
lib_xud: USB device library

Publication Date: 2025/6/13
Document Number: XM-012026-UG v3.0.0

lib_xud: USB device library

IN THIS DOCUMENT

1 Introduction . 2
2 Overview . 3
3 File Arrangement . 4
4 Resource Usage . 4

4.1 Ports/pins . 4
4.2 Thread frequency . 7
4.3 Clock blocks . 7
4.4 Timers . 7
4.5 Memory . 7

5 Basic usage . 8
5.1 XUD IO task . 8
5.2 VBUS monitoring . 9
5.3 USB_TILE define . 10
5.4 Data transfer . 10
5.5 Data transfer example . 13
5.6 Status reporting . 13
5.7 Status reporting example . 15
5.8 SOF channel . 15
5.9 Halting . 16
5.10 USB test modes . 17

6 Control Endpoints . 18
6.1 Helper Functions . 18
6.2 Control Endpoint Example . 21

7 Programming guide . 23
7.1 Includes . 23
7.2 Declarations . 23
7.3 main() . 23
7.4 Endpoint addresses . 24
7.5 Sending and receiving data . 24
7.6 Endpoint 0 implementation . 24
7.7 Device descriptors . 25

8 Example application . 26
8.1 Required hardware . 26
8.2 Declarations . 26
8.3 main() . 26
8.4 HID endpoint task . 27
8.5 Device descriptors . 28
8.6 Application and class specific requests . 29

9 Advanced usage . 33
9.1 Function details . 33
9.2 Example . 35

10 Build time options . 35
11 Further Reading . 37

1 Introduction

This document details the XMOS USB Device (XUD) Library. This library enables the de-
velopment of USB 2.0 devices on the XMOS xcore architecture.

This document describes the structure of the library, its basic use and resources required.

This document assumes familiarity with the XMOS xcore architecture, the Universal Se-
rial Bus 2.0 Specification (and related specifications), the XMOS XTC tool chain and XC
language.

2

lib_xud: USB device library

This library is for use with xcore-200 series (XS2 architecture) or xcore.ai series (XS3
architecture) devices only, previous generations of xcore devices (i.e. XS1 architecture)
are not supported.

lib_xud is intended to be used with the XCommon CMake , the XMOS application build
and dependency management system.

2 Overview

xcore.ai devices and selected xcore-200 devices include an integrated USB transceiver.
lib_xud allows the implementation of both full-speed and high-speed USB 2.0 devices
on these devices. The library provides an identical API for all devices.

The library performs all of the low-level I/O operations required tomeet the USB 2.0 spec-
ification. This processing goes up to and includes the transaction level. It removes all
low-level timing requirements from the application, allowing quick development of all
manner of USB devices.

The XUD library runs in a single thread with endpoint and application tasks communicat-
ing with it via a combination of channel communication and shared memory variables.

One channel is required per IN or OUT endpoint. Endpoint 0 (the control endpoint) re-
quires two channels, one for each direction. Please note that throughout this document
the USB nomenclature is used: an OUT endpoint is used to transfer data from the host
to the device, an IN endpoint is used when the host requests data from the device.

An example task diagram is shown in Fig. 1. Circles represent threads running with ar-
rows depicting communication channels between these threads. In this configuration
there is one thread that deals with endpoint 0, which has both the input and output chan-
nel for endpoint 0. IN endpoint 1 is dealt with by a second thread, and OUT endpoint 2 and
IN endpoint 5 are dealt with by a third thread. Threads must be ready to communicate
with the XUD library whenever the host demands it’s attention. If not, the XUD library will
NAK.

It is important to note that, for performance reasons, tasks communicate with the XUD
library using both XC channels and shared memory communication. Therefore, all tasks
using the XUD library must be on the same tile as the library itself.

EP0
XS1

XUDULPI
Phy EP1

EP2
EP5

ep0, OUT

ep0, IN

ep1, IN
ep2, OUTep5, IN

Fig. 1: XUD Overview

3

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_xud: USB device library

3 File Arrangement

The following list gives a brief description of the files that make up lib_xud:

api/xud.h
User defines and functions for the XUD library.

lib/src/core
Main logic for XUD functionality.

lib/src/user
Definitions and source that define the client side interface.

4 Resource Usage

This section describes the resources required by lib_xud.

4.1 Ports/pins

xcore.ai series

The xcore.ai series of devices have an integrated USB transceiver. Some ports are used
to communicate with the USB transceiver inside the xcore.ai series packages.

These ports/pins should not be used when USB functionality is enabled. The ports/pins
are shown in Table 1.

4

lib_xud: USB device library

Table 1: xcore.ai series required pin/port connections

Pin Port
1b 4b 8b 16b 32b

X0D02 P4A0 P8A0 P16A0 P32A20
X0D03 P4A1 P8A1 P16A1 P32A21
X0D04 P4B0 P8A2 P16A2 P32A22
X0D05 P4B1 P8A3 P16A3 P32A23
X0D06 P4B2 P8A4 P16A4 P32A24
X0D07 P4B3 P8A5 P16A5 P32A25
X0D08 P4A2 P8A6 P16A6 P32A26
X0D09 P4A3 P8A7 P16A7 P32A27
X0D12 P1E0
X0D13 P1F0
X0D14 P4C0 P8B0 P16A8
X0D15 P4C1 P8B1 P16A9
X0D16 P4D0 P8B2 P16A10
X0D17 P4D1 P8B3 P16A11
X0D18 P4D2 P8B4 P16A12
X0D19 P4D3 P8B5 P16A13
X0D20 P4C2 P8B6 P16A14
X0D21 P4C3 P8B7 P16A15
X0D23 P1H0
X0D24 P1I0
X0D25 P1IJ
X0D34 P1K0

5

lib_xud: USB device library

xcore-200 series

Selected xcore-200 series devices have an integrated USB transceiver. Some ports are
used to communicate with the USB transceiver inside the xcore-200 series packages.

These ports/pins should not be used when USB functionality is enabled. The ports/pins
are shown in Table 2.

Table 2: xcore-200 series required pin/port connections

Pin Port
1b 4b 8b 16b 32b

X0D02 P4A0 P8A0 P16A0 P32A20
X0D03 P4A1 P8A1 P16A1 P32A21
X0D04 P4B0 P8A2 P16A2 P32A22
X0D05 P4B1 P8A3 P16A3 P32A23
X0D06 P4B2 P8A4 P16A4 P32A24
X0D07 P4B3 P8A5 P16A5 P32A25
X0D08 P4A2 P8A6 P16A6 P32A26
X0D09 P4A3 P8A7 P16A7 P32A27
X0D12 P1E0
X0D13 P1F0
X0D14 P4C0 P8B0 P16A8
X0D15 P4C1 P8B1 P16A9
X0D16 P4D0 P8B2 P16A10
X0D17 P4D1 P8B3 P16A11
X0D18 P4D2 P8B4 P16A12
X0D19 P4D3 P8B5 P16A13
X0D20 P4C2 P8B6 P16A14
X0D21 P4C3 P8B7 P16A15
X0D22 P1G0
X0D23 P1H0
X0D24 P1I0
X0D25 P1IJ
X0D34 P1K0

6

lib_xud: USB device library

4.2 Thread frequency

Due to I/O requirements, the lib_xud requires a guaranteedMIPS rate to ensure correct
operation. This means that thread count restrictions must be observed. The XUD thread
must run at at least 85 MIPS.

This means that for an xcore device running at 600 MHz there should be no more than
seven cores executing at any time when using lib_xud.

xcore devices allow setting threads to “priority” mode. Priority threads are guaranteed
20% of the processor bandwidth. If XUD is assigned a priority core then up to eight cores
may be used with the remaining seven getting (600 * 0.8) / 7 = 68.6MIPS each.

This restriction is only a requirement on the tile on which the XUD_Main() is running.
For example, the other tile on an dual-tile device is unaffected by this restriction.

Note: At points of execution XUD_Main() will run in “fast mode”, this is a requirement
to meet timing.

4.3 Clock blocks

lib_xud uses two clock blocks, one for receive and one for transmit. Clocks blocks 4
and 5 are used for transmit and receive respectively. These clock blocks are configured
such that they are clocked by the 60MHz clock from the USB transceiver. The ports used
by lib_xud are in turn clocked from these clock blocks.

4.4 Timers

lib_xud internally allocates and uses four timers.

4.5 Memory

lib_xud requires approximately 16 Kbytes of memory, of which around 15 Kbytes is
code or initialised variables that must be stored in boot memory.

