Mic Array Library - Programming Guide

Release: 5.0.2
Publication Date: 2023/05/02

2 MOS



Table of Contents

Introduction

Overview

21 Capabilities . ... ... ... ... ...

2.2 High-Level Process View . . . ... ...
221 ExecutionContexts . . . . .. ..
222 Step 1. PDM Capture . . . . . ..
2.2.3 Step 2: First Stage Decimation .
2.2.4 Step 3: Second Stage Decimation
2.2.5 Step 4: Post-Processing . . . . .

2.2.6 Extending/Modifying Mic Array Behavior . . . . .. ...

Getting Started

3.1 Identify Resources . . ... .......
311 ClockBlocks . .. ... .....
312 Ports .. ...
3.1.3 Declaring Resources . . . . . ..
3.1.4 Other Resources . ........

3.2 VanillaModel . ... ... ... .. ...
3.2.1 Vanilla- CMake Macro . . . . ..
3.2.2  Vanilla - Optional Configuration .
3.2.3 Vanilla - Initializing and Starting .

3.3 PrefabModel .. ... ... ... ... .
3.3.1 Prefab - Declare Resources . . .
3.3.2 Prefab - Allocate MicArray . . . .
3.3.3 Prefab - Init and Start Functions

Decimator Stages

471 DecimatorStagel1. ... ... ... ...
411  Filter Implementation (Stage 1) .
412 Provided Filter (Stage 1) . . . ..

Filter Characteristics (Stage 1) .
41.3 Filter Conversion Script . . . . .

472 DecimatorStage?2 . ... ... ... ..
421 Filter Implementation (Stage 2) .
4.2.2 Provided Filter (Stage 2) . . . . .

Filter Characteristics (Stage 2) .

Sample Filters

51 DC Offset Elimination . . . ... ... ..
511 Enabling/Disabling DCOE . . . .

VanillaModel . .. ... ... ..
PrefabModel . .. ... ... ..
General Model . . ... ... ..
5.1.2 DCOE Filter Equation . . . . . ..

5.1.3 DCOE Filter Frequency Response

Software Structure

12
12
12
13
13
14
14
14
14
14

16
16
16
16
16
17
17
18

19



6.1 High-Level View . . . . . . .
6.1.1  Mic Array / Decimator Thread . . . . . . . . . . . . . .. ..
6.1.2 Curiously Recurring Template Pattern . . . . . . . . . .. ... ... .. ... ... ......
6.1.3 Sub-Component Initialization . . . . . . ... ...
6.2 Sub-Components . . . . . . ..,
621 PAMRX . . . ..
6.2.2 Decimator . . . . . .
6.2.3 SampleFilter. . . . . .
6.2.4 OutputHandler . . . . . .
6.3 Prefabs . . . ..
7 Mic Array Resource Usage
7.1 Discrete Resources . . . . . . ..
TAT POrts © o o
712 ClockBlocks . . . . .
713 Chanends . . . . . . .
704 Threads . . . . . .
7.2 COMPULE . . .
7.3 MEMOIY . . .
8 Vanilla API
8.1 How ltWorks . . . .
8.2 Configuration . . . . .
8.21 mic_array_vanilla_add() . . . ... ...
8.2.2 Optional Configuration . . . . . . . . . .
8.2.3 Vanilla APl with other Build Systems . . . . . . . . ... ... ... ... ... ..
9 API Reference
9.1 C++APIReference . . . . . . . .
011 MICAITAY . . . .
912 BasicMICArray . . . . . . .
9.1.3  PAmMRXService . . . . . .
StandardPdmRxService . . . . . .
914 TwoStageDecimator . . . . . . . ..
9.1.5 SampleFilter. . . . . . .
NopSampleFilter . . . . . . .
DcoeSampleFilter. . . . . . . .
9.1.6 OutputHandler . . . . . . .
FrameOutputHandler . . . . . . . . .
017 MISC . . o
9.2 CAPIReference . . . . . . . .
021 filters_defaulth . . . . . . ..
Stage 1- PDM-to-PCM Decimating FIR Filter . . . . . . . . .. .. .. ... ... ... ....
Stage 2-PCM Decimating FIR Filter . . . . . . . .. .. ... . ...
922 pdm_resources.h . . . ..
023 setup.h . . . .
9.2.4 frame_transferh . . . . . . .
9.2.5 dc_elimination.h . . . . .
026 utith . .
927 mic_array_vanillah . . . ..
Index



T Introduction

lib_mic_array is a library for interfacing with one or more PDM microphones on an XMOS device.
Version 5.0 of this library has been redesigned from scratch to make efficient usage of the XMOS XS3 architecture.

See Getting Started to get going.

Note: Version 5.0 does not currently support XS2 or XS1 devices.

Find the latest version of 1ib_mic_array on GitHub.


https://github.com/xmos/lib_mic_array

2 Overview

lib_mic_array is a library for capturing and processing PDM microphone data on xcore.ai devices.

PDM microphones are a kind of ‘digital microphone’ which captures audio data as a stream of 1-bit samples at a
very high sample rate. The high sample rate PDM stream is captured by the device, filtered and decimated to a
32-bit PCM audio stream.

2.1

Capabilities

+ Both SDR (1 mic per pin) and DDR (2 mics per pin) microphone configurations are supported

- Configurable clock divider allows user-selectable PDM sample clock frequency (3.072 MHz typical)

- Configurable two-stage decimating FIR filter

First stage has fixed tap count of 256 and decimation factor of 32

Second stage has fully configurable tap count and decimation factor

Custom filter coefficients can be used for either stage

Reference filter with total decimation factor of 192 is provided (16 kHz output sample rate w/ 3.072
MHz PDM clock)

+ Supports 1-, 4- and 8-bit ports.

- Supports 1to 16 microphones

- Includes ability to capture samples on a subset of a port’s pins (e.g. 3 PDM microphones may be used
with a 4- or 8-bit port)

- Also supports microphone channel index remapping

- Optional DC offset elimination filter

- Sample framing with user selectable frame size (down to single samples)

- Most configurations require only a single hardware thread



Mic Array Library - Programming Guide

2.2 High-Level Process View

This section gives a brief overview of the steps to process a PDM audio stream into a PCM audio stream. This
section is concerned with the steady state behavior and does not describe any necessary initialization steps.

e e === ===

|
I MicArray I
| |
FDM Mics | |
to PDM Samples———————— PdmRX
XCORE Port | |
| PDM Sample Blocks |
| |
I Decimator o [
| |
Decimated Sample
| |
1 L Sample Filter |
| |
| Filtered Sample |
XCORE Channel | |
to Samples or Frames———— Output Handler .
Consumer thread | |
| |

2.2.1 Execution Contexts

The mic array unit uses two different execution contexts. The first is the PDM rx service ("PDM rx”), which is
responsible for reading PDM samples from the physical port, and has relatively little work to do, but also has a
strict real-time constraint on reading port data in a timely manner. The second is the decimation thread, which is
where all processing other than PDM capture is performed.

This two-context model relaxes the need for tight coupling and synchronization between PDM rx and the deci-
mation thread, allowing significant flexibility in how samples are processed in the decimation thread.

PDM rx is typically run within an interrupt on the same hardware core as the decimation thread, but it can also be
run as a separate thread in cases where many channels result in a high processing load.

2.2.2 Step 1: PDM Capture

The PDM data signal is captured by the xcore.ai device’s port hardware. The port receiving the PDM signals
buffers the received samples. Each time the port buffer is filled, PDM rx reads the received samples.

Samples are collected word-by-word and assembled into blocks. Each time a block has been filled, the block is
transferred to the decimation thread where all remaining mic array processing takes place.



Mic Array Library - Programming Guide

The size of PDM data blocks varies depending upon the configured number of microphone channels and the
configured second stage decimator’s decimation factor. Each PDM data block will contain exactly enough PDM
samples to produce one new mic array (multi-channel) output sample.

2.2.3 Step 2: First Stage Decimation

The conversion from the high-sample-rate PDM stream to lower-sample-rate PCM stream involves two stages of
decimating filters. After the decimation thread receives a block of PDM samples, the samples are filtered by the
first stage decimator.

The first stage decimator has a fixed decimation factor of 32 and a fixed tap count of 256. An application is free
to supply its own filter coefficients for the first stage decimator (using the fixed decimation factor and tap count),
however this library also provides a reference filter for the first stage decimator that is recommended for most
applications.

The first stage decimating filter is an FIR filter with 16-bit coefficients, and where each input sample corresponds
toa+1ora -1 (typical for PDM signals). The output of the first stage decimator is a block of 32-bit PCM samples
with a sample time 32 times longer than the PDM sample time.

See Decimator Stages for further details.

2.2.4 Step 3: Second Stage Decimation

The second stage decimator is a decimating FIR filter with a configurable decimation factor and tap count. Like
the first stage decimator, this library provides a reference filter suitable for the second stage decimator. The
supplied filter has a tap count of 65 and a decimation factor of 6.

The output of the first stage decimator is a block of N¥k PCM values, where N is the number of microphones and
K is the second stage decimation factor. This is just enough samples to produce one output sample from the
second stage decimator.

The resulting sample is vector-valued (one element per channel) and has a sample time corresponding to 32*K
PDM clock periods. Using the reference filters and a 3.072 MHz PDM clock, the output sample rate is 16 kHz.

See Decimator Stages for further details.

2.2.5 Step 4: Post-Processing

After second stage decimation, the resulting sample goes to post-processing where two (optional) post-
processing steps are available.

The first is a simple IR filter, called DC Offset Elimination, which seeks to ensure each output channel tends to
approach zero mean. DC Offset Elimination can be disabled if not desired. See Sample Filters for further details.

The second post-processing step is framing, where instead of signaling each sample of audio to subsequent
processing stages one at a time, samples can be aggregated and transferred to subsequent processing stages
as non-overlapping blocks. The size of each frame is configurable (down to 1 sample per frame, where framing
is functionally disabled).

Finally, the sample or frame is transmitted over a channel from the mic array module to the next stage of the
processing pipeline.



Mic Array Library - Programming Guide

2.2.6 Extending/Modifying Mic Array Behavior

At the core of 1ib_mic_array are several C++ class templates which are loosely coupled and intended to be
easily overridden for modified behavior. The mic array unit itself is an object made by the composition of several
smaller components which perform well-defined roles.

For example, modifying the mic array unit to use some mechanism other than a channel to move the audio frames
out of the mic array is a matter of defining a small new class encapsulating just the modified transfer behavior,
and then instantiating the mic array class template with the new class as the appropriate template parameter.

With that in mind, while most applications will have no need to modify the mic array behavior, it is nevertheless
designed to be easy to do so.



3 Getting Started

There are three models for how the mic array unit can be included in an application. The details of how to allocate,
initialize and start the mic array will depend on the chosen model.

In order of increasing complexity, these are:

- VanillaModel - The simplest way to include the mic array. It is usually sufficient but offers comparatively little
flexibility with respect to configuration and run-time control. Using this model (mostly) means modifying
an application’s build scripts.

+ Prefab Model - This model involves a little more effort from the application developer, including writing
a couple C++ wrapper functions, but gives the application access to any of the defined prefab mic array
components.

- General Model - Any other case. This is necessary if an application wishes to use a customized mic array
component.

The vanilla and prefab models for integrating the mic array into your application will be discussed in more detail
below. The general model may involve customizing or extending the classes in 1ib_mic_array and is beyond the
scope of this introduction.

Whichever model is chosen, the first step to integrate a mic array unit into an application is to identify the required
hardware resources.

3.1 Identify Resources

The key hardware resources to be identified are the ports and clock blocks that will be used by the mic array unit.
The ports correspond to the physical pins on which clocks and sample data will be signaled. Clock blocks are a
type of hardware resource which can be attached to ports to coordinate the presentation and capture of signals
on physical pins.

3.1.1 Clock Blocks

While clock blocks may be more abstract than ports, their implications for this library are actually simpler. First,
the mic array unit will need a way of taking the audio master clock and dividing it to produce a PDM sample clock.
This can be accomplished with a clock block. This will be the clock block which the API documentation refers to
as “Clock A",

Second, if (and only if) the PDM microphones are being used in a Dual Data Rate (DDR) configuration a second
clock block will be required. In a DDR configuration 2 microphones share a physical pin for output sample data,
where one signals on the rising edge of the PDM clock and the other signals on the falling edge. The second clock
block required in a DDR configuration is referred to as “Clock B" in the APl documentation.

Each tile on an xcore.ai device has 5 clock blocks available. In code, a clock block is identified by its resource ID,
which are given as the preprocessor macros XS1_CLKBLK_1 through XS1_CLKBLK_5.

Unlike ports, which are tied to specific physical pins, clock blocks are fungible. Your application is free to use any
clock block that has not already been allocated for another purpose. The vanilla component model defaults to
using XS1_CLKBLK_1 and XS1_CLKBLK_2.



Mic Array Library - Programming Guide

3.1.2 Ports

Three ports are needed for the mic array component. As mentioned above, ports are physically tied to specific
device pins, and so the correct ports must be identified for correct behavior.

Note that while ports are physically tied to specific pins, this is not a 1-to-1 mapping. Each port has a port width
(measured in bits) which is the number of pins which comprise the port. Further, the pin mappings for different
ports overlap, with a single pin potentially belonging to multiple ports. When identifying the needed ports, take
care that both the pin map (see the documentation for your xcore.ai package) and port width are correct.

The first port needed is a 1-bit port on which the audio master clock is received. In the documentation, this is
usually referred to as p_mclk.

The second port needed is a 1-bit port on which the PDM clock will be signaled to the PDM mics. This port is
referred to as p_pdm_c1k.

The third port is that on which the PDM data is received. In an SDR configuration, the width of this port must
be greater than or equal to the number of microphones. In a DDR configuration, twice this port width must be
greater than or equal to the number of microphones. This port is referred to as p_pdm_mics.

XCore applications are typically compiled with an “XN” file (with a “xn” file extension). An XN file is an XML
document which describes some information about the device package as well as some other helpful board-
related information. The identification of your ports may have already been done for you in your XN file. Following
is a snippet from an XN file with mappings for the three ports described above:

<Tile Number="1" Reference="tile[1]">
<!-- MIC related ports -->
<Port Location="XS1_PORT_1G" Name="PORT_PDM_CLK"/>
<Port Location="XS1_PORT_1F" Name="PORT_PDM_DATA"/>
<!-- Audio ports -->
<Port Location="XS1_PORT_1D" Name="PORT_MCLK_IN_0UT"/>
<Port Location="XS1_PORT_1C" Name="PORT_I2S_BCLK"/>
<Port Location="XS1_PORT_1B" Name="PORT_I2S_LRCLK"/>
<!-- Used for looping back clocks -->
<Port Location="XS1_PORT_1N" Name="PORT_NOT_IN_PACKAGE_1"/>
</Tile>

The first 3 ports listed, PORT_PDM_CLK, PORT_PDM_DATA and PORT_MCLK_IN_OUT are respectively p_pdm_clk,
p_pdm_mics and p_mclk. The value in the Location attribute (e.g. XS1_PORT_1G) is the port name as you will
find it in your package documentation.

In this case, either PORT_PDM_CLK or XS1_PORT_1G can be used in code to identify this port.

3.1.3 Declaring Resources

Once the ports and clock blocks to be used have been indentified, these resources can be represented in code
using a pdm_rx_resources_t struct. The following is an example of declaring resources in a DDR configuration.
See pdm_rz_resources_t, PDM_RX_RESOURCES_SDR() and PDM_RX_RESOURCES_DDR () for more details.

pdm_rx_resources_t pdm_res = PDM_RX_RESQURCES_DDR(
PORT_MCLK_IN_QOUT,
PORT_PDM_CLK,
PORT_PDM_DATA,
(continues on next page)



Mic Array Library - Programming Guide

(continued from previous page)

XS1_CLKBLK_1,
XS1_CLKBLK_2);

Note that this is not necessary in applications using the vanilla model.

