ANO02011: USB Audio with concurrent multi-threaded DSP

2 MOS

ANO02011: USB Audio with concurrent multi-threaded DSP

Publication Date: 2025/10/10
Document Number: XM-006859-AN v1.1.0

IN THIS DOCUMENT

1 Introduction 1
2 DSP Pipelines 4
3 Introductionto USB Audio 5
4 Executing the DSP on the other physicalcore 8
5 Parallelising DSP 11
6 Data Parallel DSP 1
7 Data Pipelining DSP 13
8 Optimised Data PipeliningDSP 16
9 Control 20
10 Exampleapplication 22
1l Furtherreading 24

This application note describes how to implement a multi-threaded DSP system on the
XCORE. As an example, it is integrated into the XMOS USB Audio Reference Design. Inte-
gration into other software stacks follows a very similar process.

The USB Audio Reference Design is a highly configurable piece of software; in its simplest
form it may justinterface a single ADC to USB Audio; but it can deal with a multitude of I2S,
TDM, DSD, S/PDIF, ADAT and other interfaces. As such, it provides a useful framework
to support the DSP functionality that may include:

» Equalisation

» Mixing

» Dynamic range compression
» Audio effects

This application note discusses the recommended method of partitioning the DSP func-
tionality between multiple XCORE threads, integrating them into a system with the audio
interfaces using the USB audio stack APl and tuning the DSP system in-situ using xscope
to monitor signals in the DSP pipeline.

For reference, the developer may wish to use the following repositories:

» <https://www .xmos.com/file/sw_usb_audio>: the USB Audio reference design soft-
ware

» <https://www.xmos.com/libraries/lib_xua>: the USB Audio library

1 Introduction

In its simplest case, DSP can be added to a program by simply adding a number of func-
tion calls. Each function call typically processes a sample and produces a sample. This
application note starts with that case, and then extends to the case where so much sig-
nal processing needs to be done that multiple concurrent DSP tasks need to be fired off.
The latter takes advantage of the multi-threaded nature of the XCORE.Al processor where
each thread is allocated part of the processing bandwidth.

This process is called developing a DSP pipeline, and it consists of a number of distinct
phases:

https://www.xmos.com/file/sw_usb_audio
https://www.xmos.com/libraries/lib_xua

ANO02011: USB Audio with concurrent multi-threaded DSP

1. Capture - Assemble chains of DSP component functions using DSP library compo-
nents optimised for the target micro-architecture with, where necessary, customised
DSP elements.

2. Map - Partition the DSP pipeline between the XCORE threads.

3. Configure - Determine the filter coefficients to satisfy the frequency domain require-
ments.

4. Tune - Tune the DSP pipeline using representative signal samples

Typically there would a be a final phase to port the pipeline, however, the XCORE devices
support the XSCOPE high-performance debugging interface with minimal impact on the
real-time performance of the application under development. This enables the use of
the XCORE itself for tuning by providing the ability to drive test samples and monitor any
point in the DSP pipeline. For audio applications the high-performance of the XSCOPE
interface enables continuous monitoring in real-time.

This on-device development environment offers the significant advantages of tuning the
DSP pipeline in-situ with real data and eliminating risks associated with the porting of the
DSP pipeline to the target device in addition to the use of custom DSP components with-
out the development of an equivalent model for an external development environment.

1.1 Capture

There are a few libraries with DSP and general maths functions available, with different
trade-offs between speed, accuracy, and ease-of-use.

<https://www.xmos.com/libraries/lib_xcore_math> is the XCORE.AI library for high
performance maths functions. Many of them are optimised to make use of the vector
unit and use 40-bit accumulators.

<https://github.com/xmos/lib_dsp> for high-resolution maths functions that execute
on the CPU often using 64-bit accumulators. These functions are not as fast as
lib_xcore_math

<https://www.xmos.com/libraries/lib_src> for synchronous and asynchronous sam-
ple rate conversion functions.

<https://www.xmos.com/libraries/lib_audio_dsp> for audio effects functions (this is
based on 1ib_xcore_math above).

These functions and components, along with any custom DSP components are assem-
bled to form the DSP graph. At this point, the DSP graph can reside in a single thread; the
performance will be limited to 20% of the performance from a single XCORE tile but can
be tested with test data.

1.2 Map

The mapping process is a stage that is not necessary with a single-threaded, dedi-
cated DSP device. However, DSP systems often contain multiple interfaces and the
dedicated DSP device needs to implement a scheduler to process each individual data
stream which is greatly simplified with a multi-threaded platform. More importantly,
when the DSP pipeline interfaces between interfaces operating at different sample rates,
this scheduling task is very complex but a multi-threaded XCORE platform can operate
different threads in each clock domain.

Mapping the DSP pipeline to XCORE threads is a two stage process:

1. Split the DSP graph into sub-graphs for each sample clock domain if applicable. In-
terfaces between the sub-graphs are supported through the sample rate conversion
component available in the 1ib_src library.

https://www.xmos.com/libraries/lib_xcore_math
https://github.com/xmos/lib_dsp
https://www.xmos.com/libraries/lib_src
https://www.xmos.com/libraries/lib_audio_dsp

ANO02011: USB Audio with concurrent multi-threaded DSP

2. Foreach sub-graph, partition the elementary DSP components into further sub-graphs
where the combined instruction count of the elements can be supported by the thread
within the sample period.

DSP requires guaranteed, hard real-time execution and the unique multi-threaded micro-
architecture of the XCORE pipeline along with the single-cycle access to on-chip primary
memory, ensures that each instruction completes its path through the pipeline before
executing the following instruction, eliminating data hazard and memory latency uncer-
tainty. This means that it is straight forward to calculate the latency of the sub-graph.

Allowing a handful of instruction slots for each exchange of samples between threads,
the number of instructions available for the DSP components is readily calculated.

Inside the thread, the DSP sub-graph is statically scheduled through the ordering of the
individual DSP component functions. In order to link to the rest of the graph in the other
threads, two additional functions are required: one to initiate coommunication by sending
the requests through the channels, followed by another to wait for the response events
and updating the state variables appropriately.

Each DSP component needs to start from a known state. The recommended state is
where all sample history is set to zero. The code could start to execute at any point but
computing new samples from the initialised state is redundant so it is recommended that
each thread starts at the point of exchanging data with other threads. This ensures that
the threads are primed for the samples from input interfaces as soon as they become
available.

When designing a multi-threaded application with communication between the threads,
care is required to avoid creating a deadlock which can arise from a dependency loop
from data, code or limited resources.

