
AN00199: Gigabit ethernet example

AN00199: Gigabit ethernet example

Publication Date: 2025/9/19
Document Number: XM-008188-AN v1.1.1

IN THIS DOCUMENT

1 Introduction . 1
2 Gigabit ethernet example . 1
3 Further reading . 7

1 Introduction

The application note shows the use of the XMOS Ethernet library. The library allows
multiple clients to access the Ethernet hardware. This application note uses the gigabit
RGMII Ethernet MAC which uses 8 logical cores on a single tile (although one of those
core can be sharedwith the application). The Ethernet library also provides 100MbitMAC
components which consume less resource on the xCORE device.

The gigabit MAC can handle line rate data packets through to the application layer and
provides high performance streaming data, accurate packet timestamping, priority queu-
ing and 802.1Qav traffic shaping.

RGMII provides the data transfer signals between the Ethernet PHY (Physical Layer De-
vice or transceiver) and the xCORE device. The RGMII layer receives packets of data
which are then routed by an Ethernet MAC layer to multiple processes running on the
xCORE. SMI provides the management interface between the PHY and the xCORE de-
vice.

1.1 Block Diagram

PHY

RGMII

SMI

Ethernet
MAC

PHY
driver

xCORE

Application

SMI
driver

Fig. 1: Application block diagram

Fig. 1 shows the block diagram for the RGMII application. The application communicates
with the Ethernet MAC that drives the RGMII data interface to the PHY. A separate PHY
driver configures the PHY via the SMI serial interface.

2 Gigabit ethernet example

1

AN00199: Gigabit ethernet example

2.1 Building the Application

The following section assumes you have downloaded and installed the XMOS XTC tools
(see README for required version). Installation instructions can be found here. Be sure
to pay attention to the section Installation of required third-party tools.
The application uses the xcommon-cmake build system as bundled with the XTC tools.
The file CMakeLists.txt in the app_an00199 directory contains the application build con-
figuration.
To configure the build run the following from an XTC command prompt:
cd app_an00199
cmake -G "Unix Makefiles" -B build

Any missing dependencies will be downloaded by the build system as part of this con-
figure step.
Finally, the application binaries can be built using xmake:
xmake -C build

This will build the application binary app_an00199.xe in the app_an00199/bin di-
rectory.
The example uses the MAC layer implementation in the lib_ethernet library. It de-
pends on lib_board_support for the PHY configuration on the XK-EVK-XE216 board.
It depends on lib_otpinfo for reading the MAC address from the OTPmemory of the
xCORE device. These dependencies are specified in APP_DEPENDENT_MODULES in the
application’s CMakeLists.txt:
set(APP_DEPENDENT_MODULES "lib_ethernet(4.1.0)"

"lib_board_support(1.4.0)"
"lib_otpinfo(2.2.1)"

2.2 Allocating hardware resources

The Ethernet library requires the user to declare the ports that the RGMII MAC uses to
communicate with the Ethernet PHY. These ports are fixed on the xCORE-200 series so
in the main program they are declared using the RGMII_PORTS_INITIALIZERmacro
provided by the library. This means the application just needs to declare a structure in
main.xc to pass to the MAC component.
rgmii_ports_t rgmii_ports = on tile[1]: RGMII_PORTS_INITIALIZER;

The application needs to control the reset line of the PHY and configure the
phy via the MDIO Serial Management Interface (SMI). These are declared within
lib_board_support.
The final ports used in the application are the ones to access the internal OTP
memory on the xCORE. These ports are fixed and can be intialized with the
OTP_PORTS_INITIALIZERmacro supplied by the lib_otpinfo OTP reading library.
// These ports are for accessing the OTP memory
otp_ports_t otp_ports = on tile[0]: OTP_PORTS_INITIALIZER;

Note: The MAC address that the ICMP code uses is read from the OTP memory using
otp_board_info_get_mac(). The IP address that the ICMP code uses is declared
as an array in main.xc:
static unsigned char ip_address[4] = {192, 168, 1, 178};

These values can be altered to something that works on a given network.