7

lib_xud: USB device library

5 Basic usage

Basic use is termed to mean each endpoint runs in its own dedicated thread. Multiple
endpoints in a single thread are possible, please see Advanced usage.

Operation is synchronous in nature: The endpoint tasksmake calls to blocking functions
and waits for the transfer to complete before proceeding.

5.1 XUD IO task

XUD_Main() is the main task that interfaces with the USB transceiver. It performs con-
nection and handshaking on the USB bus as well as other bus-states such as suspend
and resume. It also handles passing packets to/from the various endpoints.

This function should be called directly from the top-level par statement in main() to
ensure that the XUD library is ready within the 100ms allowed by the USB specification
(assuming a bus-powered device).

int XUD_Main(chanend c_epOut[], int noEpOut, chanend c_epIn[], int noEpIn,
NULLABLE_RESOURCE(chanend, c_sof), XUD_EpType
epTypeTableOut[], XUD_EpType epTypeTableIn[], XUD_BusSpeed_t
desiredSpeed, XUD_PwrConfig pwrConfig)

This performs the low-level USB I/O operations. Note that this needs to run in a
thread with at least 80 MIPS worst case execution speed.

Parameters

· c_epOut – An array of channel ends, one channel end per output
endpoint (USB OUT transaction); this includes a channel to obtain
requests on Endpoint 0.

· noEpOut – The number of output endpoints, should be at least 1
(for Endpoint 0).

· c_epIn – An array of channel ends, one channel end per input
endpoint (USB IN transaction); this includes a channel to respond
to requests on Endpoint 0.

· noEpIn – The number of input endpoints, should be at least 1
(for Endpoint 0).

· c_sof – A channel to receive SOF tokens on. This channel must
be connected to a process that can receive a token once every
125 ms. If tokens are not read, the USB layer will lock up. If no
SOF tokens are required null should be used for this parameter.

· epTypeTableOut – See epTypeTableIn.
· epTypeTableIn – This and epTypeTableOut are two

arrays indicating the type of the endpoint. Legal types in-
clude: XUD_EPTYPE_CTL (Endpoint 0), XUD_EPTYPE_BUL
(Bulk endpoint), XUD_EPTYPE_ISO (Isochronous endpoint),
XUD_EPTYPE_INT (Interrupt endpoint), XUD_EPTYPE_DIS
(Endpoint not used). The first array contains the endpoint types
for each of the OUT endpoints, the second array contains the
endpoint types for each of the IN endpoints.

· desiredSpeed – This parameter specifies what speed the de-
vice will attempt to run at i.e. full-speed (ie 12Mbps) or high-speed
(480Mbps) if supported by the host. Pass XUD_SPEED_HS if
high-speed is desired or XUD_SPEED_FS if not. Low speed USB
is not supported by XUD.

· pwrConfig – Specifies whether the device is bus or self-
powered. When self-powered the XUD will monitor the VBUS line

8

lib_xud: USB device library

for host disconnections. This is required for compliance reasons.
Valid values are XUD_PWR_SELF and XUD_PWR_BUS.

Endpoint type tables

The endpoint type tables are arrays of type XUD_EpType and are used to inform
lib_xud about the endpoints in use. This information is used to indicate the transfer-
type of each endpoint (bulk, control, isochronous or interrupt) as well as whether the
endpoint wishes to be informed about bus-resets (see Status Reporting). Two tables are
required, one for IN and one for OUT endpoints.

Suitable values are provided in the XUD_EpTransferType enum:

· XUD_EPTYPE_ISO: Isochronous endpoint

· XUD_EPTYPE_INT: Interrupt endpoint

· XUD_EPTYPE_BUL: Bulk endpoint

· XUD_EPTYPE_CTL: Control endpoint

· XUD_EPTYPE_DIS: Disabled endpoint

OUT endpoint N will use index N of the output-endpoint-table, IN endpoint 0x8N will use
index N of the inpout-endpoint-table. Endpoint 0 must exist in both tables.

..note:
Endpoints that are not used will ``NAK`` any traffic from the host.

PwrConfig

The PwrConfig parameter to XUD_Main() indicates if the device is bus or self-
powered.

Valid values for this parameter are XUD_PWR_SELF and XUD_PWR_BUS.

When XUD_PWR_SELF is used, XUD_Main()monitors the VBUS input for a valid voltage
and responds appropriately. The USB Specification states that the devices pull-upsmust
be disabledwhen a validVBUS is not present. This is important when submitting a device
for compliance testing since this is explicitly tested.

If the device is bus-powered XUD_PWR_BUS can be used since it is assumed that the
device is not powered up when VBUS is not present and therefore no voltage monitoring
is required. In this configuration the VBUS input to the device/PHY need not be present.

XUD_PWR_BUS can be used in order to run on a self-powered board without provision
for VBUS wiring to the PHY/device, but this is not advised and is not USB specification
compliant.

5.2 VBUS monitoring

For self-powered devices it is important that lib_xud is aware of the VBUS state. This
allows the device to disconnect its pull-up resistors from D+/D- and ensure the device
does not have any voltage on the D+/D- pins when VBUS is not present. Compliance
testing specifically checks for this in the USB Back Voltage test.

9

lib_xud: USB device library

Warning: Failure to conform to this requirement will lead to an uncompliant device
and likely lead to interoperability issues.

USB-enabled xcore-200 series devices have a dedicated VBUS pin which should be wired
up as per the data-sheet recommendations including over-voltage protection.

For increasing flexibility, xcore.ai series devices do not have a dedicated VBUS pin. A
generic IO port/pin should be used for this purpose (with appropriate external circuitry -
see data-sheet recommendations).

lib_xudmakes a call to a function XUD_HAL_GetVBusState() that which should be
implemented to match the target hardware. For example:
on tile[USB_TILE]: in port p_vbus = XS1_PORT_1P;

unsigned int XUD_HAL_GetVBusState(void)
{

unsigned vBus;
p_vbus :> vBus;
return vBus;

}

The function should return 1 if VBUS is present, otherwise 0. In the case of the example
above, the validity of VBUS is directly represented by the value on port 1P, however, this
may not be the case for all hardware implementations, it could be inverted or even require
a read from an external IO expander, for example.

Note: VBUS need not be connected if the device is wholly powered by USB i.e. a bus
powered device.

5.3 USB_TILE define

In order that lib_xua may instantiate resources on the correct tile (typically ports) it
requires a USB_TILE define to be set. The default value for the define is tile[0] so a
developer only needs to set this if XUD_Main() is executing on a tile other than 0.

There are two ways of setting this define, either in the application CMakeLists.txt for
example:
set(APP_COMPILER_FLAGS -DUSB_TILE=tile[1])

Or, following XMOS software library convention, providing a xud_conf.h file in the appli-
cation codebase. This header file will be automatically detected by the build system and
used by lib_xud. Example content for this header file is as follows:
#ifndef _XUD_CONF_H_
#define _XUD_CONF_H_

#define USB_TILE tile[1]

#endif

5.4 Data transfer

Communication state between an endpoint client task and the XUD IO task is encapsu-
lated in an opaque type:

typedef unsigned int XUD_ep
Typedef for endpoint identifiers.

10

lib_xud: USB device library

All client calls communicating with the XUD library pass in this type. These data struc-
tures can be created at the start of execution of a client task with the following call that
takes as an argument the endpoint channel connected to the XUD library:

XUD_ep XUD_InitEp(chanend c_ep)
Initialises an XUD_ep.

Parameters

· c_ep – Endpoint channel to be connected to the XUD library.
Returns

Endpoint identifier

Endpoint data is sent/received using three main functions, XUD_SetBuffer(),
XUD_GetBuffer() and XUD_GetSetupBuffer().

These functions implement the low-level shared memory/channel communication with
the XUD_Main() task.

These functions will automatically deal with any low-level complications required such
as Packet ID (PID) toggling etc.

XUD_SetBuffer()

XUD_Result_t XUD_SetBuffer(XUD_ep ep_in, unsigned char buffer[], unsigned
datalength)

This function must be called by a thread that deals with an IN endpoint. When the
host asks for data, the low-level driver will transmit the buffer to the host.

Parameters

· ep_in – The endpoint identifier (created by XUD_InitEp).
· buffer – The buffer of data to transmit to the host.
· datalength – The number of bytes in the buffer.

Returns
XUD_RES_OKAY on success, for errors see Status Reporting_.

XUD_GetBuffer()

XUD_Result_t XUD_GetBuffer(XUD_ep ep_out, unsigned char buffer[],
REFERENCE_PARAM(unsigned, length))

This function must be called by a thread that deals with an OUT endpoint. When
the host sends data, the low-level driver will fill the buffer. It pauses until data is
available.