Data dependencies are avoided by computing the output state from a defined input state,
similar to hardware. Given an input state, a series of DSP functions are performed until
the final function yields the output state. There are no data dependencies.

The channels that support communication between threads in an XCORE are lossless
and therefore block. When a communication takes place over a channel between two
threads, the code execution of the threads aligns around the data transfer but the order-
ing of communication in each thread must follow the correct order to avoid deadlock.

In each sample synchronous sub-system, data is exchanged between threads once per
sample and we are free to choose the ordering that maximises performance.

The total time taken to complete the data exchange is less important than the time each
thread requires to complete its communication; once a thread has completed its commu-
nication, it is free to process the next sample while other threads are still communicating.
Consequently, the performance optimisation is obtained when the communication time
for each thread is minimised, maximising the instructions available to compute the next
sample.

In the USB Audio platform the communication from the interfaces to and from the DSP
pipeline are adjacent and should, therefore, be consecutive. In general, for threads that
have a single sample input and output, the optimal communication ordering will be to
propagate the communication along the signal path but we are free to choose the direc-
tion which can be the opposite of the signal sample flow.

Exploiting parallel paths within the DSP pipeline allows the use of individual threads for
each path, extending the width of DSP elements that can be accommodated within each
thread. This reduces the latency of the DSP pipeline implementation.

1.3 Configure

Filter coefficients for, for example, FIR and IIR filters are determined from the required
filter characteristics. XMOS provides a suite of Python scripts to map filter characteristics
to data structures containing the filter coefficients.

ANO02011: USB Audio with concurrent multi-threaded DSP

The XCORE scalar pipeline supports a wide range of data-types including single precision
floating point while the vector processing pipeline offers SIMD capabilities supporting
eight 32-bit operations in each instruction but is limited to fixed point data formats. Con-
sequently, to maximise the performance, fixed-point data-types should be used where
possible. This is also desirable as the interfaces on either side of the pipeline (12S, TDM,
ADAT, S/PDIF, USB, AVB) typically use fixed point formats. While the dynamic range of
the signal can be different at each stage of the DSP pipeline, it is static and can be readily
accommodated by gain terms.

1.4 Tune

The XSCOPE debugging interface can write data structures to memory in the XCORE
as well as stream signals from points along the DSP pipeline. The bandwidth available
through the XSCOPE interface is sufficient to monitor several signals in real time for audio
applications.

A monitoring point is selected by adding the code:

xscope_int(channel, signal);

where required in the DSP code. The debugger generates a standard VCD file for the
signals to be viewed through the user’s preferred VCD viewer.

1.5 Integration

The flexibility of the threads in the XCORE enable single device embedded solutions by
integrating a diverse range of compute requirements including DSP, 10, Control and Al
inference models.

In most cases, the peripheral interfaces will drive the DSP pipeline and define the sample
rate. These interfaces can be considered to behave in the same way as any other DSP
component and can be integrated into the DSP pipeline like a DSP element.

In an embedded application there will be a control layer which will take responsibility for
controlling the operation of the DSP pipeline by setting its parameters, for example, the
control layer may be controlling the display and user input peripherals in order to control
the characteristics of the DSP pipeline.

An efficient method of acquiring the necessary interfaces is to extend one of the XMOS'
existing platforms such as the USB Audio platform.

2 DSP Pipelines

This section summarises the principles of what a DSP pipeline looks like typically. It is
assumed that the reader is familiar with DSP. A typical pipeline is shown in Fig. 1. In this
pipeline digital samples enter the pipeline (on the left-hand-side in this case), flow through
a series of DSP blocks, and eventually samples leave the pipeline (on the right-hand-side
in this case).

Echo
/ generation \
Input Volume Wi Equaliser OQutput
frames control e frames
Reverb
generatio

Fig. 1: Typical pipeline of DSP operations

The following terminology is used to describe these systems:

ANO02011: USB Audio with concurrent multi-threaded DSP

Samples enter the pipeline at a sample-rate. This sample rate may be 48,000 Hz for
an audio pipeline. Samples also exit the pipeline at a sample rate, and each of the
blocks pass data along at a sample rate. Where the sample rate on input and output
is not the same, typically a sample-rate-conversion is had. This document assumes
that all sample-rates are synchronous to a single clock, and therefore all sample rate
conversions are synchronous

There may be multiple channels. For example, a system may be mono (single chan-
nel), stereo (two channels) or 7.1 (eight channels). We call one sample on each channel
a frame, and hence the word frame-rate may be used interchangeably with the word
sample-rate.

Frames may be blocked for efficiency or for algorithm considerations. For example, it
may be chosen that the DSP pipeline operates on blocks of 48 frames. If the frame-rate
is 48,000 Hz that means that the DSP pipeline operates at a rate of 1,000 Hz (1 ms).
Blocking may improve efficiency but will also increase latency through the pipeline.
Blocking may be unavoidable for certain algorithms such as an FFT.

Samples are stored in a data-format, for example, 16-bit int, 24-bit int, or float. This
document is agnostic to the data-format used, but it is generally advised that for all
integer formats data is stored in the higher-order-bits of a 32-bit word (that makes all
modules agnostic to the particular input format). Floating point is also possible but
usually not as efficient.

Given a pipeline of DSP operations, these can be trivially mapped onto a single C-function
where each statement implements one of the blocks of the DSP pipeline (by calling an
appropriate DSP function), and data is passed from one function to the next through
the use of an array of data where the array is large enough to hold a block of frames.
Each function may require some local state (e.g., biquads, FIRs) that is passed along
subsequent iterations.

This document uses those functions as a starting point, and discusses how to integrate
those functions on an XCORE, and how to split those functions up over multiple threads.

3 Introduction to USB Audio

The basic structure or USB Audio is shown in Fig. 2.

One tile of XU316
UsB UsB
UsB Device Audio
Host =P Driver [*>| handling
(eg PC) (XUD) (XUA)

Other tile of XU316

.. empty ...

Fig. 2: Structure of USB Audio

ANO02011: USB Audio with concurrent multi-threaded DSP

On the left is a USB interface to the host - this is dealt with by the 1ib_xud (XMOS USB
Device) and 1ib_xua (XMOS USB Audio) libraries. XUD is the low level USB library for
XCORE, XUA is the USB-Audio protocol implementation on XCORE.

Ontheright is a series of interfaces (ADC, DAC, S/PDIF, ADAT). USB Audio provides a path
from the left to the right (USB host computer to the interfaces), this is called the output
path; and a path from the right to the left (the interfaces to the USB host computer) that
is called the input path. The terms input-path and output-path are host-centric names,
consistent with the USB specification(s) nomenclature.