3.1.4 Other Resources

In addition to ports and clock blocks, there are also several other hardware resource types used by 1ib_mic_array
which are worth considering. Running out of any of these will preclude the mic array from running correctly (if at
all)

+ Threads - At least one hardware thread is required to run the mic array component.

+ Compute - The mic array unit will require a fixed number of MIPS (millions of instructions per second) to
perform the required processing. The exact requirement will depend on the configuration used.

+ Memory - The mic array requires a modest amount of memory for code and data. (see Mic Array Resource
Usage).

+ Chanends - At least 4 chanends must be available for signaling between threads/sub-components.

3.2 Vanilla Model

Mic array configuration with the vanilla model is achieved mostly through the application’s build system configu-
ration.

In the /etc/vanilla directory of the 1ib_mic_array repository are a source and header file which are not com-
piled with (or on the include path) of the library. Configuring the mic array using the vanilla model means adding
those files to your application’s build (not the library target), and defining several compile options which tell it how
to behave.

3.2.1 Vanilla - CMake Macro

To simplify this further, a CMake macro called mic_array_vanilla_add () has been included with the build sys-
tem.

mic_array_vanilla_add() takes several arguments:
+ TARGET_NAME - The name of the CMake application target that the vanilla mode source should be added to.
+ MCLK_FREQ - The frequency of the master audio clock, in Hz.
+ PDM_FREQ - The desired frequency of the PDM clock, in Hz.
+ MIC_COUNT - The number of microphone channels to be captured.

+ SAMPLES_PER_FRAME - The size of the audio frames produced by the mic array unit (frames will be 2 dimen-
sional arrays with shape (MIC_COUNT , SAMPLES_PER_FRAME)).

3.2.2 Vanilla - Optional Configuration

Though not exposed by themic_array_vanilla_add () macro, several additional configuration options are avail-
able when using the vanilla model. These are all configured by adding defines to the application target.



Mic Array Library - Programming Guide

3.2.3 Vanilla - Initializing and Starting

Once the configuration options have been chosen, initializing and starting the mic array at run-time is easily
achieved. Two function calls are necessary, both are included through mic_array_vanilla.h (which was added
to your include path through your build configuration).

First, during application initialization, the function ma_vanilla_init (), which takes no arguments, must be
called. This will configure the hardware resources and install the PDM rx service as an ISR, but will not actu-
ally start any threads or PDM capture.

Once any remaining application initialization is complete, PDM capture and processing is started by calling
ma_wvanilla_task(). ma_vanilla_task() is a blocking call which takes a single argument which is the cha-
nend that will be used to transmit audio frames to subsequent stages of the processing pipeline. Usually the call
toma_vanilla_task() will be placed directly ina par {...} block along with other threads to be started on the
tile.

Note: Bothma_vanilla_init() andma_vanilla_task() must be called from the core which will host the dec-
imation thread.

3.3 Prefab Model

The lib_mic_array library has a C++namespacemic_array: : prefab which contains class templates for typical
mic array setups using common sub-components. The templates in the mic_array: : prefab namespace hide
most of the complexity (and unneeded flexibility) from the application author, so they can focus only on pieces
they care about.

Note: As of version 5.0.1, only one prefab class template, BasiclficArray, has been defined.

To configure the mic array using a prefab, you will need to add a C++ source file to your application. NB: This will
end up looking a lot like the contents of mic_array_vanilla.cpp when you are through.

3.3.1 Prefab - Declare Resources

The example in this section will use 2 microphones in a DDR configuration with DC offset elimination enabled,
and using 128-sample frames. The resource IDs used may differ than those required for your application.

pdm_res will be used to identify the ports and clocks which will be configured for PDM capture.

Within a C++ source file:

#include "mic_array/mic_array.h"

#define MIC_COUNT 2 // 2 mics
#define DCOE_ENABLE true // DCOE on
#define FRAME_SIZE 128 // 128 samples per frame

pdm_rx_resources_t pdm_res = PDM_RX_RESQURCES_DDR(
PORT_MCLK_IN_QUT,
PORT_PDM_CLK,
(continues on next page)



Mic Array Library - Programming Guide

(continued from previous page)
PORT_PDM_DATA,
MIC_ARRAY_CLK1,
MIC_ARRAY_CLK2);

3.3.2 Prefab - Allocate MicArray

The C++ class template MicArray is central to the mic array unit in this library. The class templates defined in
themic_array: :prefab namespace each derive frommic_array: :MicArray.

Define and allocate the specific implementation of MicArray to be used.

// Using the full name of the class could become cumbersome. Using an alias.
using TMicArray = mic_array: :prefab::BasicMicArray<
MIC_COUNT, FRAME_SIZE, DCOE_ENABLED>
// Allocate mic array
TMicArray mics = TMicArray();

Now the mic array unit has been defined and allocated. The template parameters supplied (e.g. MIC_COUNT and
FRAME_SIZE) are used to calculate the size of any data buffers required by the mic array, and so the mics object
is self-contained, with all required buffers being statically allocated. Additionally, class templates will ultimately
allow unused features to be optimized out at build time. For example, if DCOE is disabled, it will be optimized out
at build time so that at run time it won't even need to check whether DCOE is enabled.

3.3.3 Prefab - Init and Start Functions

Now a couple functions need to be implemented in your C++ file. In most cases these functions will need to be
callable from C or XC, and so they should not be static, and they should be decorated with extern "C" (or the
MA_C_API preprocessor macro provided by the library).

First, a function which initializes the MicArray object and configures the port and clock block resources. The
documentation for BasicliicArray indicates any parts of the MicArray object that need to be initialized.

#define MCLK_FREQ 24576000
#define PDM_FRE(Q 3072000

MA_C_API
void app_init() {
// Configure clocks and ports

const unsigned mclk_div = mic_array_mclk_divider (MCLK_FREQ, PDM_FREQ) ;
mic_array_resources_configure(&pdm_res, mclk_div);

// Initialize the PDM rz service
mics.PdmRx.Init(pdm_res.p_pdm_mics);

app_init () can be called from an XC main () during initialization.

10 4



Mic Array Library - Programming Guide

Assuming the PDM rx service is to be run as an ISR, a second function is used to actually start the mic array unit.
This starts the PDM clock, install the ISR and enter the decimator thread’'s main loop.

MA_C_API

void app_mic_array_task(chanend_t c_audio_frames) {
mics.SetOutputChannel (c_audio_frames) ;

// Start the PDM clock
mic_array_pdm_clock_start (&pdm_res) ;

mics.InstallPdmRxISR();
mics.UnmaskPdmRxISR() ;

mics.ThreadEntry() ;
¥

Now a callto app_mic_array_task() with the channelto send frames on can be placed inside apar {...} block
to spawn the thread.

1 y,



4 Decimator Stages

The mic array unit provided by this library uses a two-stage decimation process to convert a high sample rate
stream of (1-bit) PDM samples into a lower sample rate stream of (32-bit) PCM samples.

Below is a simplified model of the mic array unit.

. . - - - - - - . . - . . . I
I Decimator :
' I
i Stage 1 Stage 2
Por A = Decimating — B Decimating _ App
I FIR Filter FIR Filter I
I
I
! Stream A - ( 1-bit) PDM samples (@ PDM_FREQ sampf/sec |
1 Stream B - (32-bit) PCM samples @ (PDM_FREQ/32) samp/sec
I Stream C - (32-bit) PCM samples (@ (PDM_FREQ/(32*52_DEC_FACTOR)) samp/sec I
I

The first stage filter is a decimating FIR filter with a fixed tap count (S1_TAP_COUNT) of 256 and a fixed decimation
factor (S1_DEC_FACTOR) of 32.

The second stage decimator is a fully configurable FIR filter with tap count S2_TAP_COUNT and a decimation factor
of S2_DEC_FACTOR (this can be 1).

4.1 Decimator Stage 1

For the first stage decimating FIR filter, the actual filter coefficients used are configurable, so an application is
free to use a custom first stage filter, as long as the tap count is 2566. This library also provides coefficients for
the first stage filter, whose filter characteristics are adequate for most applications.

4.1.1 Filter Implementation (Stage 1)

The input to the first stage decimator (here called “Stream A”) is a stream of 1-bit PDM samples with a sample
rate of PDM_FREQ. Rather than each PDM sample representing a value of 0 or 1, each PDM sample represents a
value of either +1 or -1. Specifically, on-chip and in-memory, a bit value of 0 represents +1 and a bit value of 1
represents -1.

The output from the first stage decimator, Stream B, is a stream of 32-bit PCM samples with a sample rate of
PDM_FREQ/S1_DEC_FACTOR = PDM_FREQ/32. For example, if PDM_FREQ is 3.072 MHz, then Stream B's sample rate
is 96.0 kHz.

The first stage filter is structured to make optimal use of the XCore XS3 vector processing unit (VPU), which can
compute the dot product of a pair of 256-element 1-bit vectors in a single cycle. The first stage uses 256 16-bit
coefficients for its filter taps.

The signature of the filter function is

int32_t fir_1x16_bit(uint32_t signal[8], uint32_t coeff_1[]);

12 4



Mic Array Library - Programming Guide

Each time 32 PDM samples (1 word) become available for an audio channel, those samples are shifted into the
8-word (256-bit) filter state, and a call to fir_1x16_bit results in 1 Stream B sample element for that channel.

The actual implementation for the first stage filter can be found in src/fir_1x16_bit.S. Additional usage details
can be found in api/etc/fir_1x16_bit.h.

Note that the 256 16-bit filter coefficients are not stored in memory as a standard coefficient array (i.e. int16_t
filter[256] = {b[0], b[1], ... };). Rather in order to take advantage of the VPU, the coefficients must be
rearranged bit-by-bit into a block form suitable for VPU processing. See the section below on filter conversion if
supplying a custom filter for stage 1.

4.1.2 Provided Filter (Stage 1)

This library provides filter coefficients that may be used with the first stage decimator. These coefficients are
available in your application through the header mic_array/etc/filters_default.h as stagel_coef.

Filter Characteristics (Stage 1)

The plot below indicates the frequency response of the provided first stage decimation filter.

Stage 1 Decimator - Frequency Response

0 Lo
_20 -
- —100
_40 -
- —200
m uwi
T —60 - &
7] =]
k= ©
2 =
= - -300 5
E 80 2
< <
-100 -
L —400
-120 |
- —500
-140 -

T
0.0 0.5 1.0 15 2.0 2.5 3.0
Frequency [rad/sample]

13



Mic Array Library - Programming Guide

4.1.3 Filter Conversion Script

Taking a set of floating-point coefficients, quantizing them into 16-bit coefficients and '‘boggling’ them into the
correct memory layout can be a tricky business. To simplify this process, this library provides a Python (3) script
which does this process for you.

The script can be found in this repository at script/stagel.py.

4.2 Decimator Stage 2

An application is free to supply its own second stage filter. This library also provides a second stage filter whose
characteristics are adequate for many or most applications.

4.2.1 Filter Implementation (Stage 2)
The input to the second stage decimator (here called “Stream B”) is the stream of 32-bit PCM samples emitted
from the first stage decimator with a sample rate of PDM_FREQ/32.

The output from the second stage decimator, Stream C, is a stream of 32-bit PCM samples with a sample rate of
PDM_FREQ/ (32*S2_DEC_FACTOR). For example, if PDM_FREQ is 3.072 MHz, and S2_DEC_FACTOR is 6, then Stream
C's sample rate (the sample rate received by the main application code) is

3.072 MHz / (32*6) = 16 kHz

The second stage filter uses the 32-bit FIR filter implementation from lib_xcore_math. See
xs3_filter_fir_s32() inthat library for more implementation details.

4.2.2 Provided Filter (Stage 2)

This library provides a filter suitable for the second stage decimator. It is available in your application through the
header mic_array/etc/filters_default.h.

For the provided filter S2_TAP_COUNT = 65, and S2_DEC_FACTOR = 6.

Filter Characteristics (Stage 2)

The plot below indicates the frequency response of the provided second stage decimation filter.

14 4


https://github.com/xmos/lib_xcore_math

15

Amplitude [dB]

Mic Array Library - Programming Guide

Stage 2 Decimator - Frequency Response

—20

=40 4

_60 -

_80 -

—100 4

I

I
L

——
—

'vmﬂﬂnﬂﬂﬁﬂﬂnﬂﬂnnn[ﬂnnnnnnnr

- 0.0

r—5.0

F—7.5

r—10.0

-—12.5

r—15.0

-—17.5

0.0

0.5 1.0 1.5 2.0
Frequency [rad/sample]

2.5 3.0

Angle (radians)



5 Sample Filters

Following the two-stage decimation procedure is an optional post-processing stage called the sample filter. This
stage operates on each sample emitted by the second stage decimator, one at a time, before the samples are
handed off for framing or transfer to the rest of the application’s audio pipeline.

Note: This is represented by the SampleFilter sub-component of the ¥icArray class template.

An application may implement its own sample filter in the form of a C++ class which implements the Filter ()
function as required by MicArray. See the implementation of DcoeSampleFilter for a simple example.

5.1 DC Offset Elimination

The current version of this library provides a simple IIR filter called DC Offset Elimination (DCOE) that can be used
as the sample filter. This is a high-pass filter meant to ensure that each audio channel will tend towards a mean
sample value of zero.

5.1.1 Enabling/Disabling DCOE

Whether the DCOE filter is enabled by default and how to enable or disable it depends on which approach your
project uses to include the mic array component in the application.

Vanilla Model

If your project uses the vanilla model (see Vanilla API) to include the mic array unit in your application, then DCOE
is enabled by default. To disable DCOE your build script must add a compiler option to your application target
that sets the MIC_ARRAY_CONFIG_USE_DC_ELIMINATION preprocessor macro to the value 0.

For example, in a typical application’s CMakeLists . txt, that may look like the following.

# Gather sources and create application target
# ...
# Add vanilla source to application build
mic_array_vanilla_add(my_app ${MCLK_FREQ} ${PDM_FREQ}
${MIC_COUNT} ${FRAME_SIZE} )
# oo
# Disable DCOE
target_compile_definitions(my_app
PRIVATE MIC_ARRAY_CONFIG_USE_DC_ELIMINATION=0 )

Prefab Model

If your project instantiates the BasicllicArray class template to include the mic array unit, DC offset elimination
is enabled or disabled with the USE_DCOE boolean template parameter (there is no default).

16 4



Mic Array Library - Programming Guide

template <unsigned MIC_COUNT, unsigned FRAME_SIZE, bool USE_DCOE>
class BasicMicArray : public ...

The sample filter chosen is based on the USE_DCOE template parameter when the class template gets instanti-
ated. If true, DcoeSampleFilter will be selected as the MicArray SampleFilter sub-component. Otherwise
NopSampleFilter will be used.

Note: NopSampleFilter is a no-op filter — it does not modify the samples given to it and ultimately will be
completely optimized out at compile time.

For example, in your application source:

#include "mic_array/mic_array.h'

// Controls whether DCOE is enabled
static constexpr bool enable_dcoe = true;
auto mics = mic_array::prefab::BasicMicArray<MICS, FRAME_SIZE, enable_dcoe>();

General Model

If your project does not use either the vanilla or prefab models to include the mic array unit in your application, then
precisely how the DCOE filter is included may depend on the specifics of your application. In general, however,
the DCOE filter will be enabled by using DcoeSampleFilter as the TSampleFilter template parameter for the
MicArray class template.

For example, sub-classingmic_array: :MicArray as follows will enable DCOE for any MicArray implementation
deriving from that sub-class.

#include "mic_array/cpp/MicAdrray.hpp"
using namespace mic_array;

template <unsigned MIC_COUNT, class TDecimator,
class TPdmRx, class TOutputHandler>
class DcoeEnabledMicArray : public MicArray<MIC_COUNT, TDecimator, TPdmRx,
DcoeSampleFilter, TOutputHandler>
{

};

5.1.2 DCOE Filter Equation

As mentioned above, the DCOE filter is a simple IIR filter given by the following equation, where x[t] and x [t-1]
are the current and previous input sample values respectively, and y [t] and y[t-1] are the current and previous
output sample values respectively.