Parameters

· ep_out–TheOUTendpoint identifier (created byXUD_InitEP).
· buffer – The buffer in which to store data received from the

host. The buffer is assumed to be word aligned.
· length – The number of bytes written to the buffer

Returns
XUD_RES_OKAY on success, for errors see Status Reporting_.

XUD_GetSetupBuffer()

11

lib_xud: USB device library

XUD_Result_t XUD_GetSetupBuffer(XUD_ep ep_out, unsigned char buffer[],
REFERENCE_PARAM(unsigned, length))

Request setup data from usb buffer for a specific endpoint, pauses until data is
available.

Parameters

· ep_out–TheOUTendpoint identifier (created byXUD_InitEP).
· buffer – A char buffer passed by ref into which data is returned.
· length – Length of the buffer received (expect 8 bytes)

Returns
XUD_RES_OKAY on success, for errors see Status Reporting_.

For user convenience these functions arewrapped up in functions thatmatch commonly
required packet sequences:

XUD_SetBuffer_EpMax()

This function provides a similar function to XUD_SetBuffer function but it breaks the
data up in packets of a fixedmaximum size. This is especially useful for control transfers
where large descriptors must be sent in typically 64 byte transactions.

XUD_Result_t XUD_SetBuffer_EpMax(XUD_ep ep_in, unsigned char buffer[],
unsigned datalength, unsigned epMax)

Similar to XUD_SetBuffer but breaks up data transfers into smaller packets. This
function must be called by a thread that deals with an IN endpoint. When the host
asks for data, the low-level driver will transmit the buffer to the host.

Parameters

· ep_in – The IN endpoint identifier (created by XUD_InitEp).
· buffer – The buffer of data to transmit to the host.
· datalength – The number of bytes in the buffer.
· epMax – The maximum packet size in bytes.

Returns
XUD_RES_OKAY on success, for errors see Status Reporting_.

XUD_DoGetRequest()

XUD_Result_t XUD_DoGetRequest(XUD_ep ep_out, XUD_ep ep_in, unsigned char
buffer[], unsigned length, unsigned requested)

Performs a combined XUD_SetBuffer and XUD_GetBuffer. It transmits the
buffer of the given length over the ep_in endpoint to answer an IN request, and
then waits for a 0 length Status OUT transaction on ep_out. This function is nor-
mally called to handle Get control requests to Endpoint 0.

Parameters

· ep_out – The endpoint identifier that handles Endpoint 0 OUT
data in the XUD manager.

· ep_in – The endpoint identifier that handles Endpoint 0 IN data
in the XUD manager.

· buffer – The data to send in response to the IN transaction.
Note that this data is chopped up in fragments of at most 64
bytes.

· length – Length of data to be sent.
· requested– The length that the host requested, (Typically pass

the value wLength).

12

lib_xud: USB device library

Returns
XUD_RES_OKAY on success, for errors see Status Reporting_

XUD_DoSetRequestStatus()

XUD_Result_t XUD_DoSetRequestStatus(XUD_ep ep_in)
This function sends an empty packet back on the next IN request with PID1. It is
normally used by Endpoint 0 to acknowledge success of a control transfer.

Parameters

· ep_in – The Endpoint 0 IN identifier to the XUD manager.
Returns

XUD_RES_OKAY on success, for errors see Status Reporting_.

5.5 Data transfer example

A simple endpoint task is shown below demonstrating basic data transfer to the host.
void ExampleEndpoint(chanend c_ep_in)
{

char buffer[512];

XUD_ep ep_to_host = XUD_InitEp(chan_ep_in);

while(1)
{

XUD_SetBuffer(ep_to_host, buffer, 512);
}

}

5.6 Status reporting

An endpoint can register for “status reporting” such that bus state can be known. This
is achieved by ORing XUD_STATUS_ENABLE into the relevant endpoint in the endpoint
type table.

This means that endpoints are notified of USB bus resets (and therefore bus-speed
changes), suspend and resume events. The lib_xud access functions discussed previ-
ously (XUD_GetBuffer, XUD_SetBuffer, etc) return XUD_RES_UPDATE if a USB bus
status change is detected.

An endpoint should then call the XUD_GetBusState() function to ascertain the new
bus-state, this will return one of :

· XUD_BUS_RESET

· XUD_BUS_SUSPEND

· XUD_BUS_RESUME

If XUD_BUS_RESET is returned the endpoint must call the XUD_ResetEndpoint()
function. This will return the current bus speed as a XUD_BusSpeed_t with the value
XUD_SPEED_FS or XUD_SPEED_HS.

A reset notification is of particular importance if an endpoint task is expecting alternating
IN and OUT transactions. For example, consider the case where an endpoint is always
expecting the sequence OUT, IN, OUT (such as a control transfer or a request response
protocol). If an unplug/reset event was received after the first OUT, the host would return
to sending the initial OUT after a re-plug, whilst the endpoint task would hang trying to
send a response the IN. The endpoint needs to know of the bus reset in order to reset its
state machine.

13

lib_xud: USB device library

Note: Endpoint 0 requires this functionality to be enabled since it dealswith bi-directional
control transfers

This functionality is also important for high-speed devices, since it is not guaranteed that
a host will enumerate the device as a high-speed device, say if it’s plugged via full-speed
hub.

If XUD_BUS_SUSPEND orXUD_BUS_RESUME is returned byXUD_GetBusState() then
the endpoint should perform any desired functionality - for example powering up/down
external circuitry, reducing xcore clock frequency etc, before acknowledging the update
with XUD_AckBusState().

XUD_ResetEndpoint()

XUD_BusSpeed_t XUD_ResetEndpoint(XUD_ep one,
NULLABLE_REFERENCE_PARAM(XUD_ep,
two))

This function will complete a reset on an endpoint. Can take one or two XUD_ep as
parameters (the second parameter can be set to null). The return value should be
inspected to find the newbus-speed. In Endpoint 0 typically two endpoints are reset
(IN and OUT). In other endpoints null can be passed as the second parameter.

Parameters

· one – IN or OUT endpoint identifier to perform the reset on.
· two – Optional second IN or OUT endpoint structure to perform

a reset on.
Returns

Either XUD_SPEED_HS - the device is now running as a high-speed
device or XUD_SPEED_FS - the device is now running as full speed
device.

XUD_GetBusState()()

XUD_BusState_t XUD_GetBusState(XUD_ep one,
NULLABLE_REFERENCE_PARAM(XUD_ep,
two))

If an API function returns XUD_RES_UPDATE a bus update notification is available.
The endpoint must now call this function to receive the bus update - these updates
represent suspend, resume, reset and kill.

Parameters

· one – IN or OUT endpoint identifier to receive update on.
· two – Optional second IN or OUT endpoint structure to receive

update on.
Returns

Either: XUD_BUS_SUSPEND - the host has suspended the device.
The Endpoint should perform any desired suspend related function-
ality and then must call XUD_AckBusState() to inform XUD that it
has been accepted. XUD_BUS_RESUME - the host has resumed
the device. The Endpoint should perform any desired resume re-
lated functionality and then must call XUD_AckBusState() to inform
XUD that it has been accepted. XUD_BUS_RESET - the host has is-
sued a bus reset. The endpointmust now call XUD_ResetEndpoint().
XUD_BUS_KILL - indicate that the USB stack has been shut down

14

lib_xud: USB device library

by another part of the user code (using XUD_Kill). If this value is re-
turned, the endpoint code should call XUD_CloseEndpoint() and then
terminate.

XUD_AckBusState()

XUD_Result_t XUD_AckBusState(XUD_ep one,
NULLABLE_REFERENCE_PARAM(XUD_ep, two))

Must be called if an endpoint has received XUD_BUS_RESUME or
XUD_BUS_SUSPEND in order to acknowledge the bus state update. Any re-
lated actions should be performed (i.e. clocking down the core) before calling this
function.

Parameters

· one – IN or OUT endpoint identifier to send the ack on.
· two–Optional second IN or OUT endpoint structure send the ack

on.
Returns

XUD_RES_OKAY on success, for errors see Status Reporting_.