The XMOS xcore.ai XU316 device has two tiles, and for many designs one of the tiles will
be empty. This is not always the case, as there may be a situation where the ADC/DAC
I/0 pins are located on the other tile. This subtlety does not matter for addition of simple
DSP. Also, the physical core used for the USB stack may be tile 0 or tile 1 depending on
the design.

3.1 API offered by USB Audio

The USB Audio stack provides one function that you need to override in order to add any
DSP capability to your system:
extern void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]);

For brevity NUM_OUTPUTS and NUM_INPUTS are used throughout this code to refer to
the number of output audio-channels (XUA_NUM_USB_CHAN_OUT) and the number of
input audio-channels (XUA_NUM_USB_CHAN_IN).

The UserBufferManagement () function is called at the sample rate of the USB Audio
stack (e.g., 48 kHz) and between them the two arrays contain a full multi-channel audio-
frame. The first array carries all the data that shall be transferred to the audio interfaces,
the second array carries all the data from the audio interfaces that shall be transferred
to the USB host. A developer may choose to intercept and overwrite the samples stored
in these arrays. The interfaces are ordered first all 12S channels, then optional S/PDIF,
finally optional ADAT.

A second function that can be overridden is:

extern void UserBufferManagementInit(unsigned int curSampFreq);

This function is called once before the first call to UserBufferManagement (). The
code in this document does not require this function, but other code may require it.

Note that the values of the type are unsigned; a 32-bit number. The use of these 32 bits
depends on the data-types used for the audio, typical values are 16-bit PCM (the top 16
bits are a signed PCM value), 24-bit PCM (the top 24 bits are a signed PCM value), 32-bit
PCM (the top 32 bits are a signed PCM value), or DSD (the 32 bits are PDM values, with
the least significant bit representing the oldest 1-bit value).

This example only modifies the output path - NUM_OUTPUTS=2 and NUM_INPUTS=4.
The output_samples can be run through a cascaded biquad in order equalise the out-
put signal. One can go further and apply independent biquads to the two channels to
independently equalise stereo speakers:
#define FILTERS 4
1/ b2/a@ b1/a@ bo/a8 -al/a@ -a2/al
int32_t filter_coeffs[FILTERS*5] = {

261565110, -521424736, 260038367, 521424736, -253168021,

255074543, -506484921, 252105451, 506484921, -238744538,

280274501, -523039333, 245645878, 523039333, -257484924,

291645146, -504140302, 223757950, 504140302, -246967640,
%

int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS*4];

void UserBufferManagement(

(continues on next page)

o Y,

https://www.xmos.com/libraries/lib_xud
https://www.xmos.com/libraries/lib_xua

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS])

for(int i = 6; i < NUM_OUTPUTS; i++) {
output_samples[i] = dsp_filters_biquads((int32_t) output_samples[i]

filter_coeffs,
filter_states[i]
FILTERS,
28);

}

}

void UserBufferManagementInit(unsigned int curSampFreq) {}

If desired, input_samples and output_samples can be combined in order to mix
data from interfaces or USB into USB or the audio interfaces.

The sample rate depends on the environment. The USB application typically has a list of
supported sample rates (this may just be one sample-rate), and the user can select, on
the host, the sample rate that is to be used. For simplicity, this application note does not
discuss sample-rate changes; it is assumes that there is just one, fixed, sample-rate.

This application note uses, as an example, a cascaded biquad filter that is set to a fixed
operation:

First stage Peaking Filter 200 Hz, 1 octave -20 dB,
Second stage Peaking Filter 400 Hz, 1 octave +10 dB,
Third stage Peaking Filter 800 Hz, 1 octave -20 dB,
Fourth stage Peaking Filter 1600 Hz, 1 octave +10 dB,

This is not a necessarily a realistic set of filters, but it is something that can easily be
heard.

3.2 Timing requirements

The XMOS USB Audio Reference Design is designed to operate on single samples in order
to minimise latency introduced by the audio stacks. The UserBufferManagement ()
function is called from the USB stack; it is called at the native frame rate of the system
(for example 44.1 kHz), and it should therefore take no longer than one sample period to
finish it's operation. In fact, it has a bit less time than that in order to guarantee that the
samples reach the next stage of the pipeline.

Given the speed of a single thread in a system i.e. system frequency / thread count (for
example 600 / 8 = 75 MHz) and the sample rate (say, 44.1 KHz) one can calculate the
number of instruction issues slots available between two samples: 75,000,000 / 44,100
=1,700 issue slots.

This includes the time taken by the USB stack to shuffle data around. Taking that into
account there is no more than 1,300 issue-slots available for DSP using this method,
which allows for only a limited number of FIR taps or biquads to be used. The timeline
is shown in Fig. 3.

What is more, with higher sample rates the overhead of the USB stack is the same, but the
time between samples is reduced, further limiting the number of instructions available
for DSP.

As XCORE is a concurrent multi-threaded multi-core processor, there are other threads
and cores/tiles available for DSP. It depends on the precise configuration of the USB stack
(whether you use special interfaces such as S/PDIF, ADAT, MIDI) but in a simple case with
just 12S, USB Audio uses around 30% of the compute, with one core/tile being completely
empty.

Initially using a single thread on the other tile for DSP is examined, then how to generally
parallelise DSP, and then finally using multiple threads for DSP is examined.

ANO02011: USB Audio with concurrent multi-threaded DSP

o
c
—
—'1
D
-~
=
Q
>
QO
«Q
D
Frame 5 - k
arrives ey
s -
departs I:l USB work
N
: 2 M-
3 UserBufferManagement () o
] function 2
o Y
N - 125 handling
Spare time S [::::::} Idle
Frane 6 USB Stack moving Note that the
arrives data around :| size of a box
Frame 5 - 3 is not to scale
departs @ with the
execution time,
=
{2}
Frame 7

arrives
Frame 6
departs

Fig. 3: Timeline of executing DSP inside a thread

4 Executing the DSP on the other physical core

The XCORE architecture offers a communication fabric to efficiently transport data be-
tween threads and between tiles/cores. Communication works on channels. A channel
has two ends, A and B, and data that is output into A has to be input on B, and data that
is output into B has to be input from A. A and B can be inside the same physical core
on different threads, or on different cores on the same device, or on different devices
in the same system; communication always works, but performance is lower when the
physical distance increases.

A channel is analogous to a two way communication pipe. It has very little buffering
capacity, so both ends of the channel have to agree to communicate otherwise one side
will wait for the other.

