for a LimiterPeak are documented in the
lib_audio_dsp component guide, they include CMD_LIMITER_PEAK_THRESHOLD.

The excerpt below shows the threshold being toggled between BASS_BOOST_ON and
BASS_BOOST_OFF. These values are examples and can be updated to the preferences
of the DSP designer.

The function adsp_write_module_config is used to upate the parame-
ter. Details of how this interface works can be found in the lib_audio_dsp
documentation. In brief, an adsp_stage_control_cmd_t must be filled
in and then adsp_write_module_config must be called until it returns
ADSP_CONTROL_SUCCESS.
static void do_bass_boost(adsp_controller_t* controller,

bool* bass_boost_status) {
*bass_boost_status = !*bass_boost_status;
int32_t val = *bass_boost_status? BASS_BOOST_ON : BASS_BOOST_OFF;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = bass_sw_stage_index,

.cmd_id = CMD_LIMITER_PEAK_THRESHOLD
};

// do write until success
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(controller, &cmd));

}

Volume Control

The volume control is implemented via the VolumeControl stagewhich has a parame-
terCMD_VOLUME_CONTROL_TARGET_GAIN. The implementation ismore complex than
bass boost and takes the following steps:

1. Read the current target gain from the volume control stage using its label
vol_ctl_stage_index and the function adsp_read_module_config.

7

https://jupyter.org/
https://github.com/xmos/lib_audio_dsp

AN02015: Run-time DSP control in a USB Audio Application

2. Apply a precomputed gain to this value for volume up or volume down. In this case the
values ofVOLUME_UP_INC andVOLUME_DOWN_INC are +3 dBand -3 dB respectively,
converted to linear gain values in fixed point.

3. Write the new value back to the volume control stage with
adsp_write_module_config.

static void do_volume_control(adsp_controller_t* controller,
bool volume_up) {

// Get the current volume
int32_t val;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = vol_ctl_stage_index,

.cmd_id = CMD_VOLUME_CONTROL_TARGET_GAIN
};

// do read until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(controller, &cmd));

// Update the volume by multiplying it by the desired increment gain
int32_t mul = (volume_up) ? VOLUME_UP_INC : VOULME_DOWN_INC;
val = adsp_fixed_gain(val, mul); // apply gain
val = (val > UPPER_CAP) ? UPPER_CAP : val;
val = (val < LOWER_CAP) ? LOWER_CAP : val;

// do write until success, cmd can be reused
while(ADSP_CONTROL_SUCCESS != adsp_write_module_config(controller, &cmd));

}

VU Levels

The objective of the VU meter (volume unit meter) is to light more LEDs when the signal
hasmore energy. The desired scale of the VUmeter is decibels. To determine the level of
the signal, the CMD_LIMITER_PEAK_ENVELOPE parameter is read from the stage with
the label lim. This value is a signal envelope level in fixed point format. The thresholds
for each LED are stored in LED0_TH, LED1_TH, LED2_TH, and LED3_TH which have been
computed from the values -40 dB, -30 dB, -20 dB and -10 dB respectively.
uint8_t do_get_vu(adsp_controller_t* controller) {

int32_t val;
adsp_stage_control_cmd_t cmd = {

.payload_len = sizeof(int32_t),

.payload = &val,

.instance_id = lim_stage_index,

.cmd_id = CMD_LIMITER_PEAK_ENVELOPE
};

// do read until success
while(ADSP_CONTROL_SUCCESS != adsp_read_module_config(controller, &cmd));

uint8_t led_val = 0;
led_val = (val > LED0_TH) ? led_val + 1 : led_val;
led_val = (val > LED1_TH) ? led_val + 2 : led_val;
led_val = (val > LED2_TH) ? led_val + 4 : led_val;
led_val = (val > LED3_TH) ? led_val + 8 : led_val;
return led_val;

}

5 References

· sw_usb_audio

· lib_audio_dsp

· lib_xua

· XTC

· XK-AUDIO-316-MC-AB

· XCommon CMake

· Jupyter

· lib_xcore

8

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://github.com/xmos/lib_xua
https://www.xmos.com/software-tools/
https://www.xmos.com/xk-audio-316-mc-ab
https://github.com/xmos/xcommon_cmake/releases/download/v1.3.0/xcommon_cmake.pdf
https://jupyter.org/
https://www.xmos.com/documentation/XM-014363-PC-LATEST/html/tools-guide/tools-ref/libraries/lib-xcore-api/lib-xcore-api.html

AN02015: Run-time DSP control in a USB Audio Application

6 Support

For all support issues please visit http://www.xmos.com/support

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

9

http://www.xmos.com/support

	Introduction
	Getting Started
	Application Overview
	Creating the Control and GPIO Threads
	References
	Support

