
lib_gpio: GPIO abstraction for multibit ports

Publication Date: 2025/6/18
Document Number: XM-010422-UG v2.2.0

lib_gpio: GPIO abstraction for multibit ports

IN THIS DOCUMENT

1 Inroduction . 2
2 Connecting external signals to multi-bit ports . 3

2.1 Performance restrictions . 3
3 Usage . 4

3.1 Output GPIO usage . 4
3.2 Input GPIO usage . 5
3.3 Input GPIO using events . 6
3.4 Pin maps . 6

4 GPIO APIs . 7
4.1 Output GPIO API . 7
4.2 Input GPIO API . 8

1 Inroduction

The XMOS GPIO library allows accessing xcore ports as low-speed GPIO.

Although xcore ports can be directly accessed via the xC programming language this
library allowsmore flexible usage. In particular, it allows splitting amulti-pin output/input
port to be able to use the individual pins independently. It also allows accessing ports
across separate XMOS tiles or separate XMOS chips.

lib_gpio is intended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

To use this library, include lib_gpio in the application’s APP_DEPENDENT_MODULES
list in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_gpio")

Applications should then include the gpio.h header file.

2

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_gpio: GPIO abstraction for multibit ports

2 Connecting external signals to multi-bit ports

Multi-bit ports can be connected to independent signals in either an all output configu-
ration (see Output configuration) or an all input configuration (see Input configuration).
This implies two important restrictions:

· Bi-directional signals cannot use this library

· The signals on the same port must go in the same direction

To use bi-directional signals, a dedicated 1-bit hardware port needs to be used.

n-bit
portxCORE device

...

Fig. 1: Input configuration

n-bit
portxCORE device

...

Fig. 2: Output configuration

2.1 Performance restrictions

This library allows independent access to the pins of mulit-bit ports by multiplexing the
port output or input in software. This means that there are some performance implica-
tions, namely:

· The internal buffering, serializing and de-serializing features of the xCORE port are not
available.

· The software locking and multiplexing between individual bits of the port limits per-
formance. As such, toggling pins at speed above 1Mhz, for example, is not achievable
(on a 62.5Mhz logical core). The limit may be lower depending on the other code is
running on the core and how the other pins of the port are being driven.

As such, sharing multi-bit ports is most suitable for slow I/O such as LEDs, buttons and
reset lines.

3

lib_gpio: GPIO abstraction for multibit ports

3 Usage

There are three ways to use the GPIO library:

GPIO type Description

Output GPIO Allows control of individual bits of a multi-bit output port.
Input GPIO Allows reading of individual bits of a multi-bit input port.
Input GPIO with
events

Allows reading of individual bits of a multi-bit input port and react-
ing to events on those pins.

3.1 Output GPIO usage

Output GPIO components are instantiated as parallel tasks that run in a par statement.
These components connect to the hardware ports of the xCORE device. The applica-
tion can connect via an interface connection using an array of the output_gpio_if
interface type like in Output GPIO task diagram.

output
gpio
task

output
gpio
task

task1task1
output_gpio_if

task2task2

output_gpio_if

Fig. 3: Output GPIO task diagram

For example, the following code instantiates an output GPIO component for the first 3
pins of a port and connects to it
port p = XS1_PORT_4C;

int main(void) {
output_gpio_if i_gpio[3];
par {
output_gpio(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the
same component instance, each controlling different pins of the port.

The application can use the client end of the interface connection to perform GPIO oper-
ations e.g.
void task1(client output_gpio_if gpio1, client output_gpio_if gpio2)
{

// ...
gpio1.output(1);
gpio2.output(0);

(continues on next page)

4

lib_gpio: GPIO abstraction for multibit ports

(continued from previous page)
delay_milliseconds(200);
gpio1.output(0);
gpio2.output(1);
// ...

}

More information on interfaces and tasks can be be found in the XMOS Programming
Guide. By default the output GPIO component does not use any logical cores of its own.
It is a distributed task which means it will perform its function on the logical core of the
application task connected to it (provided the application task is on the same tile).