The data types and functions for communicating data provided by 1ib_xcore are:

ANO02011: USB Audio with concurrent multi-threaded DSP

chanend_t c¢ ; atype holding the reference to one end of a channel

chan ch ; atype holding a complete channel with both ends
chan_out_word(c, x); afunction that outputs a word x over channel-end c.
x = chan_in_word(c) ; afunction that inputs a word x over channel-end c.

chan_out_buf_word(c, x, n); afunction that outputs n words from array x
over channel-end c.

chan_in_buf_word(c, x, n) ;afunctionthatinputs n words over channel-end
c into array x

XC language could be used instead of C and 1ib_xcore; the resulting behaviour is iden-
tical. There is equivalent functions chanend_»* that create streaming channels rather
than synchronised channels. These are not used in this this application note, but they
can be useful where extra performance and predictability are required.

Typical code to offload the DSP to the other core involves a
UserBufferManagement() function that outputs and inputs samples to the
DSP task, a user_main.h function that declares the extra code needed to create the
channels and start the DSP task, and a DSP task that receives and transmits the data.

The UserBufferManagement () codeis:

static chanend_t g_c;

void UserBufferManagement(
unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]
) A
chan_out_buf_word(
chan_out_buf_word(
chan_in_buf_word(
chan_in_buf_word(

g_c, output_samples, NUM_OUTPUTS);
g_c, input_samples, NUM_INPUTS);
g_c, output_samples, NUM_OUTPUTS);
g_c, input_samples, NUM_INPUTS);
}

void UserBufferManagementSetChan(chanend_t c) {
g-c = ¢;
}

void UserBufferManagementInit() {}

The code to be included in the main() program is as follows:

#define USER_MAIN_DECLARATIONS \
chan c_data_transport; \
interface i2c_master_if i2c[1];

#define USER_MAIN_CORES \
on tile[1]: { \
dsp_main(c_data_transport);

on tile[@]: {
board_setup();
xk_audio_316_mc_ab_i2c_master(i2c);

}

on tile[1]: {
UserBufferManagementSetChan(c_data_transport);
unsafe

i_i2c_client = i2c[@];

}
}

And finally the code to perform the DSP is the opposite of the buffer-management func-
tion:

#define FILTERS 4
// b2/a6 b1/a8 bo/ab -al/a@ -a2/a@
int32_t filter_coeffs[FILTERS*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,
%

int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS#*4];

void dsp_main(chanend_t c_data) {

(continues on next page)

K Y,

ANO02011: USB Audio with concurrent multi-threaded DSP

int for_usb [NUM_INPUTS + NUM_OUTPUTS];
int from_usb[NUM_INPUTS + NUM_OUTPUTS];

while(1) {

chan_in_buf_word(c_data, &from_usb[@],
chan_in_buf_word(c_data, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_data, &for_usb[@],
chan_out_buf_word(c_data, &for_usb[NUM_OUTPUTS], NUM_INPUTS);

for(int i = 0; i < 2; i++) {

for_usb[i] = dsp_filters_biquads((int32_t) from_usb[i],

}
}
}

filter_coeffs,

filter_states[i],

FILTERS,
28);

NUM_OUTPUTS) ;

NUM_OUTPUTS) ;

(continued from previous page)

The execution of two of the tasks (the USB Task calling UserBufferManagement())

and the DSP task (dsp_main()) is shownin Fig. 4.

Frame 5
arrives
Frame 3
departs

Frame 6
arrives
Frame 4
departs

Frame 7
arrives
Frame 5
departs

o
e
_h
—.ﬁ
D
=
(=)
= [92]
QO -0
>
QO —+
«Q Q
D w
= =~
30
issue-slots/
instructions
1670
issue-slots/
instructions

sh 6/9°2¢

oul|

- 12S handling
]

Note that the
size of a box
is not to scale
with the
execution time,

Fig. 4: Timeline of executing the two concurrent threads

Time progresses from top to bottom and what is depicted is a snapshot of what
happens around the time that Frame numbers 5.7 arrive over 12S. The small dark

10

X

ANO02011: USB Audio with concurrent multi-threaded DSP

blue box is when Frame 5 arrives over 12S whilst a processes Frame 3 is sent out
over 12S. The light blue boxes below are the communication between the two tasks;
UserBufferManagement () on the left, and the first four lines of the while-loop in
dsp_main() on the right. After that, the USB task has a bit of idle time (to cope with
higher sample rates and more channels), and the DSP task starts the DSP. Whilst the
DSP is operating on Frame 5; Frame 6 arrives in the USB task, and the DSP task must
finish before the next communication phase. Note that the boxes are not drawn to scale
otherwise some of them would be too small to be visible.

It is important to note that the grey area where the Buffer Manager is idle is time that
can be used by other threads. This means that up to five DSP threads can be active at
this time, taking all the bandwidth of the processor. During the period where the Buffer
Manager is working, the DSP threads will run slightly slower; probably hardly noticeable
as they will also be having some down time over this period.

In this example, a 44,100 Hz sample rate is assumed. If the DSP thread is too late, then
all the timings will fail; it has to be on time, but it is allowed to be just in time. Note that
the DSP processing is synchronous with the frame transmissions, but the phase is off.
Every sample is processed a bit later than arriving, leading to a whole sample delay.

5 Parallelising DSP

Parallelisation involves splitting work into a multitude of tasks. Tasks can then be
mapped onto threads. The reason to distinguish between these two words is that a task
is a software concept: a set of instructions that performs some meaningful operation,
for example a shelf-filter. If, say, ten tasks exist then five of them can be executed in
Thread 7 and five of them in Thread 2 then 2x parallelism has been achieved.

Typically tasks are dependent on each other, and when the design is drawn out that is re-
flected by arrows from one task into the other, representing data being transported from
one task to the next. When the tasks are mapped onto threads these data dependencies
have to be adhered to.

DSP lends itself to parallelism as there are typically large clusters of compute on identi-
fied sets of data. Each DSP problem will be parallelised individually, and in this document
we distinguish two models on which the rest can be built:

Data parallelism, for example, output-conditioning on stereo speakers. In this case,
one could put the DSP for the left speaker in task 1, and the DSP for the right speaker
in task 2.

Data Pipelining. A series of DSP tasks are executed one after the other on an audio
stream.

In general this gives rise to two sorts of designs. The first design is one where each
sample is being fed into a task, and the tasks independently of each other all produce the
output samples. The second design is one where the samples run through a sequence of
tasks before finally producing the output samples. The latter architecture has aninherent
higher latency than the former design and a slightly more complex design. The former
is a very simple design that we shall discuss first.