5.7 Status reporting example

A simple endpoint task is shown below demonstrating basic data transfer to the host
and bus status inspection.
void ExampleEndpoint(chanend c_ep_in)
{

char buffer[512];
XUD_Result_t result;

XUD_ep ep_to_host = XUD_InitEp(chan_ep_to_host);

while(1)
{

if((result = XUD_SetBuffer(ep_to_host, buffer, 512)) == XUD_RES_UPDATE)
{

XUD_BusState_t busState = XUD_GetBusState(ep_to_host, null);
switch(busState):
{

case XUD_BUS_RESET:
XUD_ResetEndpoint(ep_to_host, null);
break;

case XUD_BUS_SUSPEND:
// Perform any suspend related functionality
XUD_AckBusState(ep_to_host, null);
break;

case XUD_BUS_RESUME:
// Perform any resume related functionality
XUD_AckBusState(ep_to_host, null);
break;

}
}

}
}

5.8 SOF channel

An application can pass an optional channel-end to the c_sof parameter of
XUD_Main(). This will cause a word of data to be output every time the device receives
a SOF (Start Of Frame) packet from the host. This can be used for timing information in
audio devices etc.

If this functionality is not required null should be passed as the parameter.

15

lib_xud: USB device library

Note: If an optional channel-end is passed intoXUD_Main() theremust be a responsive
task ready to receive SOF notifications otherwise the XUD_Main() task will be blocked
attempting to send these messages leading to it being unresponsive to the host.

5.9 Halting

The USB specification requires the ability for an endpoint to send a STALL response to
the host if an endpoint is halted, or if control pipe request is not supported. lib_xud
provides various functions to support this. In some cases it is convenient to use the
XUD_ep whilst in other cases it is easier to use the endpoint address. Functions to use
either are provided.

XUD_SetStall()

void XUD_SetStall(XUD_ep ep)
Mark an endpoint as STALLed. It is cleared automatically if a SETUP received on
the endpoint.

Warning: Must be run on same tile as XUD core

Parameters

· ep – XUD_ep type.

XUD_SetStallByAddr()

void XUD_SetStallByAddr(int epNum)
Mark an endpoint as STALL based on its EP address. Cleared automatically if a
SETUP received on the endpoint. Note: the IN bit of the endpoint address is used.

Warning: Must be run on same tile as XUD core

Parameters

· epNum – Endpoint number.

XUD_ClearStall()

void XUD_ClearStall(XUD_ep ep)
Mark an endpoint as NOT STALLed.

Warning: Must be run on same tile as XUD core

Parameters

· ep – XUD_ep type.

XUD_ClearStallByAddr()

16

lib_xud: USB device library

void XUD_ClearStallByAddr(int epNum)
Mark an endpoint as NOT STALLed based on its EP address. Note: the IN bit of the
endpoint address is used.

Warning: Must be run on same tile as XUD core

Parameters

· epNum – Endpoint number.

5.10 USB test modes

lib_xud supports the required test modes for USB Compliance testing.

lib_xud accepts commands from the endpoint 0 channels (in or out) to signal which
test mode to enter via the XUD_SetTestMode() function. The commands are based
on the definitions of the Test Mode Selector Codes in the USB 2.0 Specification Table
11-24. The supported test modes are summarised in Table 3.

Table 3: Supported Test Mode Selector Codes

Value Test Mode Description

1 Test_J
2 Test_K
3 Test_SE0_NAK
4 Test_Packet

The passing other codes endpoints other than 0 to XUD_SetTestMode() could result
in undefined behaviour.

As per the USB 2.0 Specification a power cycle or reboot is required to exit the selected
test mode.

XUD_SetTestMode()

void XUD_SetTestMode(XUD_ep ep, unsigned testMode)
Enable a specific USB test mode in XUD.

Warning: Must be run on same tile as XUD core

Parameters

· ep – XUD_ep type (must be endpoint 0 in or out)
· testMode – The desired test-mode

17

lib_xud: USB device library

6 Control Endpoints

lib_xud provides helper functions that provide a set of standard functionality to aid the
creation of USB devices.

Control transfers are typically used for command and status operations. They are essen-
tial to set up a USB device with all enumeration functions being performed using Control
transfers. Control transfers are characterised by the use of a SETUP transaction.

USB devices must provide an implementation of a control endpoint at endpoint 0. End-
point 0 must deal with enumeration and configuration requests from the host. Many
enumeration requests are compulsory and common to all devices, with most of them
being requests for mandatory descriptors (Configuration, Device, String, etc).

Since these requests are common acrossmost (if not all) devices, some useful functions
are provided to deal with them.

6.1 Helper Functions

Firstly, the function USB_GetSetupPacket() is provided. This makes a call to
the low-level XUD function XUD_GetSetupBuffer() with the 8 byte Setup packet
which it parses into a USB_SetupPacket_t structure for further inspection. The
USB_SetupPacket_t structure passed by reference to USB_GetSetupPacket() is
populated by the function.

At this point the request is in a good state to be parsed by endpoint 0. Please see Uni-
versal Serial Bus 2.0 specification for full details of Setup packet and request structure.

A USB_StandardRequests() function provides a bare-minimum implementation of
the mandatory requests required to be implemented by a USB device. The function in-
spects this USB_SetupPacket_t structure and includes a minimum implementation
of the Standard Device requests. The rest of this section documents the requests han-
dled and lists the basic functionality associated with the request.

It is not intended that this replace a good knowledge of the requests required, since
USB_StandardRequests() has no knowledge about the specific class that is imple-
mented, and hence does not guarantee a fully USB compliant device.

Each request could well be required to be over-ridden for a device implementation. For
example,a USB Audio device could well require a specialised version of SET_INTERFACE
since this could mean that audio streaming will commence imminently.

The USB_StandardRequests() function takes as parameters arrays represent-
ing the device descriptor, configuration descriptor, and a string table as well as a
USB_SetupPacket_t and the current bus-speed.

Note: USB_StandardRequests() takes two references for device and con-
figuration descriptors - this allows for different functionality based on bus-speed.
USB_StandardRequests() forms valid Device Qualifier and Other Speed Configura-
tion descriptors from these arrays.

USB_SetupPacket_t

This structure closely matches the structure defined in the USB 2.0 Specification:
typedef struct USB_SetupPacket
{

(continues on next page)

18

lib_xud: USB device library

(continued from previous page)
USB_BmRequestType_t bmRequestType; /* (1 byte) Specifies direction of dataflow,

type of rquest and recipient */
unsigned char bRequest; /* Specifies the request */
unsigned short wValue; /* Host can use this to pass info to the

device in its own way */
unsigned short wIndex; /* Typically used to pass index/offset such

as interface or EP no */
unsigned short wLength; /* Number of data bytes in the data stage

(for Host -> Device this this is exact
count, for Dev->Host is a max. */

} USB_SetupPacket_t;

USB_GetSetupPacket()

XUD_Result_t USB_GetSetupPacket(XUD_ep ep_out, XUD_ep ep_in,
REFERENCE_PARAM(USB_SetupPacket_t,
sp))

Receives a Setup data packet and parses it into the passed USB_SetupPacket_t
structure.

Parameters

· ep_out – OUT endpint from XUD
· ep_in – IN endpoint to XUD
· sp – SetupPacket structure to be filled in (passed by ref)

Returns
Returns XUD_RES_OKAY on success, XUD_RES_RST on bus reset

USB_StandardRequests()

This function takes a populated USB_SetupPacket_t structure as an argument.

XUD_Result_t USB_StandardRequests(XUD_ep ep_out, XUD_ep ep_in,
NULLABLE_ARRAY_OF(unsigned char,
devDesc_hs), int devDescLength_hs,
NULLABLE_ARRAY_OF(unsigned char,
cfgDesc_hs), int cfgDescLength_hs,
NULLABLE_ARRAY_OF(unsigned char,
devDesc_fs), int devDescLength_fs,
NULLABLE_ARRAY_OF(unsigned char,
cfgDesc_fs), int cfgDescLength_fs, char
*strDescs[], int strDescsLength,
REFERENCE_PARAM(USB_SetupPacket_t,
sp), XUD_BusSpeed_t usbBusSpeed)

This function deals with common requests This includes Standard Device Re-
quests listed in table 9-3 of the USB 2.0 Spec all devices must respond to these
requests, in some cases a bare minimum implementation is provided and should
be extended in the devices EP0 code It handles the following standard requests
appropriately using values passed to it:
Get Device Descriptor (using devDesc_hs/devDesc_fs arguments)
Get Configuration Descriptor (using cfgDesc_hs/cfgDesc_fs arguments)
String requests (using strDesc argument)
Get Device_Qualifier Descriptor
Get Other-Speed Configuration Descriptor
Set/Clear Feature (Endpoint Halt)
Get/Set Interface
Set Configuration
If the request is not recognised the endpoint is marked STALLED

19

lib_xud: USB device library

Parameters

· ep_out – Endpoint from XUD (ep 0)
· ep_in – Endpoint from XUD (ep 0)
· devDesc_hs – The Device descriptor to use, encoded according

to the USB standard
· devDescLength_hs – Length of device descriptor in bytes
· cfgDesc_hs – Configuration descriptor
· cfgDescLength_hs – Length of config descriptor in bytes
· devDesc_fs – The Device descriptor to use, encoded according

to the USB standard
· devDescLength_fs – Length of device descriptor in bytes. If 0

the HS device descriptor is used.
· cfgDesc_fs – Configuration descriptor
· cfgDescLength_fs – Length of config descriptor in bytes. If 0

the HS config descriptor is used.
· strDescs –
· strDescsLength –
· sp – USB_SetupPacket_t (passed by ref) in which the setup

data is returned
· usbBusSpeed – The current bus speed (XUD_SPEED_HS or

XUD_SPEED_FS)
Returns

Returns XUD_RES_OKAY on success.