3.2 Input GPIO usage

There are two types of input GPIO component: those that support events and those that
do not support events. In both cases, input GPIO components are instantiated as parallel
tasks that run in a par statement. These components connect to the hardware ports of
the xCORE device. The application can connect via an interface connection using an
array of the input_gpio_if interface type like in Input GPIO task diagram.

input
gpio
task

input
gpio
task

task1task1
input_gpio_if

task2task2

input_gpio_if

Fig. 4: Input GPIO task diagram

For example, the following code instantiates an input GPIO component for the first 3 pins
of a port and connects to it
port p = XS1_PORT_4C;

int main(void) {
input_gpio_if i_gpio[3];
par {
input_gpio(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the
same component instance, each controlling different pins of the port.

5

https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf/
https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf/

lib_gpio: GPIO abstraction for multibit ports

The application can use the client end of the interface connection to perform GPIO oper-
ations e.g.
void task1(client input_gpio_if gpio1, client input_gpio_if gpio2)
{

// ...
val1 = gpio1.input();
val2 = gpio2.input();
// ...
val1 = gpio1.input();
val2 = gpio2.input();
// ...

}

More information on interfaces and tasks can be be found in the XMOS Programming
Guide. By default the output GPIO component does not use any logical cores of its own.
It is a distributed task which means it will perform its function on the logical core of the
application task connected to it (provided the application task is on the same tile).

3.3 Input GPIO using events

The input_gpio_with_events() and input_gpio_1bit_with_events() func-
tions support the event based functions of the input GPIO interface
port p = XS1_PORT_4C;

int main(void) {
input_gpio_if i_gpio[3];
par {
input_gpio_with_events(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

In this case the application can request an event on a pin change and then select on the
event happening e.g.
gpio.event_when_pins_eq(1);
select {
case gpio.event():

// This event was caused by the pin value being 1
// ...
break;

}

3.4 Pin maps

The GPIO tasks all take a pin_map argument. If this is null then the elements of the
inteface array will correspond with the a bit of the port based on the array element index.
So the first element of the array will control bit 0, the second with control bit 1 and so on.

Alternatively an array can be provided mapping array elements to pins. For example, the
following will map the array indices to pins 3, 2 and 7 of the port
char pin_map[3] = {3, 2, 7};

int main() {
// ...
par {
output_gpio(i_gpio, 3, p, pin_map);
// ...

6

https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf/
https://www.xmos.com/download/XMOS-Programming-Guide-(documentation)(E).pdf/

lib_gpio: GPIO abstraction for multibit ports

4 GPIO APIs

4.1 Output GPIO API

Output GPIO components

void output_gpio(SERVER_ARRAY_OF_SIZE(output_gpio_if, i, n), static_const_size_t
n, out_port_t p, NULLABLE_ARRAY_OF_SIZE(char, pin_map, n))

Task that splits a multi-bit port into several 1-bit GPIO interfaces.
This component allowsother tasks to access the individual bits of amulti-bit output
port.

Parameters

· i – The array of interfaces to connect to other tasks.
· n – The number of interfaces connected.
· p – The output port to be split.
· pin_map – This array maps the connected interfaces to the

pin(s) of the port. For example, if 3 clients are connected to split
a 8-bit port and the array {2,5,3} is supplied. Then bit 2 will go
to interface 0, bit 5 to inteface 1 and bit 3 to inteface 2. If null
is supplied for this argument then the pin map is assumed to be
{0,1,2…}.

Output GPIO interface

group output_gpio_if
This interface provides access to a GPIO that can perform output operations only.
All GPIOs are single bit.

Functions

void output(unsigned data)
Perform an output on a GPIO.

Parameters

· data – The value to be output. The least significant bit repre-
sents the 1-bit value to be output.

gpio_time_t output_and_timestamp(unsigned data)
Perform an output on a GPIO and get a timestamp of when the output occurs.

Parameters

· data – The value to be output. The least significant bit repre-
sents the 1-bit value to be output.