6 Data Parallel DSP

Data parallelism is a simple extension of the previous example. Instead of using a single
channel we use multiple channels to communicate the data onto the DSP task. This
gives rise to the timeline shown in Fig. 5.

As previously, channels are used to communicate between the DSP tasks, what is new is
that to these DSP tasks need to be created as well as the channels between them. The
only difference is in the dsp_main() function.

1 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

o
e
—|-|
_h
(0]
= (=) (=
(92] (72]
= -0 O
Q
> —~+ —~+
% o o
«Q w [%2]
(0] z ~
Frame 5 - i
arrives Key
Frame 3
departs - USB work
. DSP work
issue-slots/
instructions
N - Communication
(=21
S
5 - 125 handling
issue-slots/
F 6 instructions Note that the
rane — size of a box
arrives —_
Frame 4 3 is not to scale
departs @ with the
execution time,
Frame 7
arrives
Frame 5
departs

Fig. 5: Timeline of executing the two concurrent threads

The UserBufferManagement () codeis:

static chanend_t g_c, g_c2;

void UserBufferManagement (
unsigned output_samples[NUM_OUTPUTS],
unsigned input_samples[NUM_INPUTS]

) A
chan_out_buf_word(g_c, output_samples, NUM_OUTPUTS);
chan_out_buf_word(g_c, input_samples, NUM_INPUTS);
chan_in_buf_word(g_c, output_samples, NUM_OUTPUTS/2);
chan_in_buf_word(g_c, dinput_samples, NUM_INPUTS/2);
chan_out_buf_word(g_c2, output_samples, NUM_OUTPUTS);
chan_out_buf_word(g_c2, input_samples, NUM_INPUTS);
chan_in_buf_word(g_c2, output_samples+NUM_OUTPUTS/2, NUM_OUTPUTS/2);
chan_in_buf_word(g_c2, input_samples +NUM_INPUTS/2, NUM_INPUTS/2);
}

void UserBufferManagementSetChan(chanend_t c, chanend_t c2) {
g-c =c;
g_c2 = c2;
¥
(continues on next page)

12 x

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

void UserBufferManagementInit() {}

The code to be included in the main() program is as follows:

#define USER_MAIN_DECLARATIONS \
chan c1, c2; \
interface i2c_master_if i2c[1];

#define USER_MAIN_CORES \
on tile[1]: { \
dsp_maini(c1); \

on tile[1]: { \
dsp_main2(c2);

on tile[@]: {
board_setup();
xk_audio_316_mc_ab_i2c_master(i2c);

}

on tile[1]: {
UserBufferManagementSetChan(c1, c2);
unsafe

i_i2c_client = i2c[@0];
}

}

And finally the code to perform the DSP is the opposite of the
UserBufferManagement () function:

#define FILTERS 4
// b2/ab b1/a6 b6/ab -al/a@ -a2/a@
int32_t filter_coeffs[FILTERS*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,
b

int32_t filter_states [NUM_OUTPUTS/2][FILTERS*4];
int32_t filter_states2[NUM_OUTPUTS/2][FILTERS#*4];

void dsp_main1(chanend_t c_data) {
int for_usb [NUM_INPUTS/2 + NUM_OUTPUTS/2];
int from_usb[NUM_INPUTS + NUM_OUTPUTS];
while(1) {

chan_in_buf_word(c_data, &from_usb[0], NUM_OUTPUTS) ;
chan_in_buf_word(c_data, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_data, &for_usb[@], NUM_OUTPUTS/2) ;

chan_out_buf_word(c_data, &for_usb[NUM_OUTPUTS/2],NUM_INPUTS/2);
for(int i = 0; i < NUM_OUTPUTS/2; i++) {
for_usb[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs,
filter_states[i],
4

28);
}

dsp_main2() is identical, and the code may be shared provided they have separate
state to operate on.

This method expands to five threads, after which the XCORE . AT pipeline is fully used.
More threads can be used, but no performance will be gained. This is because the full
number of issue cycles will be divided between more threads.

7 Data Pipelining DSP

An arbitrary pipeline of DSP processes can be made by creating an extra thread that
acts as the source of the data and as the sync of the data. This thread’s purpose is to
perform just those tasks. The reason that this task is special is that it loops the data path
around, because what came out of the pipe has to go back into the USB Audio stack at
a determined point in time. The pipeline that we're building is shown in Fig. 6.

The pipeline being built requires some additional setup to make everything work, but the
code itself is otherwise straightforward.

13 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

Fig. 6: Example pipeline

DSPtask 1B isimplemented by dsp_thread1b () and picks up data from the distributor,
and outputs data to DSP tasks 1A and 1B:

#define FILTERSG 1

static __attribute__((aligned(8))) int32_t filter_coeffs@[FILTERS@*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
i

static __attribute__((aligned(8))) int32_t filter_states@[NUM_OUTPUTS][FILTERS®O*4];

void dsp_thread@(chanend_t c_fromusb,
chanend_t c_tola, chanend_t c_tolb) {
int from_usb[NUM_OUTPUTS];
int for_1[NUM_OUTPUTS];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromusb, &from_usb[8], NUM_OUTPUTS);

for(int i = ©; i < NUM_OUTPUTS; i++) {
for_1[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs®,
filter_statesO[i],
FILTERSO,
28);
}

// And deliver my answer back
chan_out_buf_word(c_tola, &for_1[8], NUM_OUTPUTS);
chan_out_buf_word(c_tolb, &for_1[8], NUM_OUTPUTS);

}

DSP task 1A is implemented by dsp_thread1a() and picks up data from the DSP task
0, and outputs data to DSP task 2:

#define FILTERS1a 2

// b2/a0 b1/a0 bo/ad -al/a@ -a2/a@

static __attribute__((aligned(8))) int32_t filter_coeffsla[FILTERSTa*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538

15

static __attribute__((aligned(8))) int32_t filter_states1a[NUM_OUTPUTS/2][FILTERS1a*4];

void dsp_threadla(chanend_t c_from@,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

(continues on next page)

14 x

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

for(int i = 0; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_0[i],
filter_coeffsia,
filter_statesla[i],
FILTERSTa,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[0], NUM_OUTPUTS/2);

}

DSP task 1B is implemented by dsp_thread1b () and picks up data from the DSP task
0, and outputs data to DSP task 2:

#define FILTERS1b 2

// b2/a6 b1/a6 b6/ab -al/a@ -a2/a@

static __attribute__((aligned(8))) int32_t filter_coeffs1b[FILTERSTb*5] = {
280274501, -523039333, 245645878, 523039333, -257484924
291645146, -504140302, 223757950, 504140302, -246967640

b

static __attribute__((aligned(8))) int32_t filter_states1b[NUM_OUTPUTS/2][FILTERS1b*4];

void dsp_threadlb(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = ©; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsib,
filter_statesib[i],
FILTERS1b,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[0], NUM_OUTPUTS/2);