R = 255.0 / 256.0
y[t] = R * y[t-1] + x[t] - x[t-1]

17 4



Mic Array Library - Programming Guide

5.1.3 DCOE Filter Frequency Response

The plot below indicates the frequency response of DCOE filter.

DC Offset Elimination - Frequency Response

U .
—25 4 F 0.5
_5{] _
- 0.4
— =754 —
5
v L 03T
T -100 s
= W
a —
E 125 g
B - 0.2
—150 |
0.1
—175 1
—200 1 - 0.0

T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency [rad/sample]

18 4



6 Software Structure

The core of 1ib_mic_array are a set of C++ class templates representing the mic array unit and its sub-
components.

The template parameters of these class templates are (mainly) used for two different purposes. Non-type tem-
plate parameters are used to specify certain quantitative configuration values, such as the number of microphone
channels or the second stage decimator tap count. Type template parameters, on the other hand, are used for
configuring the behavior of sub-components.

6.1 High-Level View

At the heart of the mic array APl is the ¥icArray class template.

Note: All classes and class templates mentioned are in the mic_array C++ namespace unless otherwise spec-
ified. Additionally, this documentation may refer to class templates (e.g. MicArray) with unbound template pa-
rameters as “classes” when doing so is unlikely to lead to confusion.

The MicArray class template looks like the following:

template <unsigned MIC_COUNT,
class TDecimator,
class TPdmRx,
class TSampleFilter,
class TOutputHandler>
class MicArray;

Here the non-type template parameter MIC_COUNT indicates the number of microphone channels to be captured
and processed by the mic array unit. Most of the class templates have this as a parameter.

A MicArray object comprises 4 sub-components:

Member Field Component Class | Responsibility

PdmRz TPdmRx Capturing PDM data from a port.
Decimator TDecimator 2-stage decimation on blocks of PDM data.
SampleFilter TSampleFilter Post-processing of decimated samples.

OutputHandler | TOutputHandler | Transferring audio data to subsequent pipeline stages.

Each of the MicArray sub-components has a type that is specified as a template parameter when the class
template is instantiated. MicArray requires the class of each of its sub-components to implement a certain
minimal interface. The MicArray object interacts with its sub-components using this interface.

Note: Abstract classes are not used to enforce this interface contract. Instead, the contract is enforced (at
compile time) solely in how the MicArray object makes use of the sub-component.

The following diagram conceptually captures the flow of information through the MicArray sub-components.

19 y,



Mic Array Library - Programming Guide

e e e - - -

|
I MicArray I
| |
PDOM Mics | I
to POM Samples—————— PdmEX
XCORE Port | |
| PDM Sample Elocks |
| |
I —_— Decimator g I
| |
Decimated Sample
| |
1 e Sample Filter |
| |
| Filtered Sample |
XCORE Channel | |
to #4———Samples or Frames———— Output Handler  «€———
Consumer thread | |
| |

Note: MicArray does not enforce the use of an XCore port for collecting PDM samples or an XCore channel for
transferring processed data. This is just the typical usage.

6.1.1 Mic Array / Decimator Thread

Aside from aggregating its sub-components into a single logical entity, the MicArray class template also holds
the high-level logic for capturing, processing and coordinating movement of the audio stream data.

The following code snippet is the implementation for the main mic array thread (or “decimation thread”; not to be
confused with (optional) PDM capture thread).

void mic_array: :MicArray<MIC_COUNT,TDecimator,TPdmRx,
TSampleFilter,
TOutputHandler>: : ThreadEntry ()
{
int32_t sample_out[MIC_COUNT] = {0};

while(1){
uint32_t* pdm_samples = PdmRx.GetPdmBlock() ;
Decimator.ProcessBlock(sample_out, pdm_samples);
SampleFilter.Filter (sample_out) ;
OutputHandler.OutputSample (sample_out) ;
}
}

The thread loops forever, and on each iteration

20 4



Mic Array Library - Programming Guide

+ Requests a block of PDM sample data from the PDM rx service. This is a blocking call which only returns
once a complete block becomes available.

+ Passes the block of PDM sample data to the decimator to produce a single output sample.
+ Applies a post-processing filter to the sample data.

+ Passes the processed sample to the output handler to be transferred to the next stage of the processing
pipeline. This may also be a blocking call, only returning once the data has been transferred.

Note that the MicArray object doesn't care how these steps are actually implemented. For example, one output
handler implementation may send samples one at a time over a channel. Another output handler implementation
may collect samples into frames, and use a FreeRTOS queue to transfer the data to another thread.

6.1.2 Curiously Recurring Template Pattern

The C++ API of this library makes heavy use of the Curiously Recurring Template Pattern (CRTP).

Instead of providing flexibility through abstract classes or polymorphism, CRTP achieves flexibility through the
use of class templates with type template parameters. As with derived classes and virtual methods, the CRTP
template parameter must follow a contract with the class template where it implements one or more methods
with specific names and signatures that the class template directly calls.

There are a couple notable advantages of using CRTP over polymorphic behavior. With CRTP flexibility does not
generally come with the same run-time costs (in terms of both compute and memory) as polymorphic solutions.
This is because the CRTP class template always knows the concrete type of any objects it uses at compile time.
This avoids the need for run time type information or virtual function tables. This allows compile time optimiza-
tions can be made which may not be otherwise available. This in-turn allows many function calls to be inlined, or
in some cases, entirely eliminated.

Additionally, while not strictly an example of CRTP, integer template parameters are also heavily used in class
templates. The two main advantages of this are that it allows objects to encapsulate their own (statically allo-
cated) memory, and that it allows the compiler to make compile time loop optimizations that it may not otherwise
be able to make.

The downside to CRTP is that it tends to lead to highly verbose class type names, where templated classes end
up with type parameter assignments are themselves templated classes with their own template parameters.

6.1.3 Sub-Component Initialization

Each of MicArray's sub-components may have implementation-specific configuration or initialization require-
ments. Each sub-component is a public member of MicArray (see table above). An application can access a
sub-component directly to perform any type-specific initialization or other manipulation.

For example, the ChannelFrameTransmitter output handler class needs to know the chanend to be used
for sending samples. This can be initialized on a MicArray object mics with mics.OutputHandler.
SetChannel (c_sample_out).

6.2 Sub-Components

6.2.1 PdmRx

PdmRz, or the PDM rx service is the MicArray sub-component responsible for capturing PDM sample data, as-
sembling it into blocks, and passing it along so that it can be decimated.

21 4


https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Mic Array Library - Programming Guide

The MicArray class requires only that PdmRx implement GetPdmBlock (), a blocking call that returns a pointer to
a block of PDM data which is ready for further processing.

Generally speaking, PdmRx will derive from the PdmRzService class template. PdmRxService encapsulates the
logic of using an xCore port for capturing PDM samples one word (32 bits) at a time, and managing two buffers
where blocks of samples are collected. It also simplifies the logic of running PDM rx as either an interrupt or as
a stand-alone thread.

PdmRxService has 2 template parameters. The first is the BLOCK_SIZE, which specifies the size of a PDM sample
block (in words). The second, SubType, is the type of the sub-class being derived from PdmRxService. This is the
CRTP (Curiously Recurring Template Pattern), which allows a base class to use polymorphic-like behaviors while
ensuring that all types are known at compile-time, avoiding the drawbacks of using virtual functions.

There is currently one class template which derives from PdmRxService, called StandardPdmRzService.
StandardPdmRxService uses a streaming channel to transfer PDM blocks to the decimator. It also provides
methods for installing an optimized ISR for PDM capture.

6.2.2 Decimator

The Decimator sub-component encapsulates the logic of converting blocks of PDM samples into PCM sam-
ples. The TwoStageDecimator class is a decimator implementation that uses a pair of decimating FIR filters to
accomplish this.

The first stage has a fixed tap count of 256 and a fixed decimation factor of 32. The second stage has a config-
urable tap count and decimation factor.

For more details, see Decimator Stages.

6.2.3 SampleFilter

The SampleFilter sub-component is used for post-processing samples emitted by the decimator. Two imple-
mentations for the sample filter sub-component are provided by this library.

The vopSampleFilter class can be used to effectively disable per-sample filtering on the output of the decimator.
It does nothing to the samples presented to it, and so calls to it can be optimized out during compilation.

The DcoeSampleFilter class is used for applying the DC offset elimination filter to the decimator’s output. The
DC offset elimination filter is meant to ensure the sample mean for each channel tends toward zero.

For more details, see Sample Filters.

6.2.4 OutputHandler

The OutputHandler sub-component is responsible for transferring processed sample data to subsequent pro-
cessing stages.

There are two main considerations for output handlers. The first is whether audio data should be transferred
sample-by-sample or as frames containing many samples. The second is the method of actually transferring the
audio data.

The class ChannelSampleTransmitter sends samples one at a time to subsequent processing stages using an
xCore channel.

The FrameOutputHandler class collects samples into frames, and uses a frame transmitter to send the frames
once they're ready.

22 4



Mic Array Library - Programming Guide

6.3 Prefabs

One of the drawbacks to broad use of class templates is that concrete class names can unfortunately become
excessively verbose and confusing. For example, the following is the fully qualified name of a (particular) concrete
MicArray implementation:

mic_array: :MicArray<2,
mic_array: :TwoStageDecimator<2,6,65>,
mic_array: :StandardPdmRxService<2,2,6>,
mic_array: :DcoeSampleFilter<2>,
mic_array: :FrameOutputHandler<2,256,
mic_array: :ChannelFrameTransmitter>>

This library also provides a C++ namespace mic_array: : prefab which is intended to simplify construction of
MicArray objects where common configurations are needed.

The BasicllicArray class template uses the most typical component implementations, where PDM rx can be
run as an interrupt or as a stand-alone thread, and where audio frames are transmitted to subsequent processing
stages using a channel.

To demonstrate how BasicMicArray simplifies this process, observe that the following MicArray type is behav-
iorally identical to the above:

mic_array: :prefab::BasicMicArray<2,256,true>

23 4



/7 Mic Array Resource Usage

The mic array unit requires several kinds of hardware resources, including ports, clock blocks, chanends, hardware
threads, compute time (MIPS) and memory. Compared to previous versions of this library, the biggest advantage
to the current version with respect to hardware resources is a greatly reduced compute requirement. This was
made possible by the introduction of the VPU in the XMOS XS3 architecture. The VPU can do certain operations
in a single instruction which would take many, many instructions on previous architectures.

This page attempts to capture the requirements for each hardware type with relevant configurations.

Warning: The usage information below applies when the Vanilla API or prefab APIs are used. Resource usage
in an application which uses custom mic array sub-components will depend crucially on the specifics of the
customization.

7.1 Discrete Resources

Resource Count
port 3
clock block | 1 (SDR)
2 (DDR)
chanend 4
thread 1 (Vanilla)
Tor 2 (prefab)

7.1.1 Ports

In all configurations, the mic array unit requires 3 of the xcore.ai device's hardware ports. Two of these ports (for
the master audio clock and PDM clock) must be 1-bit ports. The third (PDM capture port) can be 1-, 4- or 8-bit,
depending on the microphone count and SDR/DDR configuration.

7.1.2 Clock Blocks

In applications which use an SDR microphone configuration, the mic array unit requires 1 of the xcore.ai device's
5 clock blocks. This clock block is used both to generate the PDM clock from the master audio clock and as the
PDM capture clock.

In applications which use a DDR microphone configuration, the mic array unit requires 2 of the xcore.ai device's
5 clock blocks. One clock is used to generate the PDM clock from the master audio clock, and the other is used
as the PDM capture clock (which must operate at different rates in a DDR configuration).

24 ).



Mic Array Library - Programming Guide

7.1.3 Chanends

Chanends are a hardware resource which allow threads (possibly running on different tiles) to communicate over
channels. The mic array unit requires 4 chanends. Two are used for communication between the PDM rx service
and the decimation thread. Two more are needed for transfering completed frames from the mic array unit to
other application components.

7.1.4 Threads

The prefab API can run the PDM rx service either as a stand-alone thread or as an interrupt in another thread. The
Vanilla API only supports running it as an interrupt. The Vanilla APl requires only on hardware thread. The prefab
API requires 1thread if PDM rx is used in interrupt mode, and 2 if PDM rx is a stand-alone thread..

Running PDM rx as a stand-alone thread modestly reduces the mic array unit's MIPS consumption by eliminating
the context switch overhead of an interrupt. The cost of that is one hardware thread.

Note: When configured as an interrupt, PDM rx ISR is typically configured on the decimation thread, but this is
not a strict requirement. The PDM rx interrupt can be configured for any thread on the same tile as the decimation
thread. They must be on the same tile because shared memory is used between the two contexts.

7.2 Compute

The compute requirement of the mic array unit depends strongly on the actual configuration being used. The
compute requirement is expressed in millions of instructions per second (MIPS) and is approximately linearly
related to many of the configuration parameters.

Each tile of an xcore.ai device has 8 hardware threads and a 5 stage pipline. The exact calculation of how many
MIPS are available to a thread is complicated, and is, in general, affected by both the number of threads being
used, as well as the work being done by each thread.

As a rule of thumb, however, the core scheduler will offer each thread a minimum of CORE_CLOCK_MHZ/8 millions
of instruction issue slots per second (~MIPS), and no more than CORE_CLOCK_MHZ/5 millions of issue slots per
second, where CORE_CLOCK_MHZ is the core CPU clock rate. With a core clock rate of 600 MHz, that means that
each core should expect at least 75 MIPS.

The MIPS values in the table below are estimates obtained using the demo applications in demo/measure_mips.

PDM Freq | S2DF | S2TC | PdmRx | 1 mic MIPS | 2 mic MIPS | 4 mic MIPS | 8 mic MIPS
3.072MHz | 6 65 ISR 10.65 22.00 TBD TBD
3.072MHz | 6 65 Thread | 9.33 19.37 TBD TBD
6.144 MHz | 6 65 ISR 21.26 43.89 TBD TBD
6.144MHz | 6 65 Thread | 18.66 38.73 TBD TBD
3.072MHz | 3 65 ISR 12.90 26.44 TBD TBD
3.072MHz | 3 65 Thread | 11.62 23.85 TBD TBD
3.072MHz | 6 130 ISR 1.7 23.04 TBD TBD
3.072MHz | 6 130 Thread | 9.86 20.42 TBD TBD
PDM Freq

Frequency of the PDM clock.

25 y,



Mic Array Library - Programming Guide

S2DF
Stage 2 decimation factor. Output sample rate is (PDM Freq / (32 * S2DF)).

S2TC
Stage 2 tap count.

PdmRx
Whether PDM capture is done in a stand-alone thread or in an ISR.

Measurements indicate that enabling or disabling the DC offset removal filter has little effect on the MIPS usage.
The selected frame size has only a slight negative correlation with MIPS usage.

7.3 Memory

The memory cost of the mic array unit has three parts: code, stack and data. Code is the memory needed to
store compiled instructions in RAM. Stack is the memory required to store intermediate results during function
calls, and data is the memory used to store persistant objects, variables and constants.

The stack memory requirement is minimal. The code memory requirement depends on the particular configura-
tion, but ranges from about 1600 bytes in a T mic configuration to about 2000 bytes in an 8 mic configuration.

Not included in the table is the space allocated for the first and second stage filter coefficients. The first stage filter
coefficients take a constant 523 bytes. The second stage filter coefficients use 4*S2TC bytes, where S2TC is the
stage 2 decimator tap count. The value shown inthe ‘data’ column of the tableisthe sizeof () the Basicliicdrray
that is instantiated. The table below indicates the data size for various configurations.

Mics | S2DF | S2TC | SPF | DCOE | Data Memory
1 6 65 16 On 504 B
2 6 65 16 On 968 B
4 6 65 16 On 1888 B
8 6 65 16 On 3728 B
1 6 65 16 On 768 B
2 6 130 16 On 1488 B
1 6 130 16 On 576 B
2 12 65 16 On 1112 B
1 12 65 160 | On 1080 B
2 6 65 160 | On 2120 B
1 6 65 16 Off 496 B
2 6 65 16 off 948 B

S2DF

Stage 2 decimator’s decimation factor.
S2TC

Stage 2 decimator’s tap count.