2

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

AN00199: Gigabit ethernet example

2.3 The application main() function

The main function in the program sets up the tasks in the application.
int main()
{
ethernet_cfg_if i_cfg[NUM_CFG_CLIENTS];
ethernet_rx_if i_rx[NUM_ETH_CLIENTS];
ethernet_tx_if i_tx[NUM_ETH_CLIENTS];
streaming chan c_rgmii_cfg;
smi_if i_smi;

par {
on tile[1]: rgmii_ethernet_mac(i_rx, NUM_ETH_CLIENTS,

i_tx, NUM_ETH_CLIENTS,
null, null,
c_rgmii_cfg,
rgmii_ports,
ETHERNET_DISABLE_SHAPER);

on tile[1].core[0]: rgmii_ethernet_mac_config(i_cfg, NUM_CFG_CLIENTS, c_rgmii_cfg);
on tile[1].core[0]: xk_eth_xe216_phy_driver(i_smi, i_cfg[CFG_TO_PHY_DRIVER]);

on tile[1]: smi(i_smi, p_smi_mdio, p_smi_mdc);

on tile[0]: icmp_server(i_cfg[CFG_TO_ICMP],
i_rx[ETH_TO_ICMP], i_tx[ETH_TO_ICMP],
ip_address, otp_ports);

}
return 0;

}

The rgmii_ethernet_mac and rgmii_ethernet_mac_config tasks communi-
cate with the PHY and connect to the application via the three interfaces, the previously
declared RGMII ports as arguments as well as an argument that determines whether the
802.1Qav traffic shaper is enabled.
The smi task is part of the Ethernet library and controls the SMI protocol to configure
the PHY. It connects to the ar8035_phy_driver task which connects configuration of
the PHY
The RGMII MAC is split into two tasks so that other tasks can be placed on the same
logical core as the config task. In this example, the PHY driver task is placed on that
core.
In this example, the rgmii_ethernet_mac task has two null arguments. These are
two optional streaming channels parameters that are not used in this example but can
be used for high priority, high speed traffic (see the Ethernet library user guide for details).

2.4 The PHY driver

The PHY driver task connects to both the Ethernet MAC (via the ethernet_cfg_if
interface for configuration) and the SMI driver (via the smi_if interface). It is contained
within lib_board_support.
The first action the drive does is wait for the PHY to power up and then configure the
PHY. This is done via library functions provided by the Ethernet library.
Themain body of the drive is an infinite loop that periodically reacts to a timer event in an
xC select statement. A a set period it checks the state of the PHY over SMI and then
informs the MAC of this state via the eth.set_link_state call. This way the MAC
can know about link up/down events or change of link speed.

2.5 ICMP Packet Processing

The packet processing in the application is handled by the icmp_server task which is
defined in the file icmp.xc. This function connects to the ethernet MAC via a transmit,
receive and configuration interface:
[[combinable]]
void icmp_server(client ethernet_cfg_if cfg,

client ethernet_rx_if rx,

(continues on next page)

3

AN00199: Gigabit ethernet example

(continued from previous page)
client ethernet_tx_if tx,
const unsigned char ip_address[4],
otp_ports_t &otp_ports)

{

The first thing the task performs is configuring its connection to the MAC. The
MAC address is configured by reading a MAC address out of OTP (using the
otp_board_info_get_mac function from the OTP reading library) and then calling
the set_macaddr interface function:
unsigned char mac_address[MACADDR_NUM_BYTES];
ethernet_macaddr_filter_t macaddr_filter;

// Get the mac address from OTP and set it in the ethernet component
otp_board_info_get_mac(otp_ports, 0, mac_address);

size_t index = rx.get_index();
cfg.set_macaddr(0, mac_address);

After this, the task configures filters to determine which type of packets is will receive
from the MAC:
memcpy(macaddr_filter.addr, mac_address, sizeof mac_address);
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Add broadcast filter
memset(macaddr_filter.addr, 0xff, sizeof mac_address);
cfg.add_macaddr_filter(index, 0, macaddr_filter);