¥

Similarly, DSP task 2 is implemented by dsp_thread2 () and picks up data from the
DSP tasks 1A and 1B, and outputs data to the distribution task. The weird part of the
code is that we need to push some data into the output channel end prior to starting the
loop - otherwise the data_distribution() task would hang:

#define FILTERS2 1

static __attribute__((aligned(8))) int32_t filter_coeffs2[FILTERS2#5] = {
291645146, -504140302, 223757950, 504140302, -246967641,
H

static __attribute__((aligned(8))) int32_t filter_states2[NUM_OUTPUTS][FILTERS2#*4];

void dsp_thread2(chanend_t c_fromla, chanend_t c_fromib,
chanend_t c_todist) {
int from_1a[NUM_OUTPUTS];
int from_1b[NUM_OUTPUTS];
int for_usb[NUM_OUTPUTS];
chan_out_buf_word(c_todist, &for_usb[@], NUM_OUTPUTS); // Sample -2
chan_out_buf_word(c_todist, &for_usb[@], NUM_OUTPUTS); // Sample -1
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromla, &from_1a[8], NUM_OUTPUTS/2);
chan_in_buf_word(c_fromlb, &from_1b[8], NUM_OUTPUTS/2);

for_usb[0] = dsp_filters_biquads((int32_t) from_1a[@],
filter_coeffs2,
filter_states2[0],
FILTERS2,
28);

for_usb[1] = dsp_filters_biquads((int32_t) from_1b[@],
filter_coeffs2,
filter_states2[1],
FILTERS2,
28);

// And deliver my answer back
chan_out_buf_word(c_todist, &for_usb[6], NUM_OUTPUTS);

(continues on next page)

15 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

}
}

The distributor picks up data from the USB stack, posts it to DSP task 0, and picks up an
answer from DSP task 2:
void dsp_data_distributor(chanend_t c_usb, chanend_t c_to@, chanend_t c_from2) {

int for_usb [NUM_OUTPUTS + NUM_INPUTS];
int from_usb[NUM_OUTPUTS + NUM_INPUTS];

while(1) {
// First deal with the USB side
chan_in_buf_word(c_usb, &from_usb[0], NUM_OUTPUTS) ;
chan_in_buf_word(c_usb, &from_usb[NUM_OUTPUTS], NUM_INPUTS);

chan_out_buf_word(c_usb, &for_usb[0], NUM_OUTPUTS) ;
chan_out_buf_word(c_usb, &for_usb[NUM_OUTPUTS], NUM_INPUTS);
// Now supply output data to DSP task @
chan_out_buf_word(c_to®8, &from_usb[8], NUM_OUTPUTS);
// Now pick up data from DSP task 2
chan_in_buf_word(c_from2, &for_usb[8], NUM_OUTPUTS);
}
}

Finally, code to start all the parallel threads is required. This code starts five tasks, and
connects them up using six channels:

DECLARE_JOB(dsp_data_distributor, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_thread®, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_threadla, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread1b, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread2, (chanend_t, chanend_t, chanend_t));

void dsp_main(chanend_t c_
channel_t c_dist_to_@
channel_t c_0_to_la
channel_t c_0@_to_1b
channel_t c_Ta_to_2
channel_t c_1b_to_2
channel_t c_2_to_dist
PAR_JOBS(

PJOB(dsp_data_distributor, (c_data, c_dist_to_@.end_a, c_2_to_dist.end_b)),
PJOB(dsp_thread®, (c_dist_to_@.end_b, c_@_to_la.end_a, c_@_to_1b.end_a)),
PJOB(dsp_threadla, (c_@_to_la.end_b, c_la_to_2.end_a)),

PJOB(dsp_thread1b, (c_@_to_1b.end_b, c_1b_to_2.end_a)),

PJOB(dsp_thread2, (c_la_to_2.end_b, c_1b_to_2.end_b, c_2_to_dist.end_a))

)i

ata) {
chan_alloc();
chan_alloc();
chan_alloc();
chan_alloc();
)
)

wnn e

chan_alloc();
chan_alloc();

}

A diagram shows complete operation is shows in Fig. 7. Note that the distribution task is
mostly idle; it consumes very little processing in the beginning and the end of the sample-
cycle. This means that five other threads can be used to use up the available DSP.

8 Optimised Data Pipelining DSP

Since there is flexibility to choose the order of the communication processes in a sample
synchronous system, the DSP distribution thread can be eliminated.

The communication timing is based on the communication from the Buffer Manager
thread. DSP taskO receives a sample from the Buffer Manager thread. It then sends
data to DSP task 1A and DSP taskB in that order which is a sequence of three sequential
communication processes. DSP task?2 sends data to the Buffer Manager thread then
receives data from DSP task1A and DSP task1B in that order which is, again, a sequence
of three sequential communication processes. The communication to and from each
of DSP task1A and DSP taskl1B are adjacent. This pipeline completes the communica-
tion to and from each thread in the minimum possible time, maximising the instructions
available for the computation of the next samples.

The pipeline that we're building is shown in Fig. 8.

The pipeline being built requires a bit of setup to make it function but the code is reason-
ably straightforward otherwise.

DSP task 1B is implemented by dsp_thread1b and picks up data from the distributor,
and outputs data to dsp tasks 1A and 1B:

16 y,

Frame 5
arrives
Frame 1
departs

Frame 6
arrives
Frame 2
departs

Frame 7
arrives
Frame 3
departs

ANO02011: USB Audio with concurrent multi-threaded DSP

Jabeue)

Ja4ing

qliaisip dsd

0%s®e1 dSa

Y1Yse1 dsa

g1yser dsa
I ¢YSEY dSa

Sn G6/9°2¢

Note that the
size of a box
is not to scale
with the
execution time,

9%
issue-slots/

out |

1610
issue-slots/
instructions

Fig. 7: Timeline of the pipelined example

17

Fig. 8: Example pipeline

ANO02011: USB Audio with concurrent multi-threaded DSP

#define FILTERSG 1

static __attribute__((aligned(8))) int32_t filter_coeffs@[FILTERSO*5] = {
2615651108, -521424736, 260038367, 521424736, -253168021,
H

static __attribute__((aligned(8))) int32_t filter_states@[NUM_OUTPUTS][FILTERS@®*4];

void dsp_thread@(chanend_t c_fromusb,
chanend_t c_tola, chanend_t c_to1b) {
int from_usb[NUM_OUTPUTS];
int for_1[NUM_OUTPUTS];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromusb, &from_usb[8], NUM_OUTPUTS);

for(int i = 0; i < NUM_OUTPUTS; i++) {
for_1[i] = dsp_filters_biquads((int32_t) from_usb[i],
filter_coeffs@,
filter_states@[i],
FILTERS®,
28);
}