SPF
Samples per frame in frames delivered by the mic array unit.

DCOE
DC Offset Elimination

26 y,



8 Vanilla API

The Vanilla APl is a small optional APl which greatly simplifies the process of including a mic array unit in an
xcore.ai application. Most applications that make use of a PDM mic array will not have complicated needs from
the mic array software component beyond delivery of frames of audio data from a configurable set of micro-
phones at a configurable rate. This API targets that majority of applications.

The prefab API requires the application developer to have at least some minimal understanding of the objects
and classes associated with the mic array unit, and requires the developer to write some application-specific
code to configure and start the mic array. The Vanilla API (which builds on top of the prefab model) by contrast,
requires as little as two standard function calls, and instead moves the majority of the application logic into the
application’s build project.

Note: Why “Vanilla”? “Vanilla” was originally meant as a generic placeholder name, but no better name was ever
suggested.

8.1 How It Works

The Vanilla APl comprises two code files, etc/vanilla/mic_array_vanilla.cpp and etc/vanilla/
mic_array_vanilla.h which are not compiled as part of this library. Instead, if used, these are added to the
application target’s build. To control configuration, the source file relies on a set of pre-processor macros (added
via compile flags) which determine how the mic array unit will be instantiated.

The APl isincludedin an application by usinga CMake macro (mic_array_vanilla_add()) providedinthislibrary.
The macro updates the application’s sources, includes and compile definitions to include the API.

In the application code, two function calls are needed. First, ma_vanilla_init () is called to initialize the various
mic array sub-components, preparing for capture of PDM data. Then, to start capture the decimation thread is
started with ma_vanilla_task() as entrypoint. ma_vanilla_task() takes an XCore chanend as a parameter,
which tells it where completed audio frames should be routed.

Note: The Vanilla API runs the PDM rx service as an interrupt in the decimation thread. To run it as a separate
thread (for reduced total MIPS consumption) one of the lower-level APIs must be used.

As with the prefab API, audio frames are extracted from the mic array unit over a (non-streaming) channel using
the ma_ frame_rz () Of ma_frame_rz_transpose() functions.

Note: The Vanilla API uses the default filters provided with this library, and does not currently provide a way to
override this. To use custom filters, you must either use a lower-level APl or modify the vanilla API.

8.2 Configuration

Configuration with the Vanilla APl is achieved through compile definitions. The required definitions are provided
through the mic_array_vanilla_add () macro. There are several additional optional definitions.

27 y,



Mic Array Library - Programming Guide

8.2.1 mic_array_vanilla_add()

mic_array_vanilla_add() is the CMake macro used to add the Vanilla APl to an application.

macro( mic_array_vanilla_add
TARGET_NAME
MCLK_FREQ
PDM_FREQ
MIC_COUNT
SAMPLES_PER_FRAME )

TARGET _NAME
The name of the application’s CMake target. It is the target the Vanilla APl is added to.

MCLK_FREQ
The known frequency, in Hz, of the application's master audio clock. A typical frequency is 24576000
Hz. Note that this parameter is not configuring the master audio clock. (Equivalent compile definition:
MIC_ARRAY_CUNFIG_MCLK_FREQ)

PDM_FREQ
The desired frequency, in Hz, of the PDM clock. This should be an integer factor of MCLK_FREQ between 1
and 510. (Equivalent compile definition: MIC_ARRAY_CONFIG_PDM_FREQ)

MIC_COUNT
The number of PDM microphone channels to be captured. This API supports values of 1 (SDR), 2 (DDR),
4 (SDR) and 8 (SDR/DDR). This value must match the configuration (SDR/DDR) and port width of the
PDM capture port. That is, in an SDR port configuration, MIC_COUNT must equal the capture port width,
and in DDR port configuration, MIC_COUNT must be twice the port width. (Equivalent compile definition:
MIC_ARRAY_CONFIG_MIC_COUNT)

Note: This API does not support capturing only a subset of the capture port’'s channels, e.g. capturing only 3
channels on a 4-bit port. To accomplish this the prefab API should be used.

Note: Though listed under Optional Configuration below, if the microphones are in a DDR configuration and
MIC_COUNT is not 2, the application must also define MIC_ARRAY_CONFIG_USE_DDR.

SAMPLES_PER_FRAME is the number of samples (for each microphone channel) that will be delivered in each (non-
overlapping) frame retrieved by ma_frame_rx (). A minimum value of 1 is supported, to deliver samples one at a
time. The larger this value, the looser the real-time constraint on the thread receiving the mic array unit's output
(while also increasing the amount of audio data to be processed).

8.2.2 Optional Configuration

These are configuration parameters that receive default values but can be optionally overridden by
an application.  These can be defined in your application’s CMakeLists.txt using CMake's built-in
target_compile_definitions() command.

MIC_ARRAY_CONFIG_USE_DDR
Indicates whether the microphones are arranged in an SDR (0) or DDR (1) configuration. An SDR con-
figuration is one in which each port pin is connected to a single PDM microphone. A DDR configu-
ration is one which each port pin is connected to two PDM microphoes. Defaults to 0 (SDR), unless
MIC_ARRAY_CONFIG_MIC_COUNT is 2 in which case it defaults to 1 (DDR).

28 4



Mic Array Library - Programming Guide

MIC_ARRAY_CONFIG_USE_DC_ELIMINATION
Indicates whether the DC offset elmination filter should be applied to the output of the decimator. Set to 0
to disable or 1 to enable. Defaults to 1 (filter on).

The next three parameters are the identifiers for hardware port resources used by the mic array unit. They can
be specified as either the identifier listed in your device's datasheet (e.g. XS1_PORT_1D) or as an alias fort he port
listed in your application’s XN file (e.g. PORT_MCLK_IN_QUT). For example:

<Tile Number="0" Reference="tile[0]">
<Port Location="XS1_PORT_1D" Name="PORT_MCLK_IN_OUT"/>

</Tile>

MIC_ARRAY_CONFIG_PORT_MCLK
Identifier of the 1-bit port on which the device is receiving the master audio clock. Defaults to
PORT_MCK_IN_OUT

MIC_ARRAY_CONFIG_PORT_PDM_CLK
Identifier of the 1-bit port on which the device will signal the PDM clock to the microphones. Defaults to
PORT_PDM_CLK.

MIC_ARRAY_CONFIG_PORT_PDM_DATA
Identifier of the port on which the device will capture PDM sample data. The port width of this
port must match the MIC_COUNT parameter given to mic_array_vanilla_add() and the value of
MIC_ARRAY_CONFIG_USE_DDR. Defaults to PORT_PDM_DATA.

The final two parameters indicate which clock block resource(s) should be used to generate the PDM clock and the
capture clock. Anxcore.aidevice provides 5 hardware clock blocks for application use, identified as XS1_CLKBLK_1
through XS1_CLKBLK_5. The device's clock blocks are interchangeable, but if another component of your applica-
tion uses one of these defaults, you may need to change these parameters.

MIC_ARRAY_CONFIG_CLOCK_BLOCK_A
Clock block used as ‘clock A’ (see Getting Started). This clock block is used in both SDR and DDR configu-
rations.

MIC_ARRAY_CONFIG_CLOCK_BLOCK_B
Clock block used as ‘clock B’ (see Getting Started). This clock block is only needed in DDR configurations
and is ignored (not configured) in SDR configurations.

8.2.3 Vanilla API with other Build Systems

Using the Vanilla API with build systems other than CMake is simple.
+ Add the file etc/vanilla/mic_array_vanilla.cpp to the application’'s source files.
+ Add etc/vanilla/ (relative to repository root) to the application include paths.

+ Add the compile definitions for the parameters listed in the previous sections (each parameter beginning
with MIC_ARRAY_CONFIG_) to the compile options for mic_array_vanilla.cpp.

29 p,



9 API Reference

9.1 C++ API Reference

9.1.1 MicArray

template<unsigned MIC_COUNT, class TDecimator, class TPdmRx, class TSampleFilter, class TOutputHandler>
class MicArray
Represents the microphone array component of an application.
Like many classes in this library, FrameOutputHandler uses the Curiously Recurring Template Pattern.
Template Parameters

+ MIC_COUNT — The number of microphones to be captured by the /i c4rray’s PdmRx com-
ponent. For example, if using a 4-bit port to capture 6 microphone channels in a DDR
configuration (because there are no 3 or 6 pin ports) MIC_COUNT should be 8, because
that's how many must be captured, even if two of them are stripped out before passing
audio frames to subsequent application stages.

+ TDecimator — Type for the decimator. See Decimator.
+ TPdmRx — Type for the PDM rx service used. See PdmRx.
+ TSampleFilter — Type for the output filter used. See SampleFilter.

+ TOutputHandler — Type for the output handler used. See OutputHandler.

Public Functions

inline MicArray ()
Construct a MicArray.

This constructor uses the default constructor for each of its components, PdmRx, Decimator, Sample-
Filter, and OutputHandler.

inline MicArray (TPdmRx pdm_rx, TSamplefilter sample_filter, TOutputHandler output_handler)
Construct a ¥icArray.

This constructor uses the default constructor for its Decimator component.
The remaining components are initialized with the supplied objects.
Parameters
* pdm_rx — The PDM rx object.
+ sample_filter — The SampleFilter object.

+ output_handler — The OutputHandler object.

30 p,



Mic Array Library - Programming Guide

inline MicArray (TPdmRx pdm_rx, TOutputHandler output_handler)
Construct a ¥icArray
This constructor uses the default constructor for its Decimator and SampleFilter components.
The remaining components are initialized with the supplied objects.
Parameters
*+ pdm_rx — The PDM rx object.
* output_handler — The OutputHandler object.
void ThreadEntry ()
Entry point for the decimation thread.

This function does not return. It loops indefinitely, collecting blocks of PDM data from PdmRx (which
must have already been started), uses Decimator to filter and decimate the sample stream to the
output sample rate, applies any post-processing with SampleFilter, and then delivers the stream of
output samples through OutputHandler.

Public Members

TPdmRx PdmRx
The PDM rx service.

The template parameter TPdmRx is the concrete class implementing the microphone array’s PDM rx
service, which is responsible for collecting PDM samples from a port and delivering them to the deci-
mation thread.

TPdmRx is only required to implement one function, GetPdmBlock ():

uint32_t* GetPdmBlock() ;

GetPdmBlock () returns a pointer to a block of PDM data, formatted as expected by the decimator.
GetPdmBlock () is called from the decimator thread and is expected to block until a new full block of
PDM data is available to be decimated.

For example, StandardPdmRxService::GetPdmBlock() waits to receive a pointer to a block of PDM data
from a streaming channel. The pointer is sent from the PdmRx interrupt (or thread) when the block
has been completed. This is used for capturing PDM data from a port.

TDecimator Decimator

The Decimator.

The template parameter TDecimator is the concrete class implementing the microphone array’s dec-
imation procedure. TDecimator is only required to implement one function, ProcessBlock():

void ProcessBlock(
int32_t sample_out [MIC_COUNT],
uint32_t pdm_block[BLOCK_SIZE]);

ProcessBlock () takes a block of PDM samples via its pdm_block parameter, applies the appropriate
decimation logic, and outputs a single (multi-channel) sample sample via its sample_out parameter.
The size and formatting of the PDM block expected by the decimator depends on its particular imple-
mentation.



Mic Array Library - Programming Guide

A concrete class based on the mic_array:: TwoStageDecimator class template is used in the pre-
fab::BasicMicArray prefab.

TSampleFilter SampleFilter
The output filter.

The template parameter TSampleFilter is the concrete class implementing the microphone array’s
sample filter component. This component can be used to apply additional non-decimating, non-
interpolating filtering of samples. TSampleFilter() is only required to implement one function,
Filter():

void Filter(int32_t sample[MIC_COUNT]);

Filter () takes a single (multi-channel) sample from the decimator component’s output and may
update the sample in-place.

For example a sample filter based on the DcoeSampleFilter class template applies a simple first-order
[IR filter to the output of the decimator, in order to elminate the DC component of the audio signals.

If no additional filtering is required, the NopSampleFilter class template can be used for
TSampleFilter, which leaves the sample unmodified. In this case, it is expected that the call to Nop-
SampleFilter:Filter() will ultimately get completely eliminated at build time. That way no addition run-
time compute or memory costs need be introduced for the additional flexibility.

Even though TDecimator and TSampleFilter both (possibly) apply filtering, they are separate com-
ponents of the ¥ic4rray because they are conceptually independent.

A concrete class based on either the DcoeSampleFilter class template or the NopSampleFilter class
template is used in the prefab::BasicMicArray prefab, depending on the USE_DCOE parameter of that
class template.

TOutputHandler OutputHandler
The output handler.
The template parameter TOutputHandler is the concrete class implementing the microphone array’s
output handler component. After the PDM input stream has been decimated to the appropriate out-
put sample rate, and after any post-processing of that output stream by the sample filter, the output

samples must be delivered to another thread for any additional processing. It is the responsibility of
this component to package and deliver audio samples to subsequent processing stages.

TOutputHandler is only required to implement one function, OutputSample():

void OutputSample(int32_t sample[MIC_COUNTI);

OutputSample () is called exactly once for each mic array output sample. OutputSample () may block
if necessary until the subsequent processing stage ready to receive new data. However, the decimator
thread (in which OutputSample () is called) as a whole has a real-time constraint - it must be ready to
pull the next block of PDM data while it is available.

A concrete class based onthe FrameOutputHandler class template is used in the prefab::BasicMicArray
prefab.

Public Static Attributes

static constexpr unsigned MicCount = M/C_COUNT
Number of microphone channels.



Mic Array Library - Programming Guide

9.1.2 BasicMicArray

template<unsigned MIC_COUNT, unsigned FRAME_SIZE, bool USE_DCOE, unsigned MICS_IN = M/C_COUNT>

class BasicMicArray : public mic_array:MicArray<MIC_COUNT, TwoStageDecimator<MIC_COUNT,
STAGE2_DEC_FACTOR, STAGE2_TAP_COUNT>, StandardPdmRxService<MIC_COUNT, MIC_COUNT,
STAGE2_DEC_FACTOR>, std::conditional<USE_DCOE, DcoeSampleFilter<MIC_COUNT>,
NopSampleFilter<MIC_COUNT>>:type, FrameOutputHandler<MIC_COUNT, FRAME_SIZE,
ChannelFrameTransmitter>>

33

Class template for a typical bare-metal mic array unit.
This prefab is likely the right starting point for most applications.

With this prefab, the decimator will consume one device core, and the PDM rx service can be run either as
an interrupt, or as an additional thread. Normally running as an interrupt is recommended.

For the first and second stage decimation filters, this prefab uses the coefficients provided with this library.
The first stage uses a decimation factor of 32, and the second stage is configured to use a decimation
factor of 6.

To get 16 kHz audio output from the BasicMicArray prefab, then, the PDM clock must be configured to
3.072 MHz (3.072 MHz / (32 * 6) = 16 kHz).

Sub-Components
Being derived from mic_array::MicArray, aninstance of BasiclicArray has 4 sub-components respon-
sible for different portions of the work being done. These sub-components are PdmRx, Decimator,
SampleFilter and OutputHandler. See the documentation for ¥icArray for more details about
these.

Template Parameters Details

The template parameter MIC_COUNT is the number of microphone channels to be processed and out-
put.

The template parameter FRAME_SIZE is the number of samples in each output frame produced by
the mic array. Frame data is communicated using the API found in mic_array/frame_transfer.
h. Typically ma_ frame_rz() will be the right function to use in a receiving thread to retrieve audio
frames. ma_frame_rx () receives audio frames with shape (MIC_COUNT,FRAME_SIZE), meaning that
all samples corresponding to a given channel will end up in a contiguous block of memory. Instead
of ma_frame_rx(), ma_frame_rz_transpose() can be used to swap the dimensions, resulting in the
shape (FRAME_SIZE, MIC_COUNT).

Note that callstoma_frame_rx () orma_frame_rx_transpose () will block until a frame becomes avail-
able on the specified chanend.