// Only allow ARP and IP packets to the app
cfg.add_ethertype_filter(index, ETH_FRAME_TYPE_ARP);
cfg.add_ethertype_filter(index, ETH_FRAME_TYPE_IP);

The task then proceeds into an infinite loop that waits for a packet from the MAC and
then processes it:
while (1)
{
select {
case rx.packet_ready():
unsigned char rxbuf[ETHERNET_MAX_PACKET_SIZE];
unsigned char txbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);

if (packet_info.type != ETH_DATA)
{
debug_printf("Link: %s, speed %d\n", rxbuf[IF_STATUS_INDEX] ? "up" : "down", rxbuf[IF_SPEED_INDEX]);

}
else if (is_valid_arp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_arp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ARP response sent\n");

}
else if (is_valid_icmp_packet(rxbuf, packet_info.len, ip_address))
{
int len = build_icmp_response(rxbuf, txbuf, mac_address, ip_address);
tx.send_packet(txbuf, len, ETHERNET_ALL_INTERFACES);
debug_printf("ICMP response sent\n");

}
break;

}
}

}

The xC select statement will wait for the event rx.packet_ready() which is a re-
ceive notification from the MAC (see the Ethernet library user guide for details of the
ethernet receive interface). When a packet arrives the rx.get_packet call will retreive
the packet from the MAC.
After the packet is processed the tx.send_packet call will send the created reponse
packet to the MAC.
Details of the packet processing functions is_valid_arp_packet,
build_arp_response, is_valid_icmp_packet and build_icmp_response
can be found in the icmp.xc file. The functions implement the ICMP protocol.

4

AN00199: Gigabit ethernet example

2.6 Demo Hardware Setup

·To run the demo, connect the PC to the XTAG USB debug adapter to
xCORE-200 explorer XSYS connector

· Connect the XTAG to the host PC using a USB cable

·Connect the ethernet jack to the host PC or to the network switch
using an ethernet cable.

Fig. 2 shows the required hardware setup.

Fig. 2: Hardware Setup

2.7 Running the application

Once the app_an00199.xe application binary is compiled, it can be run on the XK-EVK-
XE216 board. The xrun tool is used from the command line to download and run the
code on the xCORE device. In a terminal with XTC tools sourced, from theapp_an00199
directory, run:
xrun --xscope bin/app_an00199.xe

From a new terminal window, now ping the target:
$ ping 192.168.1.178
PING 192.168.1.178 (192.168.1.178) 56(84) bytes of data.
64 bytes from 192.168.1.178: icmp_seq=1 ttl=64 time=0.589 ms
64 bytes from 192.168.1.178: icmp_seq=2 ttl=64 time=0.294 ms
64 bytes from 192.168.1.178: icmp_seq=3 ttl=64 time=0.298 ms
...

5

AN00199: Gigabit ethernet example

The xrun console will print the status of the ICMP server and show ARP and ICMP re-
sponses:
ICMP server started at MAC 0:22:97:1:2:3, IP 192.168.1.178
ARP packet received
ARP response sent
ICMP packet received
ICMP response sent
ICMP packet received
ICMP response sent
ICMP packet received
ICMP response sent
...

2.8 Troubleshooting

If the host cannot ping the xCORE device, ensure that its wired Ethernet port is assigned a
static IPv4 address. The configuration process varies by operating systembut is typically
done through the network settings. Fig. 3 shows how this looks on a MacBook Pro.

Fig. 3: Setting static IP address on a MacBook

6

AN00199: Gigabit ethernet example

3 Further reading

· XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide
· XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation
· XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

· XMOS Layer 2 Ethernet MAC Component
https://github.com/xmos/lib_ethernet

· Ethernet Frame
http://en.wikipedia.org/wiki/Ethernet_frame

· MAC address
http://en.wikipedia.org/wiki/MAC_address

· Ethernet Type
http://en.wikipedia.org/wiki/EtherType

· Internet Control Message Protocol
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

7

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://github.com/xmos/lib_ethernet
http://en.wikipedia.org/wiki/Ethernet_frame
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/EtherType
http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

	Introduction
	Gigabit ethernet example
	Further reading

