
AN00120: 100Mbps RMII ethernet example

AN00120: 100Mbps RMII ethernet example

Publication Date: 2025/10/22
Document Number: XM-008190-AN v3.1.0

IN THIS DOCUMENT

1 Introduction . 1
2 100Mbit RMII ICMP example . 1
3 Further reading . 8

1 Introduction

This application note demontrates the use of theXMOSEthernet library. lib_ethernet
provides the Media Access Control (MAC) function for the Ethernet stack that al-
lows interfacing to MII, RMII or RGMII Ethernet PHYs. The application note uses
lib_ethernet to provide a simple IP stack capable of responding to an ICMP ping
message.

It demonstrates the real-time RMII MAC which uses four cores and provides high per-
formance streaming data, accurate packet timestamping, priority queuing and 802.1Qav
traffic shaping. RMII provides the data transfer signals between the Ethernet PHY (Phys-
ical Layer Device or transceiver) and the xCORE device.

The RMII layer receives packets of data which are then routed by an Ethernet MAC layer
to multiple processes running on the xCORE. SMI provides the management interface
between the PHY and the xCORE device.

The application communicates with the EthernetMAC that drives the RMII data interface
to the PHY. A separate PHY driver configures the PHY via the SMI serial interface. The
application is tested on the XK-ETH-316-DUAL board which is an xcore.ai based board.
It has two TI DP83825I PHYs connected to it and can support applications requiring up
to two ethernet ports. This application instantiates one RMII MAC port that connects to
DP83825I PHY_0 on the board.

2 100Mbit RMII ICMP example

2.1 Thread Diagram

Fig. 1 shows how the various functions aremapped to the threads inside the xCORE. The
hardware platform maps the RMII pins to tile[0] and the SMI pins to tile[1] and hence the
associated MAC and SMI tasks must be placed accordingly. Note that the PHY driver
task can be combined with the SMI interface by the xC compiler so that it only occupies
one hardware thread. The icmp_server application itself, has no need to access IO
ports and communicates via interfaces and so may be placed on either tile, however is
on tile[0] in this example.

The RMII ethernetMAC itself always consists of four hardware threadswhich use shared
memory to communicate and hence are always place on the same tile as each other.

This particular example only uses 4 + 1 + 1 (6) of the total 16 hardware threads on the
xCORE and less than 4% (40 kB) of the total RAM (1024 kB) and so has plenty of room
for other functionality.

1

https://www.xmos.com/file/lib_ethernet
https://www.ti.com/product/DP83825I

AN00120: 100Mbps RMII ethernet example

Fig. 1: Application thread diagram

2.2 Building the Application

The following section assumes you have downloaded and installed the XMOS XTC tools
(see README for required version). Installation instructions can be found here. Be sure
to pay attention to the section Installation of required third-party tools.

The application uses the xcommon-cmake build system as bundled with the XTC tools.

The file CMakeLists.txt in the app_an00120 directory contains the application build con-
figuration.

To configure the build run the following from an XTC command prompt:
cd app_an00120
cmake -G "Unix Makefiles" -B build

Any missing dependencies will be downloaded by the build system as part of this con-
figure step.

Finally, the application binaries can be built using xmake:
xmake -C build

This will build the application binary app_an00120.xe in the app_an00120/bin di-
rectory.

The example uses the MAC layer implementation in the lib_ethernet library. It de-
pends on lib_board_support for the PHY configuration on the XK-ETH-316-DUAL
board. These dependencies are specified in APP_DEPENDENT_MODULES in the appli-
cation’s CMakeLists.txt:
set(APP_DEPENDENT_MODULES "lib_ethernet(4.1.0)"

"lib_board_support(1.4.0)"

2

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

AN00120: 100Mbps RMII ethernet example

2.3 Allocating hardware resources

The Ethernet library requires several ports to communicate with the Ethernet PHY. These
ports are declared in themain program file (main.xc). In this examples the ports are set
up for the PHY 0 on the XK-ETH-316-DUAL board which is the PHY in the top left corner
of the board. Note that, in the default hardware configuration, it is also necessary to
populate PHY_1 (top middle of the board) due to the way the 50 MHz ethernet clock is
distributed.
Actual port names such as XS1_PORT_1A are specified in the XN file
xk-eth-316-dual.xn and the source code refers to them with symbolic names such
as PHY_0_TX_EN, with the actual to symbolic name mapping being specified in the XN
file:
port p_phy_rxd = RMII_PHY_0_RXD_4BIT;
port p_phy_txd = RMII_PHY_0_TXD_4BIT;
port p_phy_rxdv = RMII_PHY_0_RXDV;
port p_phy_txen = RMII_PHY_0_TX_EN;

port p_phy_clk = RMII_PHY_CLK_50M;