If the receiving thread is not waiting to retrieve the audio frame from the mic array when it becomes
available, the pipeline may back up and cause samples to be dropped. It is the responsibility of the
application developer to ensure this does not happen.

The boolean template parameter USE_DCOE indicates whether the DC offset elimination filter should
be applied to the output of the second stage decimator. DC offset elimination is an IIR filter intended
to ensure audio samples on each channel tend towards zero-mean.

For more information about DC offset elimination, see Sample Filters .

If USE_DCOE is false, no further filtering of the second stage decimator’s output will occur.



Mic Array Library - Programming Guide

The template parameter MICS_IN indicates the number of microphone channels to be captured by
the PdmRx component of the mic array unit. This will often be the same as MIC_COUNT, but in some
applications, MIC_COUNT microphones must be physically connected to an XCore port which is not
MIC_COUNT (SDR) or MIC_COUNT/2 (DDR) bits wide.

In these cases, capturing the additional channels (likely not even physically connected to PDM
microphones) is unavoidable, but further processing of the additional (junk) channels can be
avoided by using MIC_COUNT < MICS_IN. The mapping which tells the mic array unit how to
derive output channels from input channels can be configured during initialization by calling
StandardPdmRzService: :MapChannels () onthe PdmRx sub-component of the BasicMicarray.

If the application uses an SDR microphone configuration (i.e. T microphone per port pin), then MICS_IN
must be the same as the port width. If the application is running in a DDR microphone configuration,
MICS_IN must be twice the port width. MICS_IN defaults to MIC_COUNT.

Allocation
Before a mic array unit can be started or initialized, it must be allocated.

Instances of BasiclficArray are self-contained with respect to memory, needing no external buffers to
be supplied by the application. Allocating an instance is most easily accomplished by simply declaring
the mic array unit. An example follows.

#include "mic_array/cpp/Prefab.hpp"

using AppMicArray = mic_array: :prefab::BasicMicArray<MICS,SAMPS,DCOE>;
AppMicArray mics;

Here, mics is an allocated mic array unit. The example (and all that follow) assumes the macros used
for template parameters are defined elsewhere.

Initialization
Before a mic array unit can be started, it must be initialized.

BasiclMicArray reads PDM samples from an XCore port, and delivers frames of audio data over an
XCore channel. To this end, an instance of BasiclficArray needs to be given the resource IDs of the
port to be read and the chanend to transmit frames over. This can be accomplished in either of two
ways.

If the resource IDs for the port and chanend are available as the mic array unit is being allocated, one
option is to explicitly construct the BasicliicArray instance with the required resource IDs using the
two-argument constructor:

using AppMicArray = mic_array:prefab::BasicMicArray<MICS,SAMPS,DCOE>;
AppMicArray mics(PORT_PDM_MICS, c_frames_out);

Otherwise (typically), these can be set using BasiclMicAdrray::SetPort(port_t) and
BasiclicArray: :SetlutputChannel (chanend_t) to set the port and channel respectively



35

Mic Array Library - Programming Guide

AppMicArray mics;

void app_init(port_t p_pdm_mics, chanend_t c_frames_out)
{

mics.SetPort(p_pdm_mics);

mics.SetOutputChannel (p_pdm_mics);
}

Next, the ports and clock block(s) used by the PDM rx service need to be configured ap-
propriately. This is not accomplished directly through the Basiciicdrray object. Instead, a
pdm_rz_resources_t struct representing these hardware resources is constructed and passed
to mic_array_resources_configure(). See the documentation for pdm_rz_resources_t and
mic_array_resources_configure() for more details.

Finally, if running BasicMicAdrray's PDM rx service within an ISR, before the mic array
unit can be started, the ISR must be installed. This is accomplished with a call to
BasiclMicArray: :InstallPdmRzISR (). Installing the ISR will not unmask it.

Begin Processing (PDM rx ISR)

After it has been initialized, starting the mic array unit with the PDM rx service running as an ISR, three
steps are required.

First, the PDM clock must be started. This is accomplished with a call to
mic_array_pdm_clock_start(). The same pdm_rz_resources_t that was passed to
mic_array_resources_configure() is given as an argument here.

Second, the PDM rx ISR that was installed during initialization must be unmasked. This is accom-
plished by calling BasiclicArray: : UnmaskPdmRzISR () on the mic array unit.

Finally, the mic array processing thread must be started. The entry point for the mic array thread is
BasicMicArray: :ThreadEntry() .

A typical pattern will include all three of these steps in a single function which wraps the mic array
thread entry point.

AppMicArray mics;
pdm_rx_resources_t pdm_res;

MA_C_API // alias for 'emtern "(C"'

void app_mic_array_task()

{
mic_array_pdm_clock_start (&pdm_res) ;
mics.UnmaskPdmRxISRQ) ;
mics.ThreadEntry();

}

Using this pattern, app_mic_array_task() is a C-compatible function which can be called from a
multi-tile main () in an XC file. Then, app_mic_array_task() is called directly fromapar {...} block.
For example,



36

Mic Array Library - Programming Guide

main(){
par {
on tile[1]: {
... // Do initialization stuff

par {
app_mic_array_task();

other_thread_on_tilel(); // other threads
}
}
}
}

Begin Processing (PDM Rx Thread)

The procedure for running the mic array unit with the PDM rx component running as a stand-alone
thread is much the same with just a couple key differences.

When running PDM rx as a thread, no call to BasicllicArray: : UnmaskPdmRzISR () is necessary. In-
stead, the application spawns a second thread (the first being the mic array processing thread) using
BasiclMicArray: :PdmRzThreadEntry () as the entry point.

mic_array_pdm_clock_start () must still be called, but here the requirement is that it be called from
the hardware thread on which the PDM rx component is running (which, of course, cannot be the mic
array thread).

Atypical application with a multi-tile XC main () will provide two C-compatible functions - one for each
thread:

MA_C_API

void app_pdm_rx_task()

{
mic_array_pdm_clock_start (&pdm_res) ;
mics.PdmRxThreadEntry () ;

}

MA_C_API

void app_mic_array_task()
{

mics.ThreadEntry () ;

}

Notice that app_mic_array_task() above is a thin wrapper for mics.ThreadEntry (). Unfortunately,
because the type of mics is a C++ class, mics.ThreadEntry() cannot be called directly from an XC
file (including the one containingmain()). Further, because a C++ class template was used, this library
cannot provide a generic C-compatible call wrapper for the methods on a 4 c4rray object. This unfor-
tunately meansitis necessary in some cases to create a thin wrapper such as app_mic_array_task ().

The threads are spawned from XC main using a par {...} block:



Mic Array Library - Programming Guide

main(){
par {
on tile[1]: {
... // Do initialization stuff

par {
app_mic_array_task();
app_pdm_rx_task();

other_thread_on_tilel(); // other threads
}
}
}
}

Real-Time Constraint

Once the PDM rx thread is launched or the PDM rx interrupt has been unmasked, PDM data will start
being collected and reported to the decimator thread. The application then must start the decimator
thread within one output sample time (i.e. sample time for the output of the second stage decimator)
to avoid issues.

Once the mic array processing thread is running, the real-time constraint is active for the thread con-
suming the mic array unit's output, and it must waiting to receive an audio frame within one frame
time.

Examples
This library comes with examples which demonstrate how a mic array unit is used in an actual ap-
plication. If you are encountering difficulties getting BasiclicArray to work, studying the provided
examples may help.

Note: BasiclicArray::InstallPdmRzISR () installsthe ISR onthe hardware thread that calls the method.
In most cases, installing it in the same thread as the decimator is the right choice.

Template Parameters
+ MIC_COUNT — Number of microphone channels.
- FRAME_SIZE — Number of samples in each output audio frame.
+ USE_DCOE — Whether DC offset elimination should be used.

Public Types

using TParent = MicArray<MIC_COUNT, TwoStageDecimator<MIC_COUNT, STAGE2_DEC_FACTOR,
STAGE2_TAP_COUNT>, StandardPdmRxService<MICS_IN, MIC_COUNT, STAGE2_DEC_FACTOR>,
typename std::conditional<USE_DCOE, DcoeSampleFilter<MIC_COUNT >,
NopSampleFilter<MIC_COUNT>>:type, FrameOQutputHandler<MIC_COUNT, FRAME_SIZE,
ChannelFrameTransmitter>>

37 4



Mic Array Library - Programming Guide

TParent is an alias for this class template from which this class template inherits.

Public Functions

inline constexpr BasicMicArray () noexcept
No-argument constructor.

This constructor allocates the mic array and nothing more.
Call BasicMicArray:Init() to initialize the decimator.

Subsequent calls to BasiclicAdrray: :SetPort() and BasiclicArray::SetOutputChannel () will
also be required before any processing begins.

void Init ()
Initialize the decimator.

BasicMicArray (port_t p_pdm_mics, chanend_t c_frames_out)
Initialzing constructor.

If the communication resources required by BasiclicArray are known at construction time, this con-
structor can be used to avoid further initialization steps.

This constructor does not install the ISR for PDM rx, and so that must be done separately if PDM rx is
to be run in interrupt mode.

Parameters
* p_pdm_mics — Port with PDM microphones

+ c_frames_out — (non-streaming) chanend used to transmit frames.

void SetPort (port_t p_pdm_mics)
Set the PDM data port.

This function calls this->PdmRx.Init (p_pdm_mics).
This should be called during initialization.

Parameters
p_pdm_mics — The port to receive PDM data on.

void SetOutputChannel (chanend_t c_frames_out)
Set the audio frame output channel.

This function calls this->0utputHandler.FrameTx.SetChannel (c_frames_out).
This must be set prior to entrying the decimator task.

Parameters
c_frames_out — The channel to send audio frames on.

void PdmRxThreadEntry ()
Entry point for PDM rx thread.

This function calls this->PdmRx.ThreadEntry().

Note: This call does not return.

38 p,



39

void InstallPdmRxISR()
Install the PDM rx ISR on the calling thread.

This function calls this->PdmRx. InstallISR().

void UnmaskPdmRxISR()
Unmask interrupts on the calling thread.

This function calls this->PdmRx . UnmaskISR().

Mic Array Library - Programming Guide



Mic Array Library - Programming Guide

9.1.3 PdmRxService

template<unsigned BLOCK_SIZE, class SubType>

class PdmRxService

40

Collects PDM sample data from a port.

Derivatives of this class template are intended to be used for the TPdmRx template parameter of MicArray,
where it represents the MicArray::PdmRx component of the mic array.

An object derived from PdmRzService collects blocks of PDM samples from a port and makes them avail-
able to the decimation thread as the blocks are completed.

PdmRzService is a base class using CRTP. Subclasses extend PdmizService providing themselves as the
template parameter SubType.

This base class provides the logic for aggregating PDM data taken from a port into blocks,
and a subclass is required to provide methods SubType: :ReadPort (), SubType::SendBlock() and
SubType: :GetPdmBlock ().

SubType: :ReadPort () is responsible for reading T word of data from p_pdm_mics. See StandardPdmRxSer-
vice:ReadPort() as an example.

SubType: :SendBlock() is provided a block of PDM data as a pointer and is responsible for signaling that
to the subsequent processing stage. See StandardPdmRxService:SendBlock() as an example.

ReadPort () and SendBlock() are used by PdmRzService itself (when running as a thread, rather than ISR).

SubType: :GetPdmBlock () responsible for receiving a block of PDM data from SubType: : SendBlock() as
a pointer, deinterleaving the buffer contents, and returning a pointer to the PDM data in the format expected
by the mic array unit's decimator component. See StandardPdmRxService::GetPdmBlock() as an example.

GetPdmBlock() is called by the decimation thread. The pair of functions, SendBlock () and GetPdmBlock ()
facilitate inter-thread communication, SendBlock () being called by the transmitting end of the communi-
cation channel, and GetPdmBlock () being called by the receiving end.

Template Parameters
+ BLOCK_SIZE — Number of words of PDM data per block.

+ SubType — Subclass of PdmRzService actually being used.

Public Functions

void SetPort (port_t p_pdm_mics)
Set the port from which to collect PDM samples.

void ProcessNext ()
Perform a port read and if a new block has completed, signal.

void ThreadEntry ()
Entry point for PDM processing thread.

This function loops forever, calling Processiezt () with each iteration.

Public Static Attributes



Mic Array Library - Programming Guide

static constexpr unsigned BlockSize = BLOCK_SIZF
Number of words of PDM data per block.

Typically (e.g. TwoStageDecimator) BLOCK_SIZE will be exactly the number of words of PDM samples
required to produce exactly one new output sample for the mic array unit's output stream.

Once BlockSize words have been read into one of the block_data, buffers, PDM rx will signal to the
decimator thread that new PDM data is available for processing.

StandardPdmRxService

struct pdm_rx_isr_context_t

4

PDM rx interrupt configuration and context.

Public Members

port_t p_pdm_mics
Port on which PDM samples are received.

uint32_t *pdm_buffer[2]
Pointers to a pair of buffers used for storing captured PDM samples.

The buffers themselves are allocated by an instance of mic_array::PdmRxService. The ideais that while
the PDM rx ISR is filling one buffer, the decimation thread is busy processing the contents of the other
buffer. If the real-time constraint is maintained, the decimation thread will be finished with the contents
of its buffer before the PDM rx ISR fills the other buffer. Once full, the PDM rx ISR does a double buffer
pointer swap and hands the newly-filled buffer to the decimation thread.

unsigned phase
Tracks the completeness of the buffer currently being filled.

Each read of samples from p_pdm_mics gives one word of data. This variable tracks how many more
port reads are required before the current buffer has been filled.

unsigned phase_reset
The number of words to read from p_pdn_mics to fill a buffer.

chanend_t c_pdm_data

Streaming chanend the PDM rx ISR uses to signal the decimation thread that another buffer is full and
ready to be processed.

The streaming channel itself is allocated by mic_array::StandardPdmRxService, which owns the other
end of the channel.

unsigned credit
Used for detecting when the real-time constraint is violated by the decimation thread.

Each time the decimation thread is given a block of PDM data to process, credit is reset to 2. Each
time the PDM rx ISR hands a block of PDM data to the decimation thread, this is decremented.



Mic Array Library - Programming Guide

Deadlock Condition

mic_array::StandardPdmRxService uses a streaming channel to facilitate communication between
the two execution contexts used by the mic array, the decimation thread and the PDM rx ISR. A
streaming channel is used because it allows the contexts to operate asynchronously.

Achannel has a 2 word buffer, and as long as there is room in the buffer, an 0UT instruction putting a
word (inthis case, a pointer) into the channel is guaranteed not to block. This isimportant because
the PDM rx ISR is typically configured on the same hardware thread as the decimation thread.

If athread is blocked on an OUT instruction to a channel, in order to unblock the thread, an IN must
be issued on the other end of that channel. But because the PDM rx ISR is blocked, it cannot hand
control back to the decimation thread, which means the decimation thread can never issue an IN
instruction to unblock the ISR. The result is a deadlock.

Unfortunately, there is no way for a thread to query a chanend to determine whether it will block
if an OUT instruction is issued. That is why credit is used. Before issuing an 0UT t0 c_pdm_data,
the PDM rx ISR checks whether credit is non-zero. If so, the ISR issues the OUT instruction as
normal and decrements credit.

If credit is zero, the default behavior of PDM rx ISR is to raise an exception (ET_ECALL). This
reflects the idea that it is generally better if system-breaking errors loudly announce themselves
(at least by default). If using mic_array: StandardPdmRxService, this behavior can be changed by
passing false in a call to mic_array: StandardPdmRxService:AssertOnDroppedBlock(), which will
allow blocks of PDM data to be silently dropped (while still avoiding a permanent deadlock).

unsigned missed_blocks
Controls and records anti-deadlock behavior.
If the PDM rx ISR finds that credit is 0 when it's time to send a filled buffer to the decimation thread, it

uses missed_blocks to control whether the PDM rx ISR should raise an exception or silently drop the
block of PDM data.