This section now details the actual requests handled by this function. If parsing the
request does not result in a match, the request is not handled, the Endpoint is marked
“Halted” (Using XUD_SetStall_Out() and XUD_SetStall_In()) and the function
returns XUD_RES_ERR. The function returns XUD_RES_OKAY if a request was handled
without error (See also Status reporting example).

USB_StandardRequests(): Standard Device Requests

The USB_StandardRequests() function handles the following Standard Device Re-
quests:

· SET_ADDRESS: The device address is set in XUD (using XUD_SetDevAddr()).

· SET_CONFIGURATION: A global variable is updated with the given configuration
value.

· GET_STATUS: The status of the device is returned. This uses the device Configuration
descriptor to return if the device is bus powered or not.

· SET_CONFIGURATION: A global variable is returned with the current configuration
last set by SET_CONFIGURATION.

· GET_DESCRIPTOR: Returns the relevant descriptors. Note, some changes of returned
descriptor will occur based on the current bus speed the device is running.
· DEVICE
· CONFIGURATION
· DEVICE_QUALIFIER
· OTHER_SPEED_CONFIGURATION
· STRING

In addition the following test mode requests are dealt with (with the correct test mode
set in XUD):

20

lib_xud: USB device library

· SET_FEATURE
· TEST_J
· TEST_K
· TEST_SE0_NAK
· TEST_PACKET
· FORCE_ENABLE

USB_StandardRequests(): Standard Interface Requests

TheUSB_StandardRequests() function handles the following Standard InterfaceRe-
quests:

· SET_INTERFACE : A global variable is maintained for each interface. This is updated
by a SET_INTERFACE. Some basic range checking is included using the value nu-
mInterfaces from the Configuration Descriptor.

· GET_INTERFACE: Returns the value written by SET_INTERFACE.

USB_StandardRequests(): Standard Endpoint Requests

TheUSB_StandardRequests() function handles the following Standard Endpoint Re-
quests:

· SET_FEATURE

· CLEAR_FEATURE

· GET_STATUS

6.2 Control Endpoint Example

The code listing below shows a simple example of a endpoint 0 implementa-
tion showing the use of USB_SetupPacket_t, USB_SetSetupPacket() and
USBStandardRequests():
void Endpoint0(chanend c_ep0_out, chanend c_ep0_in)
{

USB_SetupPacket_t sp;
XUD_BusSpeed_t usbBusSpeed;
XUD_ep ep0_out = XUD_InitEp(c_ep0_out);
XUD_ep ep0_in = XUD_InitEp(c_ep0_in);

while(1)
{

XUD_Result_t result = USB_GetSetupPacket(ep0_out, ep0_in, sp);

if(result == XUD_RES_OKAY)
{

result = USB_StandardRequests(ep0_out, ep0_in,
devDesc_HS, sizeof(devDesc_HS),
cfgDesc_HS, sizeof(cfgDesc_HS),
devDesc_FS, sizeof(devDesc_FS),
cfgDesc_FS, sizeof(cfgDesc_FS),
stringTable, sizeof(stringTable),
sp, usbBusSpeed);

}

/* USB bus reset detected, reset EP and get new bus speed */
if(result == XUD_RES_RST)
{

usbBusSpeed = XUD_ResetEndpoint(ep0_out, ep0_in);
}

}
}

21

lib_xud: USB device library

Note: For conciseness the declarations of the arrays representing the device and con-
figuration descriptors and the string table are not shown.

22

lib_xud: USB device library

.. _sec_programming:

7 Programming guide

This section provides information on how to create an basic application using lib_xud.

7.1 Includes

The application needs to include the header file xud.h.

7.2 Declarations

Arrays representinge end endpoint types for both IN and OUT endpoints should be de-
clared. These must each include one for endpoint 0, for example:
/* Endpoint type tables */
XUD_EpType epTypeTableOut[] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE};
XUD_EpType epTypeTableIn[] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE , XUD_EPTYPE_BUL};

The endpoint types are:

· XUD_EPTYPE_ISO: Isochronous endpoint

· XUD_EPTYPE_INT: Interrupt endpoint

· XUD_EPTYPE_BUL: Bulk endpoint

· XUD_EPTYPE_CTL: Control endpoint

· XUD_EPTYPE_DIS: Disabled endpoint

XUD_STATUS_ENABLE is ORed in to the endpoints that wish to be informed of USB bus
resets (see Status reporting example).

7.3 main()

Within the main() function it is necessary to allocate the channels to connect the end-
points and then create the top-level par containing calls to XUD_Main(), an endpoint 0
task and any application specific endpoint tasks, for example:
int main ()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
par
{

XUD_Main(c_ep_out , XUD_EP_COUNT_OUT ,
c_ep_in , XUD_EP_COUNT_IN ,
null , epTypeTableOut , epTypeTableIn ,
null , null , null , XUD_SPEED_HS , null);

Endpoint0(c_ep_out[0], c_ep_in[0]);

// Application specific endpoints
...

}
}
return 0;

XUD_Main() connects to one end of every channel while the other end is passed to
an endpoint (either endpoint 0 or an application specific endpoint). Application specific
endpoints are connected using channel ends so the IN and OUT channel arrays need to
be extended for each endpoint.

23

lib_xud: USB device library

7.4 Endpoint addresses

Endpoint 0 uses index 0 of both the endpoint type table and the channel array. The ad-
dress of other endpoints must also correspond to their index in the endpoint table and
the channel array.

7.5 Sending and receiving data

An application specific endpoint can send data using XUD_SetBuffer() and receive
data using XUD_GetBuffer() etc as described in Basic usage.

7.6 Endpoint 0 implementation

It is necessary to create an implementation for endpoint 0 which takes two channels,
one for IN and one for OUT. It can take an optional channel for test (see USB test modes):

A typical prototype might for such a funciton might look like the following:
void Endpoint0(chanend chan_ep0_out , chanend chan_ep0_in , chanend ?c_usb_test)

Every endpoint must be initialized using the XUD_InitEp() function. For endpoint 0
this should like the following:
XUD_ep ep0_out = XUD_InitEp(chan_ep0_out);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in);

Typically the minimal code for endpoint 0 loops making call to
USB_GetSetupPacket(), parses the USB_SetupPacket_t for any class/ap-
plicaton specific requests. Then makes a call to USB_StandardRequests(). And
finally, calls XUD_ResetEndpoint() if there have been a bus-reset. For example:
while (1)
{

/* Returns XUD_RES_OKAY on success, XUD_RES_RST for USB reset */
XUD_Result_t result = USB_GetSetupPacket(ep0_out , ep0_in , sp);

if(result == XUD_RES_OKAY)
{

switch(sp.bmRequestType.Type)
{

case BM_REQTYPE_TYPE_CLASS:
switch(sp.bmRequestType.Receipient)
{

case BM_REQTYPE_RECIP_INTER:
// Optional class specific requests
break;

...
}

break;
...

}

result = USB_StandardRequests(ep0_out , devDesc , devDescLen , ...);
}

if(result == XUD_RES_RST)
usbBusSpeed = XUD_ResetEndpoint(ep0_out , ep0_in);

}

The code above could also over-ride any of the requests handled in
USB_StandardRequests() for custom functionality.

Note: Class specific code should be inserted before USB_StandardRequests() is called
since if USB_StandardRequests() cannot handle a request it marks the Endpoint stalled
to indicate to the host that the request is not supported by the device.

24

lib_xud: USB device library

USB_StandardRequests() takes char array parameters for device descriptors for
both high and full-speed. Note, if null is passed as the full-speed descriptor the high-
speed descriptor is used in full-speed mode and vice versa.