In addition to the ports, two clock blocks are required, one each for the ethernet TX and
RX clocks.
clock phy_rxclk = on tile[0]: XS1_CLKBLK_1;
clock phy_txclk = on tile[0]: XS1_CLKBLK_2;

The MDIO Serial Management Interface (SMI) is used to transfer management informa-
tion between MAC and PHY. This interface consists of two signals which are connected
to two ports:
port p_smi_mdio = MDIO;
port p_smi_mdc = MDC;

2.4 The application main() function

The main function in the program sets up the tasks in the application.
int main()
{
ethernet_cfg_if i_cfg[NUM_CFG_CLIENTS];
ethernet_rx_if i_rx[NUM_ETH_CLIENTS];
ethernet_tx_if i_tx[NUM_ETH_CLIENTS];
smi_if i_smi;

par {
on tile[0]: rmii_ethernet_rt_mac(i_cfg, NUM_CFG_CLIENTS,

i_rx, NUM_ETH_CLIENTS,
i_tx, NUM_ETH_CLIENTS,
null, null,
p_phy_clk,
p_phy_rxd,
null,
USE_UPPER_2B,
p_phy_rxdv,
p_phy_txen,
p_phy_txd,
null,
USE_UPPER_2B,
phy_rxclk,
phy_txclk,
get_port_timings(PHY0_PORT_TIMINGS),
ETH_RX_BUFFER_SIZE_WORDS, ETH_RX_BUFFER_SIZE_WORDS,
ETHERNET_DISABLE_SHAPER);

on tile[1]: dual_ethernet_phy_driver(i_smi, i_cfg[CFG_TO_PHY_DRIVER], null);
on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);
on tile[0]: icmp_server(i_cfg[CFG_TO_ICMP],

i_rx[ETH_TO_ICMP], i_tx[ETH_TO_ICMP],
ip_address, mac_address_phy);

}

The rmii_ethernet_rt_mac creates a 100M RMII MAC instance that connects to
the PHY on board. It internally starts the four tasks, rmii_master_rx_pins_4b,
rmii_master_tx_pins, mii_ethernet_filter and mii_ethernet_server,
that make up the MAC implementation. These tasks handle communicating with

3

AN00120: 100Mbps RMII ethernet example

the PHY at the pin level (rmii_master_rx_pins_4b, rmii_master_tx_pins), fil-
tering received packets based on a MAC address lookup table based filtering, mov-
ing them into the receive queues (mii_ethernet_filter) and communicating with
the client processes, facilitating packet transfer between the clients and the network
(mii_ethernet_server).

The rmii_ethernet_rt_mac tasks takes the previously declared ports as arguments
as well as the required buffer size for the packet buffer within the MAC. In addition, a
structure provided by lib_board_support is passed in which configures the clock-
block and pad delays to ensure the capture windows (setup and hold times) are met for
this relatively fast IO interface.

The smi task is part of the Ethernet library and controls the SMI protocol to configure
the PHY. It connects to the dual_ethernet_phy_driver task which handles config-
uration of the PHY and monitors the line state.

The dual_ethernet_phy_driver function is implemented in
lib_board_support and it configures the PHY over the SMI interface.

Note

The MAC address that the ICMP code uses is declared as an array in main.xc:
static unsigned char mac_address_phy[MACADDR_NUM_BYTES] = {0x00, 0x22, 0x97, 0x01, 0x02, 0x03}

The IP address that the ICMP code uses is declared as an array in main.xc:
static unsigned char ip_address[4] = {192, 168, 1, 178}

These values can be altered to something that works on a given network.

2.5 The PHY driver

The PHY drive task dual_ethernet_phy_driver connects to both the EthernetMAC
(via the ethernet_cfg_if interface for configuration) and the SMI driver (via the
smi_if interface):

on tile[1]: dual_ethernet_phy_driver(i_smi, i_cfg[CFG_TO_PHY_DRIVER], null);
on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);

The first action the driver does iswait for the PHY to power up and then configure thePHY.
This is done via library functions provided by the Ethernet library and specific register
initialisation required in this instance.

Themain body of the PHY driver is an infinite loop that periodically reacts to a timer event
in an xC select statement. After a set period it checks the state of the PHY over SMI
and then informs theMAC of this state via the i_eth.set_link_state call. This way
the MAC can know about link up/down events or change of link speed.