If missed_blocks is -1 (its default value) an exception is raised. Otherwise missed_blocks is used to
record the number of blocks that have been quietly dropped.

pdm_rx_isr_context_t pdm_rx_isr_context

Configuration and context of the PDM rx ISR when mic_array::StandardPdmRxService is used in interrupt
mode.

pdm_rx_isr (pdm_rx_isr.S) directly allocates this object as configuration and state parameters required
by that interrupt routine.

static inline void enable_pdm_rx_isr(const port_t p_pdm_mics)

Configure port to use pdm_rx_isr as an interrupt routine.

This function configures p_pdm_mics to use pdm_rx_isr as its interrupt vector and enables the interrupt on
the current hardware thread.

This function does NOT unmask interrupts.

Parameters
p_pdm_mics — Port resource to enable ISR on.

template<unsigned CHANNELS_IN, unsigned CHANNELS_0UT, unsigned SUBBLOCKS>

class StandardPdmRxService : public mic_array:PdmRxService<CHANNELS_IN * SUBBLOCKS,
StandardPdmRxService<CHANNELS_IN, CHANNELS_OUT, SUBBLOCKS>>

42



43

Mic Array Library - Programming Guide

PDM rx service which uses a streaming channel to send a block of data by pointer.

This class can run the PDM rx service either as a stand-alone thread or through an interrupt.

Inter-context Transfer

A streaming channel is used to transfer control of the PDM data block between execution contexts
(i.e. thread->thread or ISR->thread).

The mic array unit receives blocks of PDM data from an instance of this class by calling GetPdmBlock(),
which blocks until a new PDM block is available.

Layouts

The buffer transferred by SendBlock() contains CHANNELS_IN*SUBBLOCKS words of PDM data
for CHANNELS_IN microphone channels. The words are stored in reverse order of arrival. See
mic_array::deinterleave_pdm_samples () for additional details on this format.

Within GetPdmBlock() (i.e. mic array thread) the PDM data block is deinterleaved and copied to an-
other buffer in the format required by the decimator component, which is returned by GetPdmBlock() .
This buffer contains samples for CHANNELS_OUT microphone channels.

Channel Filtering

In some cases an application may be required to capture more microphone channels than should
actually be processed by subsequent processing stages (including the decimator component). For
example, this may be the case if 4 microphone channels are desired but only an 8 bit wide port is
physically available to capture the samples.

This class template has a parameter both for the number of channels to be captured by the port
(CHANNELS_IN), as well as for the number of channels that are to be output for consumption by the
MicArray's decimator component (CHANNELS_QUT).

When the PDM microphones are in an SDR configuration, CHANNELS_IN must be the width (in bits)
of the XCore port to which the microphones are physically connected. When in a DDR configuration,
CHANNELS_IN must be twice the width (in bits) of the XCore port to which the microphones are physi-
cally connected.

CHANNELS_OUT is the number of microphone channels to be consumed by the mic array’s decimator
component (i.e. must be the same as the MIC_COUNT template parameter of the decimator compo-
nent). If all port pins are connected to microphones, this parameter will generally be the same as
CHANNELS_IN.

Channel Index (Re-)Mapping

The input channel index of a microphone depends on the pin to which it is connected. Each pin con-
nected to a port has a bit index for that port, given in the ‘Signal Description and GPIO’ section of your
package's datasheet.

Suppose an N-bit port is used to capture microphone data, and a microphone is connected to bit B of
that port. In an SDR microphone configuration, the input channel index of that microphone is B, the
same as the port bit index.



44

Mic Array Library - Programming Guide

In a DDR configuration, that microphone will be on either input channel index B or B+N, depending on
whether that microphone is configured for in-phase capture or out-of-phase capture.

Sometimes it may be desirable to re-order the microphone channel indices. This is likely the case, for
example, when CHANNELS_IN > CHANNELS_OUT.

By default output channels are mapped from the input channels with the same index. If CHANNELS _IN
> CHANNELS_OUT, this means that the input channels with the highest CHANNELS_IN-CHANNELS_QUT
indices are dropped by default.

The MapChannel () and MapChannels () methods can be used to specify a non-default mapping from
input channel indices to output channel indices. It takes a pointer to a CHANNELS_0UT-element array
specifying the input channel index for each output channel.
Template Parameters

+ CHANNELS_IN — The number of microphone channels to be captured by the port.

« CHANNELS_OUT - The number of microphone channels to be delivered by this
StandardPdmRzService instance.

+ SUBBLOCKS — The number of 32-sample sub-blocks to be captured for each microphone
channel.

Public Functions

uint32_t ReadPort ()

Read a word of PDM data from the port.

Returns
Auint32_t containing 32 PDM samples. If MIC_COUNT >= 2 the samples from each port
will be interleaved together.

void SendBlock (uint32_t block[CHANNELS_IN * SUBBLOCKS])

Send a block of PDM data to a listener.

Parameters
block — PDM data to send.

void Init (port_t p_pdm_mics)

Initialize this object with a channel and port.

Parameters
p_pdm_mics — Port to receive PDM data on.

void MapChannels (unsigned map[CHANNELS_OUT])

Set the input-output mapping for all output channels.
By default, input channel index k maps to output channel index k.

This method overrides that behavior for all channels, re-mapping each output channel such that output
channel k is derived from input channel map [k].

Note: Changing the channel mapping while the mic array unit is running is not recommended.

Parameters
map — Array containing new channel map.



Mic Array Library - Programming Guide

void MapChannel (unsigned out_channel, unsigned in_channel)
Set the input-output mapping for a single output channel.

By default, input channel index k maps to output channel index k.

This method overrides that behavior for a single output channel, configuring output channel
out_channel to be derived from input channel in_channel.

Note: Changing the channel mapping while the mic array unit is running is not recommended.

Parameters
* out_channel — Output channel index to be re-mapped.

« in_channel — New source channel index for out_channel.

void InstallISR()
Install ISR for PDM reception on the current core.

Note: This does not unmask interrupts.

void UnmaskISR()
Unmask interrupts on the current core.

uint32_t *GetPdmBlock ()
Get a block of PDM data.

Because blocks of PDM samples are delivered by pointer, the caller must either copy the samples or
finish processing them before the next block of samples is ready, or the data will be clobbered.

Note: Thisis a blocking call.

Returns
Pointer to block of PDM data.

void AssertOnDroppedBlock (bool doAssert)
Set whether dropped PDM samples should cause an assertion.

If doAssert is set to true (default), the PDM rx ISR will raise an exception (ET_CALL) if it is ready to
deliver a PDM block to the mic array thread when the mic array thread is not ready to receive it. If
false, dropped blocks can be tracked through pdm_rx_isr_context.missed_blocks.

45 ),



Mic Array Library - Programming Guide

9.1.4 TwoStageDecimator

template<unsigned MIC_COUNT, unsigned S2_DEC_FACTOR, unsigned S2_TAP_COUNT>

class TwoStageDecimator

46

First and Second Stage Decimator.

This class template represents a two stage decimator which converts a stream of PDM samples to a lower
sample rate stream of PCM samples.

Concrete implementations of this class template are meant to be used as the TDecimator template param-
eter in the MicArray class template.

Template Parameters
+ MIC_COUNT — Number of microphone channels.
+ S2_DEC_FACTOR — Stage 2 decimation factor.
+ S2_TAP_COUNT — Stage 2 tap count.

Public Functions

void Init (const uint32_t *s1_filter_coef, const int32_t *s2_filter_coef, const right_shift_t s2_filter_shr)
Initialize the decimator.

Sets the stage 1 and 2 filter coefficients. The decimator must be initialized before any calls to
ProcessBlock() .

s1_filter_coef points to a block of coefficients for the first stage decimator. This library provides
coefficients for the first stage decimator; see mic_array/etc/filters_default.h.

s2_filter_coef points to an array of coefficients for the second stage decimator. This library pro-
vides coefficients for the second stage decimator where the second stage decimation factor is 6; see
mic_array/etc/filters_default.h.

s2_filter_shr is the final right-shift applied to the stage 2 filter's accumulator prior to output. See
lib_xcore_math's documentation of filter_fir_s32_t for more details.

Parameters
- s1_filter_coef — Stage 1 filter coefficients.

This points to a block of coefficients for the first stage decimator. This library provides
coefficients for the first stage decimator.

See stagel_coef.
+ s2_filter_coef — Stage 2 filter coefficients.

This points to a block of coefficients for the second stage decimator. This library pro-
vides coefficients for the second stage decimator.

See stage2_coef.
+ s2_filter_shr — Stage 2 filter right-shift.
This is the output shift used by the second stage decimator.

See stage2_shr.


https://github.com/xmos/lib_xcore_math

Mic Array Library - Programming Guide

void ProcessBlock (int32_t sample_out[M/C_COUNT], uint32_t pdm_block[BLOCK_SIZE])
Process one block of PDM data.

Processes a block of PDM data to produce an output sample from the second stage decimator.

pdm_block contains exactly enough PDM samples to produce a single output sample from the second
stage decimator. The layout of pdm_block should (effectively) be:

struct {
struct {
// lower word indices are older samples.
// less significant bits in a word are older samples.
uint32_t samples[S2_DEC_FACTOR];
} microphone[MIC_COUNT]; // mic channels are in ascending order
} pdm_block;
A single output sample from the second stage decimator is computed and written to sample_out[].
Parameters
+ sample_out — Output sample vector.

* pdm_block — PDM data to be processed.

Public Members

unsigned DecimationFactor = S2_ DEC_FACTOR
Stage 2 decimator decimation factor.

unsigned TapCount = S2_TAP_COUNT
Stage 2 decimator tap count.

const uint32_t *filter_coef
Pointer to filter coefficients for Stage 1

uint32_t pdm_history[M/C_COUNT][8]
Filter state (PDM history) for stage 1 filters.

filter_fir_s32_t filters[MIC_COUNT]
Stage 2 FIR filters

iNt32_t filter_state[V/C_COUNTI[S2 TAP_COUNT] = {0}
Stage 2 filter stage.

Public Static Attributes

static constexpr unsigned BLOCK_SIZE = MIC_COUNT * S2_DEC_FACTOR
Size of a block of PDM data in words.



48

Mic Array Library - Programming Guide

static constexpr unsigned MicCount = MI/C_COUNT
Number of microphone channels.

static const struct mic_array:: TwoStageDecimator:[anonymous] Stage?2
Stage 2 decimator parameters



Mic Array Library - Programming Guide

9.1.5 SampleFilter

NopSampleFilter

template<unsigned MIC_COUNT>

class NopSampleFilter

SampleFilter which does nothing.

To be used as the TSampleFilter template parameter of MicArray when no post-decimation filtering is
desired.

Calls to VopSampleFilter: :Filter() are intended to be optimized out at compile time.

Template Parameters
MIC_COUNT — Number of microphone channels.

Public Functions

inline void Filter (int32_t sample[MI/C_COUNT])
Do nothing.

DcoeSampleFilter

template<unsigned MIC_COUNT>

class DcoeSampleFilter

49

Filter which applies DC Offset Elimination (DCOE).

To be used as the TSampleFilter template parameter of MicArray when DCOE is desired as post-
processing after the decimation filter.

The filter is a simple first-order IIR filter which applies the following filter equation:

R = 255.0 / 256.0
y[t] = R * y[t-1] + x[t] - x[t-1]

Template Parameters
MIC_COUNT — Number of microphone channels.

Public Functions

void Init ()
Initialize the filter states.

The filter states must be initialized prior to calls to Filter().

void Filter (int32_t sample[M/C_COUNT])
Apply DCOE filter on samples.

sample is an array of samples to be filtered, and is updated in-place.

The filter states must have been initialized with a call to 1n4t () prior to calling this function.



50

Parameters
sample — Samples to be filtered. Updated in-place.

Mic Array Library - Programming Guide



Mic Array Library - Programming Guide

9.1.6 OutputHandler

An OutputHandler is a class which meets the requirements to be used as the TOutputHandler template param-
eter of the Micdrray class template. The basic requirement is that it have a method:

This method is how the mic array communicates its output with the rest of the application’s audio processing
pipeline. MicArray calls this method once for each mic array output sample.

See Micdrray: : OutputHandler for more details.

FrameOutputHandler

template<unsigned MIC_COUNT, unsigned SAMPLE_COUNT, template<unsigned, unsigned> class
FrameTransmitter, unsigned FRAME_COUNT = 1>
class FrameQutputHandler

51

OutputHandler implementation which groups samples into non-overlapping multi-sample audio frames and
sends entire frames to subsequent processing stages.

This class template can be used as an OutputHandler with the MicArray class template. See MicAr-
ray::OutputHandler.

Classes derived from this template collect samples into frames. A frame is a 2 dimensional array with one
index corresponding to the audio channel and the other index corresponding to time step, e.g.:

int32_t frame[MIC_COUNT] [SAMPLE_COUNT];

Each call to OutputSample() adds the sample to the current frame, and then iff the frame is full, uses its
FrameTx component to transfer the frame of audio to subsequent processing stages. Only one of every
SAMPLE_COUNT calls to OutputSample() results in an actual transmission to subsequent stages.

With FrameOutputHandler, the thread receiving the audio will generally need to know how many micro-
phone channels and how many samples to expect per frame (although, strictly speaking, that depends
upon the chosen FrameTransmitter implementation).

Template Parameters
+ MIC_COUNT - The number of audio channels in each sample and each frame.

+ SAMPLE_COUNT — Number of samples per frame. The SAMPLE_COUNT template parameter
is the number of samples assembled into each audio frame. Only completed frames
are transmitted to subsequent processing stages. A SAMPLE_COUNT value of 1 effectively
disables framing, transmitting one sample for each call made to OutputSample.

+ FrameTransmitter — The concrete type of the FrameTx component of this class.

Like many classes in this library, FrameOutputHandler uses the Curiously Recurring Tem-
plate Pattern.

+ FRAME_COUNT — The number of frame buffers an instance of FramefutputHandler
should cycle through. Unless audio frames are communicated with subsequent process-
ing stages through shared memory, the default value of 1 is usualy ideal.

Public Functions



Mic Array Library - Programming Guide

inline FrameOutputHandler ()
Construct new FrameOutputHandler.

The default no-argument constructor for FrameTransmitter iS used to create FrameTx.

inline FrameQutputHandler (FrameTransmitter<MIC_COUNT, SAMPLE_COUNT> frame_tx)
Construct new FramelutputHandler.

Uses the provided FrameTransmitter to send frames.

Parameters
frame_tx — Frame transmitter for sending frames.

void OutputSample (int32_t sample[M/C_COUNT])
Add new sample to current frame and output frame if filled.

Parameters
sample — Sample to be added to current frame.

Public Members

FrameTransmitter<MIC_COUNT, SAMPLE_COUNT> FrameTx
FrameTransmitter used to transmit frames to the next stage for processing.

FrameTransmitter is the CRTP type template parameter used in this class to control how frames of
audio data are communicated with subsequent pipeline stages.

The type supplied for FrameTransmitter must be a class template with two integer template param-
eters, corresponding to this class’s MIC_COUNT and SAMPLE_COUNT template parameters respectively,
indicating the shape of the frame object to be transmitted.

The FrameTransmitter type is required to implement a single method:

void OutputFrame(int32_t frame[MIC_COUNT] [SAMPLE_COUNT]) ;

OutputFrame () is called once for each completed audio frame and is responsible for the details of how
the frame’s data gets communicated to subsequent stages. For example, the ChannelFrameTransmit-
ter class template uses an XCore channel to send samples to another thread (by value).

Alternative implementations might use shared memory or an RTOS queue to transmit the frame data,
or might even use a port to signal the samples directly to an external DAC.

ChannelFrameTransmitter
template<unsigned MIC_COUNT, unsigned SAMPLE_COUNT>

class ChannelFrameTransmitter

52

Frame transmitter which transmits frame over a channel.
This class template is meant for use as the FrameTransmitter template parameter of FrameOutputHandler.

When using this frame transmitter, frames are transmitted over a channel using the frame transfer APl in
mic_array/frame_transfer.h. Usually, a call to ma_frame_rz() (with the other end of c_frame_out as
argument) should be used to receive the frame on another thread.