Returns
The time the value was input. This timestamp is the 16-bit port
timer value. The port timer is driven at the rate of the port clock.

7

lib_gpio: GPIO abstraction for multibit ports

4.2 Input GPIO API

Input GPIO components

void input_gpio(SERVER_ARRAY_OF_SIZE(input_gpio_if, i, n), static_const_size_t n,
in_port_t p, NULLABLE_ARRAY_OF_SIZE(char, pin_map, n))

Task that splits a multi-bit input port into several 1-bit GPIO interfaces (no events).
This component allows other tasks to access the individual bits of a multi-bit input
port. It does not support events but is distributable so requires no specific logical
core to run on. If the event_when_pins_eq() function is called then the component
will trap.

Parameters

· i – The array of interfaces to connect to other tasks.
· n – The number of interfaces connected.
· p – The input port to be split.
· pin_map – This array maps the connected interfaces to the

pin(s) of the port. For example, if 3 clients are connected to split
a 8-bit port and the array {2,5,3} is supplied. Then bit 2 will go
to interface 0, bit 5 to inteface 1 and bit 3 to inteface 2. If null
is supplied for this argument then the pin map is assumed to be
{0,1,2…}.

void input_gpio_with_events(SERVER_ARRAY_OF_SIZE(input_gpio_if, i, n),
static_const_size_t n, in_port_t p,
NULLABLE_ARRAY_OF_SIZE(char, pin_map, n))

Task that splits amulti-bit input port into several 1-bit GPIO interfaces (with events).
This component allows other tasks to access the individual bits of a multi-bit in-
put port. It does support events so requires a logical core to run on (but can be
combined with other tasks on the same core).

Parameters

· i – The array of interfaces to connect to other tasks.
· n – The number of interfaces connected.
· p – The input port to be split.
· pin_map – This array maps the connected interfaces to the

pin(s) of the port. For example, if 3 clients are connected to split
a 8-bit port and the array {2,5,3} is supplied. Then bit 2 will go
to interface 0, bit 5 to inteface 1 and bit 3 to inteface 2. If null
is supplied for this argument then the pin map is assumed to be
{0,1,2…}.

void input_gpio_1bit_with_events(SERVER_INTERFACE(input_gpio_if, i),
in_port_t p)

Convert a 1-bit port to a single 1-bit GPIO interface.
This component allows other tasks to access a 1-bit port as a GPIO interface. It is
more efficient that using input_gpio_with_events() for the restricted case where a
1-bit port is used.

Parameters

· i – The interface to connect to other tasks.
· p – The input port.

8

lib_gpio: GPIO abstraction for multibit ports

Input GPIO interface

group input_gpio_if
This interface provides access to a GPIO that can perform input operations only.
All GPIOs are single bit.

Functions

unsigned input(void)
Perform an input on a GPIO

Returns
The value input from the port in the least significant bit. The rest
of the value will be zero extended.

unsigned input_and_timestamp(REFERENCE_PARAM(gpio_time_t,
timestamp))

Perform an input on a GPIO and get a timestamp
Parameters

· timestamp – This pass-by-reference parameter will be set
to the time the value was input. This timestamp is the 16-bit
port timer value. The port timer is driven at the rate of the port
clock.

Returns
The value input from the port in the least significant bit. The rest
of the value will be zero extended.

void event_when_pins_eq(unsigned val)
Request an event when the pin is a certain value.
This function will cause a notification to occur when the pins match the spec-
ified value.

Parameters

· val – The least significant bit represents the 1-bit value to
match.

void event(void)
A pin event has occurred.
This notification will occur when a pin event has occurred. Events can be
requested using the event_when_pins_eq() call.

Copyright © 2025, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

9

	Inroduction
	Connecting external signals to multi-bit ports
	Performance restrictions

	Usage
	Output GPIO usage
	Input GPIO usage
	Input GPIO using events
	Pin maps

	GPIO APIs
	Output GPIO API
	Input GPIO API