Note: On bus reset the XUD_ResetEndpoint() function returns the negotiated USB
speed (i.e. full or high speed).

7.7 Device descriptors

Every USB device must provide a set of descriptors. They are used to identify the USB
device’s vendor ID, product ID and detail all the attributes of the advice as specified in the
USB 2.0 specifications.

It is beyond the scope of this document to give details of writing a descriptor, please see
the relevant USB Specification Documents.

25

lib_xud: USB device library

8 Example application

This section contains a fully worked example of implementing a USBmouse device com-
pliant to the Human Interface Device (HID) Class mouse device.

The application operates as a simple mouse which when running moves the mouse
pointer on the host machine. This demonstrates the simple way in which PC peripheral
devices can easily be deployed using an xcore device.

Note: This application note provides a standard USB HID class device and as a result
does not require drivers to run on Windows, macOS or Linux.

The full source for this application is provided along side the lib_xud software down-
load in the examples/app_hid_house directory.

Note: The example code provides implementations in C and XC. This section concen-
trates on the XC version.

8.1 Required hardware

This application note is designed to run on XMOS xcore-200 or xcore.ai series devices.

The example code provided has been implemented and tested on the XK-EVK-XU316
board but there is no dependency on this board and it can be modified to run on any
development board which uses an xcore-200 or xcore.ai series device.

8.2 Declarations
#include "xud_device.h"
#include "hid_descs.h"

/* Number of Endpoints used by this app */
#define EP_COUNT_OUT 1
#define EP_COUNT_IN 2

/* Endpoint type tables - informs XUD what the transfer types for each Endpoint in use and also
* if the endpoint wishes to be informed of USB bus resets
*/
XUD_EpType epTypeTableOut[EP_COUNT_OUT] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE};
XUD_EpType epTypeTableIn[EP_COUNT_IN] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_BUL};

8.3 main()

The main() function creates three tasks: the XUD Io task, endpoint 0, and a task for
handling the HID endpoint. An array of channels is used for both IN and OUT endpoints,
endpoint 0 requires both, the HID task simply implements an IN endpoint sendingmouse
data to the host.
int main()
{

chan c_ep_out[EP_COUNT_OUT];
chan c_ep_in[EP_COUNT_IN];

par
{

on tile[0]: XUD_Main(c_ep_out, EP_COUNT_OUT, c_ep_in, EP_COUNT_IN, null,
epTypeTableOut, epTypeTableIn, XUD_SPEED_HS, XUD_PWR_BUS);

on tile[0]: Endpoint0(c_ep_out[0], c_ep_in[0]);

on tile[0]: hid_mouse(c_ep_in[1]);
}

(continues on next page)

26

https://usb.org/document-library/device-class-definition-hid-111

lib_xud: USB device library

(continued from previous page)
return 0;

} //

Since this example does not require SOF notifications null is passed into the c_sof
parameter. XUD_SPEED_HS is passed for the desiredSpeed parameter such that the
device attempts to run as a high-speed device.

8.4 HID endpoint task

This function responds to the HID requests - it moves the mouse cursor in square by
moving 40 pixels in each direction in sequence every 100 requests using a basic state-
machine. This function could be easily changed to feed other data back (for example
based on user input).
void hid_mouse(chanend chan_ep_hid)
{

int counter = 0;
enum {RIGHT, DOWN, LEFT, UP} state = RIGHT;

XUD_ep ep_hid = XUD_InitEp(chan_ep_hid);

for(;;)
{

/* Move the pointer around in a square (relative) */
if(counter++ >= 500)
{

int x;
int y;

switch(state)
{

case RIGHT:
x = 40;
y = 0;
state = DOWN;
break;

case DOWN:
x = 0;
y = 40;
state = LEFT;
break;

case LEFT:
x = -40;
y = 0;
state = UP;
break;

case UP:
default:

x = 0;
y = -40;
state = RIGHT;
break;

}

/* Unsafe region so we can use shared memory. */
unsafe
{

/* global buffer 'g_reportBuffer' defined in hid_defs.h */
char * unsafe p_reportBuffer = g_reportBuffer;

p_reportBuffer[1] = x;
p_reportBuffer[2] = y;

/* Send the buffer to the host. Note this will return when complete */
XUD_SetBuffer(ep_hid, (char *) p_reportBuffer, sizeof(g_reportBuffer));
counter = 0;

}
}

}
} //

Note, this endpoint does not receive or check for status data. It always performs IN trans-
actions. Since it’s behaviour is not modified based on bus speed the mouse cursor will
move more slowly when connected via a full-speed port. Ideally the device would either
modify its required polling rate in its descriptors (bInterval in the endpoint descriptor) or
the counter value it is using in the hid_mouse() function.

27

lib_xud: USB device library

Should processing take longer that the host IN polls, the XUD_Main() task will simply
NAK the host. The XUD_SetBuffer() function will return when the packet transmis-
sion is complete.

8.5 Device descriptors

The USB_StandardRequests() function expects descriptors to be declared as arrays
of characters. Descriptors are looked at in depth in this section.

Note: null values and length 0 are passed for the full-speed descriptors, this means
that the same descriptors will be used whether the device is running in full or high-speed.

Device descriptor

The device descriptor contains basic information about the device. This descriptor is the
first descriptor the host reads during its enumeration process and it includes information
that enables the host to further interrogate the device. The descriptor includes informa-
tion on the descriptor itself, the device (USB version, vendor ID etc.), its configurations
and any classes the device implements. For the HID Mouse example this descriptor
looks like the following:
static unsigned char devDesc[] =
{

0x12, /* 0 bLength */
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType */
0x00, /* 2 bcdUSB */
0x02, /* 3 bcdUSB */
0x00, /* 4 bDeviceClass */
0x00, /* 5 bDeviceSubClass */
0x00, /* 6 bDeviceProtocol */
0x40, /* 7 bMaxPacketSize */
(VENDOR_ID & 0xFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & 0xFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct */
(BCD_DEVICE & 0xFF), /* 12 bcdDevice */
(BCD_DEVICE >> 8), /* 13 bcdDevice */
0x01, /* 14 iManufacturer */
0x02, /* 15 iProduct */
0x00, /* 16 iSerialNumber */
0x01 /* 17 bNumConfigurations */

};

Device qualifier descriptor

Devices which support both full and high-speeds must implement a device qualifier de-
scriptor. The device qualifier descriptor defines how fields of a high speed device’s de-
scriptor would look if that device is run at a different speed. If a high-speed device is
running currently at full/high speed, fields of this descriptor reflect how device descrip-
tor fields would look if speed was changed to high/full. Please refer to section 9.6.2 of
the USB 2.0 specification for further details.

For a full-speed only device this is not required.

Typically a device qualifier descriptor is derived mechanically from the device descriptor.
The USB_StandardRequest() function will build a device qualifier from the device
descriptors passed to it based on the speed the device is currently running at.

Configuration descriptor

The configuration descriptor contains the devices features and abilities. This descriptor
includes Interface and Endpoint Descriptors. Every device must have at least one con-
figuration, in this example there is only one configuration. The configuration descriptor
is presented below:

28

lib_xud: USB device library

static unsigned char cfgDesc[] = {
0x09, /* 0 bLength */
0x02, /* 1 bDescriptortype */
0x22, 0x00, /* 2 wTotalLength */
0x01, /* 4 bNumInterfaces */
0x01, /* 5 bConfigurationValue */
0x03, /* 6 iConfiguration */
0x80, /* 7 bmAttributes */
0xC8, /* 8 bMaxPower */

0x09, /* 0 bLength */
0x04, /* 1 bDescriptorType */
0x00, /* 2 bInterfacecNumber */
0x00, /* 3 bAlternateSetting */
0x01, /* 4: bNumEndpoints */
0x03, /* 5: bInterfaceClass */
0x00, /* 6: bInterfaceSubClass */
0x02, /* 7: bInterfaceProtocol*/
0x00, /* 8 iInterface */

0x09, /* 0 bLength. Note this is replicated in hidDescriptor[] */
0x21, /* 1 bDescriptorType (HID) */
0x11, /* 2 bcdHID */
0x01, /* 3 bcdHID */
0x00, /* 4 bCountryCode */
0x01, /* 5 bNumDescriptors */
0x22, /* 6 bDescriptorType[0] (Report) */
0x32, /* 7 wDescriptorLength */
0x00, /* 8 wDescriptorLength */

0x07, /* 0 bLength */
0x05, /* 1 bDescriptorType */
0x81, /* 2 bEndpointAddress */
0x03, /* 3 bmAttributes */
0x40, /* 4 wMaxPacketSize */
0x00, /* 5 wMaxPacketSize */
0x0a /* 6 bInterval */

};

Other Speed Configuration descriptor

An Other Speed Configuration descriptor is used for similar reasons as the Device Qual-
ifier descriptor. The USB_StandardRequests() function generates this descriptor
from the Configuration descriptors passed to it based on the bus speed it is currently
running at. For the HID mouse example the same Configuration descriptors are uses
regardless of bus-speed (i.e. full-speed or high-speed).