53

Mic Array Library - Programming Guide

If the receiving thread is not waiting to receive the frame when OutputFrame() is called, that method will
block until the frame has been transmitted. In order to ensure there are no violations of the mic array’s
real-time constraints, the receiver should be ready to receive a frame as soon as it becomes available.

Frames can be transmitted between tiles using this class.

Note: While OutputFrame() is blocking, it will not prevent the PDM rx interrupt from firing.

Template Parameters
+ MIC_COUNT — Number of audio channels in each frame.

- SAMPLE_COUNT — Number of samples per frame.

Public Functions

inline ChannelFrameTransmitter ()
Construct a ChannelFrameTransmitter.

If this constructor is used, SetChannel() must be called to configure the channel over which frames are
transmitted prior to any calls to OutputFrame().

inline ChannelFrameTransmitter (Chanend_t c_frame_out)
Construct a ChannelFrameTransmitter.

The supplied value of c_frame_out must be a valid chanend.

Parameters
c_frame_out — Chanend over which frames will be transmitted.

void SetChannel (chanend_t c_frame_out)
Set channel used for frame transfers.

The supplied value of c_frame_out must be a valid chanend.

Parameters
c_frame_out — Chanend over which frames will be transmitted.

chanend_t GetChannel ()
Get the chanend used for frame transfers.

Returns
Channel to be used for frame transfers.

void OutputFrame (int32_t frame[MI/C_COUNT][SAMPLE_COUNT])
Transmit the specified frame.

See ChannelFrameTransmitter for additional details.

Parameters
frame — Frame to be transmitted.



Mic Array Library - Programming Guide

9.1.7 Misc

template<unsigned MIC_COUNT>
void mic_array: :deinterleave_pdm_samples (Uint32_t *samples, unsigned s2_dec_factor)

54

Deinterleave the channels of a block of PDM data.

PDM samples received on a port are shifted into a 32-bit buffer in such a way that the samples for each
microphone channel are all interleaved with one another. The first stage decimator, however, requires these
to be separated.

samples must point to a buffer containing (MIC_COUNT*s2_dec_factor) words of PDM data. Because the
decimation factor for the first stage decimator is a fixed value of 32, 32 PDM samples from each microphone
is enough to produce one output sample (a MIC_COUNT-element vector) from the first stage decimator.
32*s2_dec_factor PDM samples for each of the MIC_COUNT microphone channels is then exactly what
is required to produce a single output sample from the second stage decimator.

The PDM data will be deinterleaved in-place.

Oninput, the format of the buffer to which samples points is assumed to be such that the following function
will extract (only) the kth sample for microphone channel n (where k is a time index, not a memory index):

Input Format

unsigned get_sample(uint32_t* samples,
unsigned MIC_COUNT, unsigned s2_dec_factor,
unsigned n, unsigned k)

const end_word = MIC_COUNT * s2_dec_factor - 1; // chronologically first
const unsigned samp_per_word = 32 / MIC_COUNT;

const words_from_end = k / samp_per_word;

const uint32_t word_val = samples[end_word-words_from_end];

const unsigned bit_offset = (k 7 end_word) + mn;

return (word_val >> bit_offset) & 1;

}

Here, the words of samples are stored in reverse order (older samples are at higher word indices), and within
a word the oldest samples are the least significant bits. The LSb of a word is always microphone channel
0, and the MSb of a word is always microphone channel MIC_COUNT-1.

Upon return, the format of the buffer to which samples points will be such that the following function will
extract (only) the kth sample for microphone channel n:

Output Format

unsigned get_sample(uint32_t* samples,
unsigned MIC_COUNT, unsigned s2_dec_factor,
unsigned n, unsigned k)
{
const unsigned subblock = (s2_dec_factor-1)-(k/32);
const unsigned word_val = samples[subblock * MIC_COUNT + n];

(continues on next page)



Mic Array Library - Programming Guide

(continued from previous page)
return (word_val >> (k%32)) & 1;
}

Here, each word contains samples from only a single channel, with words at higher addresses
containing older samples. samples[0] contains the newest samples for microphone channel o,
and samples[MIC_COUNT-1] contains the newest samples for microphone channel MIC_COUNT-1.
samples [MIC_COUNT] contains the next-oldest set of samples for channel 0, and so on.

Template Parameters
MIC_COUNT — Number of channels represented in PDM data.

Oneof {1,2,4,8}
Parameters
+ samples — Pointer to block of PDM samples.

+ s2_dec_factor — Stage2 decimator decimation factor.

9.2 C API Reference

9.2.1 filters_default.h

The filters described below are the first and second stage filters provided by this library which are used with the
TwoStageDecimator class template by default.

Stage 1 - PDM-to-PCM Decimating FIR Filter

Decimation Factor: 32
Tap Count: 256

The first stage decimation FIR filter converts 1-bit PDM samples into 32-bit PCM samples and simultaneously
decimates by a factor of 32.

A typical input PDM sample rate will be 3.072M samples/sec, thus the corresponding output sample rate will be
96k samples/sec.

The first stage filter uses 16-bit coefficients for its taps. Because this is a highly optimized filter targeting the VPU
hardware, the first stage filter is presently restricted to using exactly 256 filter taps.

For more information about the example first stage filter supplied with the library, including frequency response
and steps for using a custom first stage filter, see Decimator Stages.

STAGE1_DEC_FACTOR
Macro indicating Stage 1 Decimation Factor.

This is the ratio of input sample rate to output sample rate for the first filter stage.

Note: In version 5.0 of lib_mic_array, this value is fixed (even if you choose not to use the default filter
coefficients).

55 4



Mic Array Library - Programming Guide

STAGE1_TAP_COUNT
Macro indicating Stage 1 Filter Tap Count.

This is the number of filter taps in the first stage filter.

Note: In version 5.0 of lib_mic_array, this value is fixed (even if you choose not to use the default filter
coefficients).

STAGE1_WORDS
Macro indicating Stage 1 Filter Word Count.

This is a helper macro to indicate the number of 32-bit words required to store the filter coefficients.

Note: Even though the coefficients are 16-bit, the related lib_mic_array structs and functions expect them
to be contained in an array of uint32_t, rather than an array of int16_t. There are two reasons for this. The
firstis that the VPU instructions require loaded data to start at a word-aligned (0 mod 4) address. uint32_t
allocated on the heap or stack are guaranteed by the compiler to be at word-aligned addresses. The second
reason is to mitigate possible confusion regarding the arrangement of the filter coefficients in memory. Not
only are the 16-bit coefficients not stored in order (e.g. b[0], b[1], b[2], ...) thebitsof individual 16-bit
coefficients are not stored together in memory. This is, again, due to the behavior of the VPU hardware.

const uint32_t stagel_coef[STAGET_WORDS]
Stage 1 PDM-to-PCM Decimation Filter Default Coefficients.

These are the default coefficients for the first stage filter.

Stage 2 - PCM Decimating FIR Filter

Decimation Factor: (configurable)
Tap Count: (configurable)

The second stage decimation FIR filter filters and downsamples the 32-bit PCM output stream from the first stage
filter into another 32-bit PCM stream with sample rate reduced by the stage 2 decimation factor.

A typical first stage output sample rate will be 96k samples/sec, a decimation factor of 6 (i.e. using the default
stage 2 filter) will mean a second stage output sample rate of 16k samples/sec.

The second stage filter uses 32-bit coefficients for its taps. A complete description of the FIR implementation is
outside the scope of this documentation, but it can be found in the ~xs3_filter_fir_s32_t~ documentation of
1lib_xcore_math.

In brief, the second stage filter coefficients are quantized to a Q1.30 fixed-point format with input samples treated
as integers. The tap outputs are added into a 40-bit accumulator, and an output sample is produced by apply-
ing a rounding arithmetic right-shift to the accumulator and then clipping the result to the interval [INT32_MAX,
INT32_MIN).

For more information about the example second stage filter supplies with the library, including frequency re-
sponse and steps for using a custom filter, see Decimator Stages.

56 y,



Mic Array Library - Programming Guide

STAGE2_DEC_FACTOR
Stage 2 Decimation Factor for default filter.

This is the ratio of input sample rate to output sample rate for the second filter stage.

While the second stage filter can be configured with a different decimation factor, this is the one used for
the filter supplied with this library.

STAGE2_TAP_COUNT
Stage 2 Filter tap count for default filter.

This is the number of filter taps associated with the second stage filter supplied with this library.

const int32_t stage2_coef[STAGE2_TAP_COUNT]
Stage 2 Decimation Filter Default Coefficients.

These are the default coefficients for the second stage filter.

const right_shift_t stage2_shr
Stage 2 Decimation Filter Default Output Shift.

This is the non-negative, rounding, arithmetic right-shift applied to the 40-bit accumulator to produce an
output sample.

9.2.2 pdm_resources.h

struct pdm_rx_resources_t
Collection of resources IDs required for PDM capture.

This struct is a container for the IDs of the XCore hardware resources used by the mic array unit's PdmRx
component for capturing PDM data from a port.

An object of this type will be used for initializing and starting the mic array unit.
Public Members

port_t p_mclk
Resource ID of the 1-bit port on which the master audio clock signal is received.

The master audio clock will be divided by a clock block to produce the PDM sample clock.

This port will be configured as an input.

port_t p_pdm_clk
Resource ID of the 1-bit port through which the PDM sample clock is signaled.
The PDM sample clock is used by the PDM microphones to trigger sample conversion.

This port will be configured as an output.

57 y,



Mic Array Library - Programming Guide

port_t p_pdm_mics
Resource ID of the port on which PDM samples are received.

In an SDR configuration, the number of microphone channels is the width of this port. In a DDR con-
figuration, the number of microphone channels is twice the width of this port.

This port will be configured as an input.

clock_t clock_a
Resource ID of the clock block used to derive the PDM clock from the master audio clock.

In SDR configurations this is also the PDM data capture clock.

clock_t clock_b
Resource ID of the clock block used only in DDR configurations to trigger reads of the PDM data.

If operating in an SDR configuration, clock_b is 0. A value of 0 is what indicates an SDR configuration
is being used.

PDM_RX_RESOURCES_SDR (P_MCLK, P_PDM_CLK, P_PDM_MICS, CLOCK_A)
Construct a pdm_rx_resources_t for an SDR configuration.

pdm_rz_resources_t.clock_b is initialized to 0, indicating an SDR configuration.
Parameters
+ P_MCLK — Master audio clock port resource ID.
+ P_PDM_CLK — PDM sample clock port resource ID.
+ P_PDM_MICS — PDM microphone data port resource ID.
+ CLOCK_A — PDM clock and capture clock block resource ID.

PDM_RX_RESOURCES_DDR (P_MCLK, P_PDM_CLK, P_PDM_MICS, CLOCK_A, CLOCK_B)
Construct a pdm_rx_resources_t for a DDR configuration.

Parameters
+ P_MCLK — Master audio clock port resource ID.
+ P_PDM_CLK — PDM sample clock port resource ID.
+ P_PDM_MICS — PDM microphone data port resource ID.
*+ CLOCK_A — PDM clock clock block resource ID.
+ CLOCK_B — PDM capture clock block resource ID.

9.2.3 setup.h

void mic_array_resources_configure(pdm_rx_resources_t *pdm_res, int divide)
Configure the hardware resources needed by the mic array.

Several hardware resources are needed to correctly run the mic array, including 3 ports and 1 or 2 clock
blocks (depending on whether SDR or DDR mode is used). This function configures these resources for
operation with the mic array.

The pdm_rz_resources_t structis a container for identifying precisely these resources. All three ports are
reset by this function; any existing port configuration will be clobbered.

58 y,



Mic Array Library - Programming Guide

The parameter divide is the ratio of the audio master clock to the desired PDM clock rate. For example,
to generate a desired 3.072 MHz PDM clock from an audio master clock with frequency 24.576 MHz, a
divide value of 8 is needed. Divide can also be calculated from the master and PDM clock frequencies
using mic_array_mclk_divider() .

pdm_res->p_mclk is the resource ID for the 1-bit port on which the audio master clock is received.
This function will enable this port and configure it as the source port for pdm_res->clock_a and for
pdm_res->clock_b if operating in a DDR configuration.

pdm_res->clock_a is the resource ID for the first (in SDR configuration, the only) clock block required by
the mic array. Clock A divides the audio master clock (by a factor of divide) to generate the PDM clock.
This function enables it with the audio master clock as its source.

pdm_res->p_pdm_clk is the resource ID for the 1-bit port from which the PDM clock will be signaled to the
microphones. This function enables it and configures Clock A as its source clock.

pdm_res->clock_b is the resource ID for a second clock block, which is only required by the mic array in a
DDR configuration. In DDR mode, this function enables Clock B with the audio master clock as its source.
The divider for Clock B is half of that for Clock A (so it runs at twice the frequency). In a DDR configuration
Clock B is used as the PDM capture clock. In an SDR configuration, this field must be set to 0 (this is how
SDR/DDR is determined).

pdm_res->p_pdm_mics is the resource ID for the port on which PDM data is received. This function enables
it and configures it as a 32-bit buffered input. If operating in an SDR configuration, Clock A is used as the
capture clock. If operating in a DDR configuration, Clock B is used as its capture clock.

This function only configures and does not start either Clock A or Clock B. A call to
mic_array_pdm_clock_start () with pdm_res as the argument can be used to start the clock(s).

This function should be called during initialization, before any PDM data can be captured or processed.
Parameters
+ pdm_res — The hardware resources used by the mic array.

+ divide — The divider to generate the PDM clock from the master clock.

void mic_array_pdm_clock_start (pdm_rx_resources_t *pdm_res)

59

Start the PDM and capture clock(s).
This function starts Clock A, and if using a DDR configuration, Clock B.

mic_array_resources_configure() must have been called already to configure the resources indicated
in pdm_res.

Clock A is the PDM clock. Starting Clock A will cause pdm_res->p_pdm_c1lk to begin strobing the PDM clock
to the PDM microphones.

In an SDR configuration, Clock A is also the capture clock. In a DDR configuration, Clock B is the capture
clock. In either case, the capture clock is also started, causing pdm_res->p_pdm_mics to begin storing PDM
samples received on each period of the capture clock.

In DDR configuration, this function starts Clock B, waits for a rising edge, and then starts Clock A, ensuring
that the rising edges of the two clocks are not in phase.

This function must be called prior to launching the decimator or PDM rx threads.

Warning: Once this function has been called, the port receiving PDM data will begin capturing sam-
ples. If the mic array unit is not started by the time the port buffer fills ((32/mic_count) sample times)
samples will begin to be dropped.




Mic Array Library - Programming Guide

Parameters
+ pdm_res — The hardware resources used by the mic array.

static inline unsigned mic_array_mclk_divider (const unsigned master_clock_freq, const unsigned
pdm_clock_freq)

Compute clock divider for PDM clock.

This is a convenience function which computes the required clock divider to derive a pdm_clock_freq Hz
clock from a master_clock_freq Hz clock. This function is simple integer division.

Parameters
- master_clock_freq — The master audio clock frequency in Hz.
+ pdm_clock_freq — The desired PDM clock frequency in Hz.

Returns
Required clock divider.

9.2.4 frame_transfer.h

void ma_frame_tx (const chanend_t c_frame_out, const int32_t frame[], const unsigned channel_count, const
unsigned sample_count)

Transmit 32-bit PCM frame over a channel.
This function transmits the 32-bit PCM frame frame[] over the channel c_frame_out.

This is a blocking call which will wait for a receiver to accept the data from the channel. Typically this will
be accomplished with a call to ma_frame_rx() or ma_frame_rx_transpose().

The receiver is not required to be on the same tile as the sender.

Note: Internally, a channel transaction is established to reduce the overhead of channel communication.
Any custom functions are used to receive this frame in an application, they must wrap the channel reads in
a (slave) channel transaction. See xcore/channel_transaction.h.

Warning: No protocol is used to ensure consistency between the frame layout of the transmitter and
receiver. Disagreement about frame size will likely cause one side to block indefinitely. It is the respon-
sibility of the application author to ensure consistency between transmitter and receiver.