// And deliver my answer back
chan_out_buf_word(c_tola, &for_1[8], NUM_OUTPUTS);
chan_out_buf_word(c_tolb, &for_1[8], NUM_OUTPUTS);

DSP task 1A is implemented by dsp_thread1a and picks up data from the DSP task 0,
and outputs data to dsp task 2:

#define FILTERSTa 2

/7 b2/a6 b1/a6 b6/ab -al/a@ -a2/a@

static __attribute__((aligned(8))) int32_t filter_coeffsla[FILTERSTa*5] = {
261565110, -521424736, 260038367, 521424736, -253168021,
255074543, -506484921, 252105451, 506484921, -238744538,

b

static __attribute__((aligned(8))) int32_t filter_states1a[NUM_OUTPUTS/2][FILTERS1a*4];

void dsp_threadla(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = 8; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsila,
filter_statesla[i],
FILTERS1a,
28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[8], NUM_OUTPUTS/2);

DSP task 1B is implemented by dsp_thread1b and picks up data from the DSP task 0,
and outputs data to dsp task 2:

#define FILTERS1b 2

// b2/a6 b1/a6 bo/ab -al/a@ -a2/ab

static __attribute__((aligned(8))) int32_t filter_coeffs1b[FILTERSTb*5] = {
280274501, -523039333, 245645878, 523039333, -257484924,
291645146, -504140302, 223757950, 504140302, -246967640,

H

static __attribute__((aligned(8))) int32_t filter_states1b[NUM_OUTPUTS/2][FILTERS1b*4];

void dsp_threadlb(chanend_t c_frome,
chanend_t c_to2) {
int from_@[NUM_OUTPUTS];
int for_2[NUM_OUTPUTS/2];
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_from@, &from_8[8], NUM_OUTPUTS);

for(int i = 8; i < NUM_OUTPUTS/2; i++) {
for_2[i] = dsp_filters_biquads((int32_t) from_@[i],
filter_coeffsib,
filter_statesib[i],
FILTERS1b,

(continues on next page)

18 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

28);
}

// And deliver my answer back
chan_out_buf_word(c_to2, &for_2[@], NUM_OUTPUTS/2);

¥

Similarly, DSP task 2 is implemented by dsp_thread2 () and picks up data from the
DSP tasks 1A and 1B, and outputs data t the distribution task. The weird part of the code
is that we need to push some data into the output channel end prior to starting the loop
- otherwise the data_distribution() task would hang:

#define FILTERS2 1

static __attribute__((aligned(8))) int32_t filter_coeffs2[FILTERS2%5] = {
291645146, -504140302, 223757950, 504140302, -246967641,
H

static __attribute__((aligned(8))) int32_t filter_states2[NUM_OUTPUTS][FILTERS2#4];

void dsp_thread2(chanend_t c_fromla, chanend_t c_fromlb,
chanend_t c_todist) {
int from_1a[NUM_OUTPUTS];
int from_1b[NUM_OUTPUTS];
int for_usb[NUM_OUTPUTS];
chan_out_buf_word(c_todist, &for_usb[@], NUM_OUTPUTS); // Sample -2
chan_out_buf_word(c_todist, &for_usb[@], NUM_OUTPUTS); // Sample -1
while(1) {
// Pick up my chunk of data to work on
chan_in_buf_word(c_fromla, &from_1a[8], NUM_OUTPUTS/2);
chan_in_buf_word(c_fromlb, &from_1b[8], NUM_OUTPUTS/2);

for_usb[0] = dsp_filters_biquads((int32_t) from_1a[@],
filter_coeffs2,
filter_states2([9],
FILTERS2,
28);

for_usb[1] = dsp_filters_biquads((int32_t) from_1b[@],
filter_coeffs2,
filter_states2[1],
FILTERS2,
28);

// And deliver my answer back
chan_out_buf_word(c_todist, &for_usb[0], NUM_OUTPUTS);

¥

The distributor picks up data from the USB stack, posts it to DSP task 0, and picks up an
answer from DSP task 2:
void dsp_data_distributor(chanend_t c_usb, chanend_t c_to@, chanend_t c_from2) {

int for_usb [NUM_OUTPUTS + NUM_INPUTS];
int from_usb[NUM_OUTPUTS + NUM_INPUTS];

while(1) {
// First deal with the USB side
chan_in_buf_word(c_usb, &from_usb[@], NUM_OUTPUTS) ;
chan_in_buf_word(c_usb, &from_usb[NUM_OUTPUTS], NUM_INPUTS);
chan_out_buf_word(c_usb, &for_usb[@], NUM_OUTPUTS) ;

chan_out_buf_word(c_usb, &for_usb[NUM_OUTPUTS], NUM_INPUTS);
// Now supply output data to DSP task @
chan_out_buf_word(c_to8, &from_usb[8], NUM_OUTPUTS);

// Now pick up data from DSP task 2

chan_in_buf_word(c_from2, &for_usb[8], NUM_OUTPUTS);

¥

Finally, code is required to start the parallel threads. This code starts five tasks, and
connects them using six channels:

DECLARE_JOB(dsp_data_distributor, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_thread®, (chanend_t, chanend_t, chanend_t));
DECLARE_JOB(dsp_threadla, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread1b, (chanend_t, chanend_t));
DECLARE_JOB(dsp_thread2, (chanend_t, chanend_t, chanend_t));

channel_t c_dist_to_@ = chan_alloc();
channel_t c_0_to_la chan_alloc();
channel_t c_@_to_1b chan_alloc();

void dsp_main(chanend_t c_data) {
channel_t c_la_to_2 =

chan_alloc();
(continues on next page)

19 y,

channel_t c_1b_to_2
channel_t c_2_to_dist

PAR_JOBS (

ANO02011: USB Audio with concurrent multi-threaded DSP

(continued from previous page)

chan_alloc();
chan_alloc();

PJOB(dsp_data_distributor, (c_data, c_dist_to_@.end_a, c_2_to_dist.end_b)),

PJOB(dsp_thread8,

(c_dist_to_@.end_b, c_0_to_la.end_a, c_0_to_1b.end_a)),

PJOB(dsp_threadla, (c_@8_to_la.end_b, c_la_to_2.end_a)),
PJOB(dsp_threadlb, (c_8_to_1b.end_b, c_1b_to_2.end_a)),

PJOB(dsp_thread2,

)i
¥

(c_la_to_2.end_b, c_1b_to_2.end_b, c_2_to_dist.end_a))

The diagram in Fig. 9 depicts complete operation.