String descriptors

An array of strings supplies all the strings that are referenced from the descriptors (using
fields such as ‘iInterface’, ‘iProduct’ etc.). The string at index 0 must always contain the
Language ID Descriptor. This descriptor indicates the languages that the device supports
for string descriptors.

The USB_StandardRequests() function deals with requests for strings using the ta-
ble of strings passed to it. It handles the conversion of the raw strings to valid USB string
descriptors.

The string table for the HID mouse example is shown below:
static char * unsafe stringDescriptors[]=
{

"\x09\x04", // Language ID string (US English)
"XMOS", // iManufacturer
"Example HID Mouse", // iProduct
"Config", // iConfiguration

};

8.6 Application and class specific requests

Although the USB_StandardRequests() function deals with many of the requests
the device is required to handle in order to be properly enumerated by a host, typically a
USB device will have Class (or Application) specific requests that must be handled.

In the case of the HID mouse there are three mandatory requests that must be handled:

29

lib_xud: USB device library

· GET_DESCRIPTOR
· HID: Return the HID descriptor
· REPORT: Return the HID report descriptor
· GET_REPORT: Return the HID report data

See the HID Class Specification and related documentation for full details of all HID re-
quests.

The HID report descriptor informs the host of the contents of the HID reports that the
device sending to the host periodically. For a mouse this could include X/Y axis values,
button presses etc. A tool for building these descriptors is available for download on the
usb.org website.

The HID report descriptor for the HID mouse example is shown below:
static unsigned char hidReportDescriptor[] =
{

0x05, 0x01, /* Usage Page (Generic Desktop) */
0x09, 0x02, /* Usage (Mouse) */
0xA1, 0x01, /* Collection (Application) */
0x09, 0x01, /* Usage (Pointer) */
0xA1, 0x00, /* Collection (Physical) */
0x05, 0x09, /* Usage Page (Buttons) */
0x19, 0x01, /* Usage Minimum (01) */
0x29, 0x03, /* Usage Maximum (03) */
0x15, 0x00, /* Logical Minimum (0) */
0x25, 0x01, /* Logical Maximum (1) */
0x95, 0x03, /* Report Count (3) */
0x75, 0x01, /* Report Size (1) */
0x81, 0x02, /* Input (Data,Variable,Absolute); 3 button bits */
0x95, 0x01, /* Report Count (1) */
0x75, 0x05, /* Report Size (5) */
0x81, 0x01, /* Input(Constant); 5 bit padding */
0x05, 0x01, /* Usage Page (Generic Desktop) */
0x09, 0x30, /* Usage (X) */
0x09, 0x31, /* Usage (Y) */
0x15, 0x81, /* Logical Minimum (-127) */
0x25, 0x7F, /* Logical Maximum (127) */
0x75, 0x08, /* Report Size (8) */
0x95, 0x02, /* Report Count (2) */
0x81, 0x06, /* Input (Data,Variable,Relative); 2 position bytes (X & Y) */
0xC0, /* End Collection */
0xC0 /* End Collection */

};

The request for this descriptor (and the other required requests) should be implemented
before making the call to USB_StandardRequests(). The programmer may decide
not to make a call to USB_StandardRequests if the request is fully handled. It is pos-
sible the programmer may choose to implement some functionality for a request, then
allow USB_StandardRequests() to finalise.

The complete code listing for the main endpoint 0 task is shown below:
void Endpoint0(chanend chan_ep0_out, chanend chan_ep0_in)
{

USB_SetupPacket_t sp;

unsigned bmRequestType;
XUD_BusSpeed_t usbBusSpeed;

XUD_ep ep0_out = XUD_InitEp(chan_ep0_out);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in);

while(1)
{

/* Returns XUD_RES_OKAY on success */
XUD_Result_t result = USB_GetSetupPacket(ep0_out, ep0_in, sp);

if(result == XUD_RES_OKAY)
{

/* Set result to ERR, we expect it to get set to OKAY if a request is handled */
result = XUD_RES_ERR;

/* Stick bmRequest type back together for an easier parse... */
bmRequestType = (sp.bmRequestType.Direction<<7) |

(sp.bmRequestType.Type<<5) |
(sp.bmRequestType.Recipient);

(continues on next page)

30

https://usb.org/document-library/hid-descriptor-tool
https://www.usb.org

lib_xud: USB device library

(continued from previous page)
if ((bmRequestType == USB_BMREQ_H2D_STANDARD_DEV) &&

(sp.bRequest == USB_SET_ADDRESS))
{

// Host has set device address, value contained in sp.wValue
}

switch(bmRequestType)
{

/* Direction: Device-to-host
* Type: Standard
* Recipient: Interface
*/

case USB_BMREQ_D2H_STANDARD_INT:

if(sp.bRequest == USB_GET_DESCRIPTOR)
{

/* HID Interface is Interface 0 */
if(sp.wIndex == 0)
{

/* Look at Descriptor Type (high-byte of wValue) */
unsigned short descriptorType = sp.wValue & 0xff00;

switch(descriptorType)
{

case HID_HID:
result = XUD_DoGetRequest(ep0_out, ep0_in, hidDescriptor,�

↪→sizeof(hidDescriptor), sp.wLength);
break;

case HID_REPORT:
result = XUD_DoGetRequest(ep0_out, ep0_in, hidReportDescriptor,�

↪→sizeof(hidReportDescriptor), sp.wLength);
break;

}
}

}
break;

/* Direction: Device-to-host and Host-to-device
* Type: Class
* Recipient: Interface
*/

case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:

/* Inspect for HID interface num */
if(sp.wIndex == 0)
{

/* Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset */
result = HidInterfaceClassRequests(ep0_out, ep0_in, sp);

}
break;

}
}

/* If we haven't handled the request about then do standard enumeration requests */
if(result == XUD_RES_ERR)
{

/* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset */

unsafe
{

result = USB_StandardRequests(ep0_out, ep0_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0, null, 0, stringDescriptors, sizeof(stringDescriptors)/

↪→sizeof(stringDescriptors[0]),
sp, usbBusSpeed);

}
}

/* USB bus change detected, */
if(result == XUD_RES_UPDATE)
{

XUD_BusState_t busState = XUD_GetBusState(ep0_out, ep0_in);

if(busState == XUD_BUS_RESET)
{

/* Reset EP and get new bus speed */
usbBusSpeed = XUD_ResetEndpoint(ep0_out, ep0_in);

}
else if(busState == XUD_BUS_SUSPEND)
{

/* Perform suspend actions */

/* Acknowledge back to XUD letting it know we've handled suspend */
XUD_AckBusState(ep0_out, ep0_in);

}
else if(busState == XUD_BUS_RESUME)
{

(continues on next page)

31

lib_xud: USB device library

(continued from previous page)
/* Perform resume actions */

/* Acknowledge back to XUD letting it know we've handled resume */
XUD_AckBusState(ep0_out, ep0_in);

}
}

}
} /* Endpoint0 */

The skeleton HidInterfaceClassRequests() function deals with any outstanding
HID requests. See the USB HID Specification for full request details:
XUD_Result_t HidInterfaceClassRequests(XUD_ep c_ep0_out, XUD_ep c_ep0_in, USB_SetupPacket_t sp)
{

unsigned buffer[64];

switch(sp.bRequest)
{

case HID_GET_REPORT:

/* Mandatory. Allows sending of report over control pipe */
/* Send a hid report - note the use of unsafe due to shared mem */
unsafe {
char * unsafe p_reportBuffer = g_reportBuffer;
buffer[0] = p_reportBuffer[0];

}

return XUD_DoGetRequest(c_ep0_out, c_ep0_in, (buffer, unsigned char []), 4, sp.wLength);
break;

case HID_GET_IDLE:
/* Return the current Idle rate - optional for a HID mouse */

/* Do nothing - i.e. STALL */
break;

case HID_GET_PROTOCOL:
/* Required only devices supporting boot protocol devices,
* which this example does not */

/* Do nothing - i.e. STALL */
break;

case HID_SET_REPORT:
/* The host sends an Output or Feature report to a HID
* using a cntrol transfer - optional */

/* Do nothing - i.e. STALL */
break;

case HID_SET_IDLE:
/* Set the current Idle rate - this is optional for a HID mouse
* (Bandwidth can be saved by limiting the frequency that an
* interrupt IN EP when the data hasn't changed since the last
* report */

/* Do nothing - i.e. STALL */
break;

case HID_SET_PROTOCOL:
/* Required only devices supporting boot protocol devices,
* which this example does not */

/* Do nothing - i.e. STALL */
break;

}

return XUD_RES_ERR;
} /* HidInterfaceClassRequests */

If the HID request is not handled, the function returns XUD_RES_ERR. This results in
USB_StandardRequests() being called, and eventually the endpoint responding to
the host with a STALL to indicate an unsupported request.