Parameters
+ c_frame_out — Channel over which to send frame.
+ frame — Frame to be transmitted.
+ channel_count — Number of channels represented in the frame.
+ sample_count — Number of samples represented in the frame.

void ma_frame_rx (int32_t frame[], const chanend_t c_frame_in, const unsigned channel_count, const unsigned
sample_count)

60 y,



Mic Array Library - Programming Guide

Receive 32-bit PCM frame over a channel.

This function receives a PCM frame over c_frame_in. Normally, the frame will have been transmitted using
ma_frame_tx (). The received frame is stored in frame[].

This is a blocking call which does not return until the frame has been fully received.

The sender is not required to be on the same tile as the receiver.

Note: Internally, a channel transaction is established to reduce the overhead of channel communication.
This function may only be used to receive the frame if the transmitter has wrapped the channel writes in a
(master) channel transaction. See xcore/channel_transaction.h.

Warning: No protocol is used to ensure consistency between the frame layout of the transmitter and
receiver. Disagreement about frame size will likely cause one side to block indefinitely. It is the respon-
sibility of the application author to ensure consistency between transmitter and receiver.

Parameters
- frame — Buffer to store received frame.
 c_frame_in — Channel from which to receive frame.
+ channel_count — Number of channels represented in the frame.

+ sample_count — Number of samples represented in the frame.

void ma_frame_rx_transpose (int32_t framel], const chanend_t c_frame_in, const unsigned channel_count,

61

const unsigned sample_count)
Receive 32-bit PCM frame over a channel with transposed dimensions.

This function receives a PCM frame over c_frame_in. Normally, the frame will have been transmitted using
ma_frame_tx(). The received frame is stored in frame[].

Unlike ma_frame_rx (), this function reorders the frame elements as they are received. ma_frame_tx()
always transmits the frame elements in memory order. This function swaps the channel and sample axes
so that if the transmitter frame has shape (CHANNEL, SAMPLE), the caller's frame array will have shape
(SAMPLE, CHANNEL).

This is a blocking call which does not return until the frame has been fully received.

The sender is not required to be on the same tile as the receiver.

Note: Internally, a channel transaction is established to reduce the overhead of channel communication.
This function may only be used to receive the frame if the transmitter has wrapped the channel writes in a
(master) channel transaction. See xcore/channel_transaction.h.

Warning: No protocol is used to ensure consistency between the frame layout of the transmitter and
receiver. Disagreement about frame size will likely cause one side to block indefinitely. It is the respon-
sibility of the application author to ensure consistency between transmitter and receiver.

Parameters



Mic Array Library - Programming Guide

+ frame — Buffer to store received frame.
+ c_frame_in — Channel from which to receive frame.
+ channel_count — Number of channels represented in the frame.

+ sample_count — Number of samples represented in the frame.

9.2.5 dc_elimination.h

struct dcoe_chan_state_t

DC Offset Elimination (DCOE) State.

This is the required state information for a single channel to which the DC offset elimination filter is to be
applied.

To apply the DC offset elimination filter to multiple channels simultaneously, an array of
dcoe_chan_state_t should be used.

dcoe_state_init () is used once to initialize an array of state objects, and dcoe_filter() is used on each
consecutive sample to apply the filter and get the resulting output sample.

DC offset elimination is an IIR filter. The state must persist between time steps.

Use in lib_mic_array

Typical users of lib_mic_array will not need to directly use this type or any functions which take it as a
parameter.

The C++class template mic_array: :DcoeSampleFilter,if usedin an application's mic array unit, will
allocate, initialize and apply the DCOE filter automatically.

With MicArray Prefabs
The MicArray prefab mic_array: :prefab: :BasiclicArray has abool template parameter USE_DCOE
which indicates whether the mic_array: :DcoeSampleFilter should be used. If true, DCOE will be
enabled.

With Vanilla API
When using the ‘vanilla’ API, DCOE is enabled by default. To disable DCOE when using this API, add a
preprocessor definition to the compiler flags, setting MIC_ARRAY_CONFIG_USE_DC_ELIMINATION to O.

Public Members

int64_t prev_y
Previous output sample value.

void dcoe_state_init (dcoe_chan_state_t state[], const unsigned chan_count)

62

Initialize DCOE states.

The DC offset elimination state needs to be intialized before the filter can be applied. This function initializes
it.



Mic Array Library - Programming Guide

For correct behavior, the state vector state must persist between audio samples and is supplied with each
call to dcoe_filter().

Parameters
- state — [in] Array of dcoe_chan_state_t 1o be initialized.
+ chan_count — [in] Number of elements in state.

void dcoe_filter (int32_t new_output]], dcoe_chan_state_t state[], int32_t new_input(], const unsigned
chan_count)

Apply DCOE filter.
Applies the DC offset elimination filter to get a new output sample and updates the filter state.

For correct behavior, this function should be called once per sample (here “sample” refers to a vector-valued
quantity containing one element for each audio channel) of that stream.

The index of each array (state, new_input and new_output) corresponds to the audio channel. The update
associated with each audio channel is independent of each other audio channel.

The equation used for each channel is:

ytl = R * y[t-11 + x[t] - x[t-1]
where t is the current sample time index, y [1 is the output signal, x[1 is the input signal, and R is (255.0/
256).
To filter a sample in-place use the same array for both the new_input and new_output arguments.
Parameters
* new_output — [out] Array into which the output sample will be placed.
- state — [in] DC offset elimination state vector.
* new_input — [in] New input sample.

+ chan_count — [in] Number of channels to be processed.

9.2.6 util.h

void deinterleave?2 (UiNt32_t*)
Perform deinterleaving for a 2-microphone subblock.

Assembly function.
Deinterleave the samples for 1 subblock of 2 microphones. Argument points to a 2 word buffer.

void deinterleave4 (Uint32_t*)
Perform deinterleaving for a 4-microphone subblock.

Assembly function.
Deinterleave the samples for 1 subblock of 4 microphones. Argument points to a 4 word buffer.

void deinterleave8 (Uint32_t*)
Perform deinterleaving for a 8-microphone subblock.

Assembly function.

Deinterleave the samples for 1 subblock of 8 microphones. Argument points to a 8 word buffer.

63 y,



Mic Array Library - Programming Guide

9.2.7 mic_array_vanilla.h

void ma_vanilla_init ()

Initializes the mic array module. (Vanilla API only)
Initializes the contexts for the decimator thread and configures the clocks and ports for PDM reception.

After calling this, the PDM clock is active and signaling, but the PDM rx service (ISR) has not yet been
activated, so received PDM samples are ignored. The real-time condition is not yet active.

Parameters
- pdm_res — Hardware resources required by the mic array module.

void ma_vanilla_task(chanend_t c_frames_out)

64

Entry point for decimator thread and PDM rx. (Vanilla API only)

This function sets up and activates the PDM rx service in ISR mode, and then immediately begins executing
the decimator.
After calling this the real-time condition is active, meaning there must be another thread waiting to pull
frames from the other end of c_frames_out as they become available.

Parameters

+ c_frames_out — (Non-streaming) Channel over which to send processed frames of au-
dio.



9 Index

D

dcoe_chan_state_t (C struct), 62
dcoe_chan_state_t.prev_y (C var), 62
dcoe_filter (C function), 63
dcoe_state_init (C function), 62
deinterleave2 (C function), 63
deinterleave4 (C function), 63
deinterleave8 (C function), 63

E

enable_pdm_rx_isr (C++ function), 42

M

ma_frame_rx (C function), 60
ma_frame_rx_transpose (C function), 61
ma_frame_tx (C function), 60
ma_vanilla_init (C function), 64
ma_vanilla_task (C function), 64
mic_array: :ChannelFrameTransmitter

52

(C++ class),

mic_array: :MicArray: :PdmRx (C++ member), 31

mic_array: :MicArray: :SampleFilter

ber), 32

(C++ mem-

mic_array::MicArray: :ThreadEntry (C++ function),

31

mic_array: :NopSampleFilter (C++ class), 49
mic_array: :NopSampleFilter::Filter (C++ func-

tion), 49

mic_array: :PdmRxService (C++ class), 40
mic_array: :PdmRxService: :BlockSize (C++ mem-

ber), 40

mic_array: :PdmRxService: :ProcessNext (C++ func-

tion), 40

mic_array: :PdmRxService: :SetPort (C++ function),

40

mic_array: :PdmRxService: : ThreadEntry (C++ func-

tion), 40

mic_array: :prefab: :BasicMicArray (C++ class), 33

mic_array: :prefab::BasicMicArray:

(C++ function), 38

mic_array: :prefab::BasicMicArray:

mic_array::ChannelFrameTransmitter::ChannelFrameTransmyﬁﬁ%%on) 38

(C++ function), 53
mic_array::ChannelFrameTransmitter: :GetChannel
(C++ function), 53

mic_array: :ChannelFrameTransmitter: :OutputFrame

(C++ function), 53
mic_array::ChannelFrameTransmitter: :SetChannel
(C++ function), 53
mic_array: :DcoeSampleFilter (C++ class), 49
mic_array: :DcoeSampleFilter: :Filter (C++ func-

tion), 49
mic_array::DcoeSampleFilter::Init (C++ func-
tion), 49
mic_array::deinterleave_pdm_samples (C++ func-
tion), 54

mic_array: :FrameOutputHandler (C++ class), 51

mic_array::FrameQutputHandler: :FrameQutputHandlgr array: :StandardPdmRxService

(C++ function), 51, 52
mic_array::FrameOutputHandler: :FrameTx
member), 52
mic_array: :FrameOutputHandler: :OQutputSample
(C++ function), 52
:MicArray (C++ class), 30
:MicArray: :Decimator (C++ member), 31
:MicArray: :MicArray (C++ function), 30
:MicArray: :MicCount (C++ member), 32
mic_array::MicArray: :OutputHandler (C++ mem-
ber), 32

(C++

mic_array:
mic_array:
mic_array:
mic_array:

65

mic_array: :prefab::BasicMicArray:

(C++ function), 38

mic_array: :prefab::BasicMicArray:

(C++ function), 38

mic_array: :prefab::BasicMicArray:

(C++ function), 38

mic_array: :prefab::BasicMicArray:

(C++ function), 38

mic_array: :prefab::BasicMicArray:

(C++ type), 37

mic_array: :prefab::BasicMicArray:

(C++ function), 39

:BasicMicArray
:Init  (C++
:InstallPdmRxISR
:PdmRxThreadEntry
:SetOutputChannel
:SetPort

: TParent

:UnmaskPdmRxISR

mic_array: :StandardPdmRxService (C++ class), 42

mic_array: :StandardPdmRxService::

(C++ function), 45

(C++ function), 45
mic_array: :StandardPdmRxService:
function), 44

mic_array: :StandardPdmRxService::

(C++ function), 45
mic_array: :StandardPdmRxService:

(C++ function), 44
mic_array: :StandardPdmRxService:

(C++ function), 44
mic_array: :StandardPdmRxService:

:Init

AssertOnDroppedBlock

: :GetPdmBlock

(C++

InstallISR

:MapChannel
:MapChannels

:ReadPort



Mic Array Library - Programming Guide

(C++ function), 44 pdm_rx_resources_t.p_pdm_mics (C var), 57
mic_array::StandardPdmRxService: :SendBlock

(C++ function), 44 S
mic_array::StandardPdmRxService: :UnmaskISR stagel_coef (C var), 56

(C++ function), 45 STAGE1_DEC_FACTOR (C macro), 55
mic_array: :TwoStageDecimator (C++ class), 46 STAGE1_TAP_COUNT (C macro), 55
mic_array: :TwoStageDecimator: :BLOCK_SIZE (C++ STAGE1_WORDS (C macro), 56

member), 47 stage2_coef (C var), 57/
mic_array::TwoStageDecimator: :DecimationFactor gTAGE2 DEC_FACTOR (C macro), 56

(C++ member), 47 stage2_shr (C var), 57
mic_array: :TwoStageDecimator::filter_coef STAGE2_TAP_COUNT (C macro), 57

(C++ member), 47
mic_array::TwoStageDecimator::filter_state
(C++ member), 47

mic_array: :TwoStageDecimator::filters (C++
member), 47

mic_array::TwoStageDecimator::Init (C++ func-
tion), 46

mic_array::TwoStageDecimator: :MicCount (C++
member), 47

mic_array: :TwoStageDecimator: :pdm_history
(C++ member), 47

mic_array::TwoStageDecimator: :ProcessBlock
(C++ function), 46

mic_array::TwoStageDecimator::Stage2 (C++
member), 48

mic_array: :TwoStageDecimator::TapCount (C++
member), 47

mic_array_mclk_divider (C function), 60
mic_array_pdm_clock_start (C function), 59
mic_array_resources_configure (C function), 58

p

pdm_rx_isr_context (C++ member), 42

pdm_rx_isr_context_t (C++ struct), 47

pdm_rx_isr_context_t::c_pdm_data (C++ member),
41

pdm_rx_isr_context_t::credit (C++ member), 41

pdm_rx_isr_context_t::missed_blocks (C++ mem-

ber), 42
pdm_rx_isr_context_t::p_pdm_mics (C++ member),
47
pdm_rx_isr_context_t::pdm_buffer (C++ member),
41

pdm_rx_isr_context_t: :phase (C++ member), 41
pdm_rx_isr_context_t::phase_reset (C++ mem-
ber), 41
PDM_RX_RESOURCES_DDR (C macro), 58
PDM_RX_RESOURCES_SDR (C macro), 58
pdm_rx_resources_t (C struct), 57
pdm_rx_resources_t.clock_a (C var), 58
pdm_rx_resources_t.clock_b (C var), 58
pdm_rx_resources_t.p_mclk (C var), 57
pdm_rx_resources_t.p_pdm_clk (C var), 57

66 y,



Mic Array Library - Programming Guide

2MOS

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMQOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

67 y,



	Introduction
	Overview
	Capabilities
	High-Level Process View
	Execution Contexts
	Step 1: PDM Capture
	Step 2: First Stage Decimation
	Step 3: Second Stage Decimation
	Step 4: Post-Processing
	Extending/Modifying Mic Array Behavior


	Getting Started
	Identify Resources
	Clock Blocks
	Ports
	Declaring Resources
	Other Resources

	Vanilla Model
	Vanilla - CMake Macro
	Vanilla - Optional Configuration
	Vanilla - Initializing and Starting

	Prefab Model
	Prefab - Declare Resources
	Prefab - Allocate MicArray
	Prefab - Init and Start Functions


	Decimator Stages
	Decimator Stage 1
	Filter Implementation (Stage 1)
	Provided Filter (Stage 1)
	Filter Characteristics (Stage 1)

	Filter Conversion Script

	Decimator Stage 2
	Filter Implementation (Stage 2)
	Provided Filter (Stage 2)
	Filter Characteristics (Stage 2)



	Sample Filters
	DC Offset Elimination
	Enabling/Disabling DCOE
	Vanilla Model
	Prefab Model
	General Model

	DCOE Filter Equation
	DCOE Filter Frequency Response


	Software Structure
	High-Level View
	Mic Array / Decimator Thread
	Curiously Recurring Template Pattern
	Sub-Component Initialization

	Sub-Components
	PdmRx
	Decimator
	SampleFilter
	OutputHandler

	Prefabs

	Mic Array Resource Usage
	Discrete Resources
	Ports
	Clock Blocks
	Chanends
	Threads

	Compute
	Memory

	Vanilla API
	How It Works
	Configuration
	mic_array_vanilla_add()
	Optional Configuration
	Vanilla API with other Build Systems


	API Reference
	C++ API Reference
	MicArray
	BasicMicArray
	PdmRxService
	StandardPdmRxService

	TwoStageDecimator
	SampleFilter
	NopSampleFilter
	DcoeSampleFilter

	OutputHandler
	FrameOutputHandler
	ChannelFrameTransmitter


	Misc

	C API Reference
	filters_default.h
	Stage 1 - PDM-to-PCM Decimating FIR Filter
	Stage 2 - PCM Decimating FIR Filter

	pdm_resources.h
	setup.h
	frame_transfer.h
	dc_elimination.h
	util.h
	mic_array_vanilla.h


	Index