Frame 5
arrives
Frame 1
departs

Frame 6
arrives
Frame 2
departs

Frame 7
arrives
Frame 3
departs

9 Control

qUi1s1p dSa

04Sel dSa

yLdiser dsa

qLisel dsq
| 21er asa

Sn 6/9°2¢

90
issue-slots/

1610
issue-slots/
instructions

out|

Fig. 9: Timeline of the pipelined example

Key

I:l USB work
- DSP work
- Communication
- 125 handling
I:' Idle

Note that the
size of a box
is not to scale
with the
execution time,

In order to control the DSP that has been inserted into the code (e.g., volume control,
equaliser settings), it is required to be able to control values in the various DSP compo-
nents. Often this control happens asynchronously to the data pipeline, for example, a
developer may use a touch-screen to change the settings of an equaliser pipeline, as this
change happens outside the audio domain it is intrinsically asynchronous to it. Deciding
on how to synchronise the control with the audio stream affects how this is encoded in

the solution.
Factors affecting the decision on synchronisation may include:

20

X

ANO02011: USB Audio with concurrent multi-threaded DSP

The stability of the algorithms used. In particular, algorithms that use a feedback loop
such as an IIR may exhibit undesirable behaviour

Whether all elements of the pipeline are updated simultaneously or not
Whether all settings of a single algorithm are updated simultaneously or not.
The output of the DSP pipeline as a whole.

The desired speed at which the controls take effect.

A number of scenarios on how to update control-values is discussed, concluding with a
comparison and trade-offs to be made.

9.1 Control values directly in unguarded shared memory

The easiest method is to store the settings in memory, and run an asynchronous thread
that has access to those variables. This asynchronous thread could be controlled from
an A/P (over, say, 12C or SPI), or it can interface directly with, for example, rotary encoders,
push buttons, sliders, or a touch screen. The variables in memory effectively become
control registers. As long as only one thread writes and another one only reads this is
thread-safe.

For many applications this is an adequate solution. For example, when changing a mixer
setting, it is not typically a concern that the setting is changed just before a sample is
processed or just after a sample is processed. However, in the case of changing the
values controlling an lIR, this method may not be adequate. The b0, b1, b2, a0, a1, and a2
values ought to be all changed simultaneously, as changing one value first may cause
the IIR to behave in unpredictable ways.

9.2 Control values in guarded shared memory

A further step is to place the values in shared memory, but to explicitly guard their use.
Using a lock for guarding it is not appropriate due to the real-time nature of the data-
pipeline. However, one can use one or more memory cells to state which set of param-
eters is now valid, for example using a pointer or an index in an array. It is essential that
both the old values and the new values are available for some period of time, enabling
the pipeline to make the choice whether to apply the old or the new values.

This method still updates values asynchronously, but it is now in the hands of the DSP
pipeline whether to use the old or the new values. For example, a component that imple-
ments a bank of IIR filters may on receiving the new frame of data also lookup which set
of control values to use. It is either using or old values or all new values. It will be up to
the control thread to not make sudden changes that would destabilise the state of the
filter-bank, but there is a guarantee that all filter values are applied synchronously.

9.3 Passing control values along the DSP pipeline

A preferred method to solve this problem is to pass the control parameters along the DSP
pipeline together with the DSP samples. They can be passed by value or by reference,
i.e., a single pointer or even a single byte would be sufficient to inform each stage of the
pipeline as to what control parameters to use.

With this method, each sample is processed using a known set of control parameters
and the parameters are applied as a wave running through the DSP pipeline. The resyn-
chronisation of the control settings happens only once on entry to the pipeline. This
makes the pipeline itself operate synchronous with the control values.

21 4

ANO02011: USB Audio with concurrent multi-threaded DSP

9.4 Comparison of control methods

In all cases control values have to be distributed over the various DSP components; this
can always take place through shared memory. The difference is the method by which
the DSP component knows which settings to use. In one extreme the DSP component
uses directly the only settings that it can observe; on the other extreme, the DSP is given
directions to use a specific set of settings with each frame of audio data that arrives. The
other methods offer gradually more control over the synchronisation between the audio
pipeline and the control settings.

10 Example application

10.1 Build configurations

The example application provides four build configurations, these are:
» PIPELINE

» MULTI_THREAD

» SINGLE_THREAD

» USB_THREAD

Each build configuration produces an executable binary.

10.2 Building the example

This section assumes that the XMOS XTC Tools have been downloaded and installed.
The required version is specified in the accompanying README.

Installation instructions can be found here.

Special attention should be paid to the section on Installation of Required Third-Party
Tools.

The application is built using the xcommon-cmake build system, which is provided with
the XTC tools and is based on CMake.

The an82011 software ZIP package should be downloaded and extracted to a chosen
working directory.

To configure the build, the following commands should be run from an XTC command
prompt:

cd an@2011
cd app_an02011
cmake -G "Unix Makefiles" -B build

All required dependencies are included in the software package. If any dependencies are
missing, they will be retrieved automatically during this step.

The application binaries should then be built using xmake:

xmake -j -C build

Binary artifacts (.xe files) will be generated under the appropriate subdirectories of the
app_an02011/bin directory — one for each supported build configuration.

For subsequent builds, the cmake step may be omitted. If CMakeLists.txt or other
build files are modified, cmake will be re-run automatically by xmake as needed.

10.3 Running the example

From an XTC command prompt, the following command should be run from the
an@2011/app_an02011 directory:

22 y,

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/documentation/XM-014363-PC/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://cmake.org/

ANO02011: USB Audio with concurrent multi-threaded DSP

xrun ./bin/<BUILD CONFIG>/app_an02011.xe

Alternatively, the application can be programmed into flash memory for standalone exe-
cution:

xflash ./bin/<BUILD CONFIG>/app_an02011.xe

23 y,

ANO02011: USB Audio with concurrent multi-threaded DSP

11 Further reading

» XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

» XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

» XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

»MOS

Copyright © 2025, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

24

4

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

	Introduction
	DSP Pipelines
	Introduction to USB Audio
	Executing the DSP on the other physical core
	Parallelising DSP
	Data Parallel DSP
	Data Pipelining DSP
	Optimised Data Pipelining DSP
	Control
	Example application
	Further reading