2.6 ICMP packet processing

The packet processing in the application is handled by the icmp_server task which is
defined in the file icmp.xc. This function connects to the ethernet MAC via a transmit,
receive and configuration interface:
[[combinable]]
void icmp_server(client ethernet_cfg_if cfg,

client ethernet_rx_if rx,
client ethernet_tx_if tx,
const unsigned char ip_address[4],
const unsigned char mac_address[MACADDR_NUM_BYTES])

{

4

AN00120: 100Mbps RMII ethernet example

The first thing the task performs is configuring its connection to the MAC. The MAC
address is configured by calling the set_macaddr interface function:
memcpy(macaddr_filter.addr, mac_address, sizeof(mac_address));
cfg.add_macaddr_filter(index, 0, macaddr_filter);

After this, the task configures filters to determine which type of packets is will receive
from the MAC:

// Add broadcast filter
memset(macaddr_filter.addr, 0xff, MACADDR_NUM_BYTES);
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Only allow ARP and IP packets to the app
cfg.add_ethertype_filter(index, ETH_FRAME_TYPE_ARP);
cfg.add_ethertype_filter(index, ETH_FRAME_TYPE_IP);

The task then proceeds into an infinite loop that waits for a packet from the MAC and
then processes it:
while (1)
{
select {
case rx.packet_ready():
unsigned char rxbuf[ETHERNET_MAX_PACKET_SIZE];
unsigned char txbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);

if (packet_info.type != ETH_DATA)
{
debug_printf("Link: %s, speed %d\n", rxbuf[IF_STATUS_INDEX] ? "up" : "down", rxbuf[IF_SPEED_INDEX]);

}
else if (is_valid_arp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_arp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ARP response sent\n");

}
else if (is_valid_icmp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_icmp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ICMP response sent\n");

}
break;

}
}

}

The xC select statement will wait for the event rx.packet_ready() which is a re-
ceive notification from the MAC (see the Ethernet library user guide for details of the
ethernet receive interface). When a packet arrives the rx.get_packet call will retrieve
the packet from the MAC.

After the packet is processed the tx.send_packet call will send the created response
packet to the MAC.

Details of the packet processing functions is_valid_arp_packet,
build_arp_response, is_valid_icmp_packet and build_icmp_response
can be found in the icmp.xc file. The functions implement the ICMP protocol.

2.7 Demo Hardware Setup

The demo uses the XK-ETH-316-DUAL board. Fig. 2 shows the hardware.

2.8 Running the application

Once the app_an00120.xe application binary is compiled, it can be run on the XK-ETH-
316-DUAL board. The xrun tool is used from the command line to download and run the
code on the xCORE device. In a terminal with XTC tools sourced, from theapp_an00120
directory, run:

5

AN00120: 100Mbps RMII ethernet example

Fig. 2: Hardware Setup for XMOS RMII Ethernet library demo

xrun --xscope bin/app_an00120.xe

Once this command has executed the application will be running on the xCORE device.

From a new terminal window, now ping the target:
$ ping 192.168.1.178
PING 192.168.1.178 (192.168.1.178) 56(84) bytes of data.
64 bytes from 192.168.1.178: icmp_seq=1 ttl=64 time=0.589 ms
64 bytes from 192.168.1.178: icmp_seq=2 ttl=64 time=0.294 ms
64 bytes from 192.168.1.178: icmp_seq=3 ttl=64 time=0.298 ms
...

The xrun console will print the status of the ICMP server and show ARP and ICMP re-
sponses:
ICMP server started at MAC 0:22:97:1:2:3, IP 192.168.1.178
ARP packet received
ARP response sent
ICMP packet received
ICMP response sent
ICMP packet received
ICMP response sent
ICMP packet received
ICMP response sent
...

2.9 Troubleshooting

If the host cannot ping the xCORE device, ensure that its wired Ethernet port is assigned a
static IPv4 address. The configuration process varies by operating systembut is typically
done through the network settings. Fig. 3 shows how this looks on a MacBook Pro.

6

AN00120: 100Mbps RMII ethernet example

Fig. 3: Setting static IP address on a MacBook

7

AN00120: 100Mbps RMII ethernet example

3 Further reading

· XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide
· XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation
· XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

· XMOS Layer 2 Ethernet MAC Component
https://github.com/xmos/lib_ethernet

· Ethernet Frame
http://en.wikipedia.org/wiki/Ethernet_frame

· MAC address
http://en.wikipedia.org/wiki/MAC_address

· Ethernet Type
http://en.wikipedia.org/wiki/EtherType

· Internet Control Message Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

8

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://github.com/xmos/lib_ethernet
http://en.wikipedia.org/wiki/Ethernet_frame
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/EtherType
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

	Introduction
	100Mbit RMII ICMP example
	Further reading