32

lib_xud: USB device library

9 Advanced usage

Advanced usage is termed to mean the implementation of multiple endpoints in a single
task as well as the addition of real-time processing to an endpoint task.

The functions documented in Basic usage such as XUD_SetBuffer() and
XUD_GetBuffer() are synchronous in nature - they block until data has either
been successfully sent or received to or from the host. For this reason it is not generally
possible to handle multiple endpoints in a single thread efficiently (or at all, depending
on the protocols involved).

To solve this lib_xud provides an API that is asynchronous in nature with functions
that allow the separation of requesting to send/receive a packet and the notification of
a successful transfer. This API utilises xcore events by using the XC select statement
language feature.

General operation is as follows:

· A XUD_SetReady_ function is called to mark an endpoint as ready to send or receive
data

· A“select“ statement is used, along with a select handler to wait for, and capture,
send/receive notifications from the XUD_Main task

9.1 Function details

The available XUD_SetReady_ functions for the asynchronous API are listed below.

XUD_SetReady_Out()

int XUD_SetReady_Out(XUD_ep ep, unsigned char buffer[])
Marks an OUT endpoint as ready to receive data.

Parameters

· ep – The OUT endpoint identifier (created by XUD_InitEp).
· buffer – The buffer in which to store data received from the

host. The buffer is assumed to be word aligned.
Returns

XUD_RES_OKAY on success, for errors see Status Reporting.

XUD_SetReady_In()

static inline XUD_Result_t XUD_SetReady_In(XUD_ep ep, unsigned char buffer[], int
len)

Marks an IN endpoint as ready to transmit data.

Parameters

· ep – The IN endpoint identifier (created by XUD_InitEp).
· buffer – The buffer to transmit to the host. The buffer is as-

sumed be word aligned.
· len – The length of the data to transmit.

Returns
XUD_RES_OKAY on success, for errors see Status Reporting.

The following functions are also provided to ease integration with more complex buffer-
ing schemes than a single packet buffer. A example might be a circular-buffer for an
audio stream.

33

lib_xud: USB device library

XUD_SetReady_OutPtr()

static inline XUD_Result_t XUD_SetReady_OutPtr(XUD_ep ep, unsigned addr)
Marks an OUT endpoint as ready to receive data.

Parameters

· ep – The OUT endpoint identifier (created by XUD_InitEp).
· addr – The address of the buffer in which to store data received

from the host. The buffer is assumed to be word aligned.
Returns

XUD_RES_OKAY on success, for errors see Status Reporting.

XUD_SetReady_InPtr()

static inline XUD_Result_t XUD_SetReady_InPtr(XUD_ep ep, unsigned addr, int len)
Marks an IN endpoint as ready to transmit data.

Parameters

· ep – The IN endpoint identifier (created by XUD_InitEp).
· addr – The address of the buffer to transmit to the host. The

buffer is assumed be word aligned.
· len – The length of the data to transmit.

Returns
XUD_RES_OKAY on success, for errors see Status Reporting.

Once an endpoint has been marked ready to send/receive by calling one of the above
XUD_SetReady_ functions, an XC select statement can be used to handle notifica-
tions of a packet being sent/received from XUD_Main(). These notifications are com-
municated via channels.

For convenience, select handler functions are provided to handle events in the
select statement. These are documented below.

XUD_GetData_Select()

void XUD_GetData_Select(chanend c, XUD_ep ep, REFERENCE_PARAM(unsigned,
length), REFERENCE_PARAM(XUD_Result_t, result))

Select handler function for receiving OUT endpoint data in a select.

Parameters

· c – The chanend related to the endpoint
· ep – The OUT endpoint identifier (created by XUD_InitEp).
· length – Passed by reference. The number of bytes written to

the buffer (that was passed into XUD_SetReady_Out())
· result – XUD_Result_t passed by reference. XUD_RES_OKAY

on success, for errors see Status Reporting.

XUD_SetData_Select()

void XUD_SetData_Select(chanend c, XUD_ep ep,
REFERENCE_PARAM(XUD_Result_t, result))

Select handler function for transmitting IN endpoint data in a select.

Parameters

· c – The chanend related to the endpoint

34

lib_xud: USB device library

· ep – The IN endpoint identifier (created by XUD_InitEp).
· result – Passed by reference. XUD_RES_OKAY on success, for

errors see Status Reporting.

Warning: It is currently not possible to share control endpoint (i.e. endpoint 0) func-
tionalty with other endpoints/tasks. This is because a control endpoint must remain
responsive to the host.

9.2 Example

A simple example of the functionality described in this section is shown below:

void ExampleEndpoint(chanend c_ep_out, chanend c_ep_in)
{

unsigned char rxBuffer[1024];
unsigned char txBuffer[] = {0, 1, 2, 3, 4};
int length, returnVal;

XUD_ep ep_out = XUD_InitEp(c_ep_out);
XUD_ep ep_in = XUD_InitEp(c_ep_in);

/* Mark OUT endpoint as ready to receive */
XUD_SetReady_Out(ep_out, rxBuffer);
XUD_SetReady_In(ep_in, txBuffer, 5);

while(1)
{

select
{

case XUD_GetData_Select(c_ep_out, ep_out, length):

/* Packet from host received */

for(int i = 0; i< length; i++)
{

/* Process packet... */
}

/* Mark EP as ready again */
XUD_SetReady_Out(ep_out, rxBuffer);
break;

case XUD_SetData_Select(c_ep_in, ep_in, returnVal):

/* Packet successfully sent to host */

/* Create new buffer */
for(int i = 0; i < 5; i++)
{

txBuffer[i]++;
}

/* Mark EP as ready again */
XUD_SetReady_In(ep_in, txBuffer, 5);
break;

}
}

}

10 Build time options

This section lists build time configuration defines that impact the behaviour of lib_xud.

XUD_OSC_MHZ
Frequency of oscillator used to clock xcore (in MHz)

XUD_SUSPEND_PHY
Option to put the PHY in low power mode during USB suspend.
When set to 1, the PHY will enter low power mode during USB suspend. When set
to 0 (default), this feature is disabled.

35

lib_xud: USB device library

Only supported on XS3A/xcore.ai based devices.

36

lib_xud: USB device library

11 Further Reading

· XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

· XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

· XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

· USB Made Simple
https://www.usbmadesimple.co.uk/index.html

· USB Specification 2.0
https://www.usb.org/sites/default/files/usb_20_20240604.zip

· Human Interface Device (HID) Class Specification 1.11
https://usb.org/document-library/device-class-definition-hid-111>

· HID Descriptor Tool
https://usb.org/document-library/hid-descriptor-tool

Copyright © 2025, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

37

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.usbmadesimple.co.uk/index.html
https://www.usb.org/sites/default/files/usb_20_20240604.zip
https://usb.org/document-library/device-class-definition-hid-111
https://usb.org/document-library/hid-descriptor-tool

	Introduction
	Overview
	File Arrangement
	Resource Usage
	Ports/pins
	Thread frequency
	Clock blocks
	Timers
	Memory

	Basic usage
	XUD IO task
	VBUS monitoring
	USB_TILE define
	Data transfer
	Data transfer example
	Status reporting
	Status reporting example
	SOF channel
	Halting
	USB test modes

	Control Endpoints
	Helper Functions
	Control Endpoint Example

	Programming guide
	Includes
	Declarations
	main()
	Endpoint addresses
	Sending and receiving data
	Endpoint 0 implementation
	Device descriptors

	Example application
	Required hardware
	Declarations
	main()
	HID endpoint task
	Device descriptors
	Application and class specific requests

	Advanced usage
	Function details
	Example

	Build time options
	Further Reading

