
AN00124: USB CDC Class as Virtual Serial Port

AN00124: USB CDC Class as Virtual Serial Port

Publication Date: 2025/7/14
Document Number: XM-006845-AN v3.1.0

IN THIS DOCUMENT

1 Overview . 2
2 USB CDC Class application note . 2
3 Further reading . 17

This application note shows how to create a USB device compliant to the standard USB
Communications Device Class (CDC) on an XMOS device.

The code associated with this application note provides an example of using the XMOS
USB Device Library (XUD) and associated USB class descriptors to provide a framework
for the creation of a USB CDC device that implements Abstract Control Model (ACM).

This example USB CDC ACM implementation provides a Virtual Serial port running over
high speed USB. The Virtual Serial port supports the standard requests associated with
ACM model of the class.

A serial terminal program from host PC connects to virtual serial port and interacts with
the application. This basic application demo implements a loopback of characters from
the terminal to the XMOS device and back to the terminal. This application demo code
demonstrates a simpleway inwhichUSBCDCclass devices can easily be deployed using
an xcore-200 or xcore.ai device.

Note: This application note provides a standard USB CDC class device and as a result
does not require external drivers to run on Windows, macOS or Linux.

This application note is designed to run on an XMOS xcore-200 or xcore.ai series devices.

The example code provided with the application has been implemented and tested on
the XK-EVK-XU316 board but there is no dependancy on this board and it can bemodified
to run on any development board which uses an xcore-200 or xcore.ai series device.

· This document assumes familiarity with the XMOS xcore architecture, the Universal
Serial Bus 2.0 Specification and related specifications, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this
application note are linked to in the references appendix.

· For the full API listing of the XMOS USB Device (XUD) Library please see the document
XMOS USB Device (XUD) Library1.

1 https://www.xmos.com/file/lib_xud

1

https://www.xmos.com/file/lib_xud

AN00124: USB CDC Class as Virtual Serial Port

1 Overview

USB Communication Class is a composite USB device class that enables telecommu-
nication devices like digital telephones, ISDN terminal adapters, etc and networking de-
vices like ADSLmodems, Ethernet adapters/hubs, etc to connect to a USB hostmachine.
It specifies multiple models to support different types of communication devices. Ab-
stract Control Model (ACM) is defined to support legacy modem devices and an advan-
tage of ACM is the Serial emulation feature. Serial emulation of a USB device eases the
development of host PC application, provides software compatibility with RS-232 based
legacy devices, enables USB to RS-232 conversions and gives good abstraction over the
USB for application developers.

In this application note, the USB CDC implementation on xCORE-200/xCORE.AI device
is explained in detail which will help you in two ways. First, it acts as reference for you
to build your own USB CDC class device, second, it gives you an idea of how to use this
virtual serial port code in your application.

The standard USB CDC class specification can be found in the USB-IF website.

(https://www.usb.org/document-library/class-definitions-communication-devices-12)

Fig. 1 shows a block diagram of example USB CDC applications.

Modem
Speaker
Phone

USB to RS-232
Converter

USB CDC compliant
Vendor Device

XMOS
XS1-U6A-64

XMOS
XMOS
XS1-U6A-64

XMOS

XMOS
XS1-U6A-64

XMOSXMOS
XS1-U6A-64

XMOS

Fig. 1: Block diagram of USB CDC applications

2 USB CDC Class application note

The example in this application note uses the XMOS USB device library and shows a
simple program that enumerates a USB CDC Class device as virtual serial port in a host
machine and provides a simple character loopback device.

For this USB CDC device application example, the system comprises four tasks running
on separate logical cores of an xCORE-USB multicore microcontroller.

The tasks perform the following operations.

2

https://www.usb.org/document-library/class-definitions-communication-devices-12

AN00124: USB CDC Class as Virtual Serial Port

· A task containing the USB library functionality to communicate over USB.

· A task implementing Endpoint0 responding to both standard and CDC class-specific
USB requests.

· A task implementing the data endpoints and notification endpoint of the CDC ACM
class. It handles tx and rx buffers and provides interface for applications.

· A task implementing the application logic to interact with user over the virtual serial
port.

These tasks communicate via the use of xCONNECT channels which allow data to be
passed between application code running on separate logical cores. In this example,
XC interfaces are used, which abstracts out the channel communication details with
function level interface.

Fig. 2 the task and communication structure for this USBCDC class application example.

Applicaiton
Virtual COM
Applicaiton

Virtual COM

XUD
Manager

XUD
ManagerU

S
B USB

PHY

Endpoint 0
Handler

Endpoint 0
Handler

CDC
Endpoints
Handler

CDC
Endpoints
Handler

c_ep_out[0]

c_ep_out[1]

c_ep_in[0]

c_ep_in[1]

c_ep_in[2]

usb_cdc_interface

I/O

XMOS xcore

Fig. 2: Task diagram of the USB CDC Virtual Serial Port example

3

AN00124: USB CDC Class as Virtual Serial Port

2.1 CMakeLists.txt additions for this example

To start using the USB library, you need to add lib_xud to your CMakeList.txt file, for ex-
ample:
set (APP_DEPENDENT_MODULES "lib_xud")

You can then access the USB functions in your source code via the xud_device.h header
file:
#include "xud_device.h"

2.2 Source code files

The example application consists of the following files:
main.xc
xud_cdc.xc
xud_cdc.h

xud_cdc.xc contains the CDC ACM implementation which includes the USB descriptors,
endpoints handler functions and the xC interface (APIs) for application programs. The
xud_cdc.h header is included in the main.xc to use the APIs exposed by xud_cdc.xc. The
main.xc implements the application logic that interacts over the USB CDC link with a host
terminal application.

2.3 Declaring resource and setting up the USB components

main.xc contains the application implementation for a device based on the USB CDC
device class. There are some defines in it that are used to configure the XMOS USB
device library. These are displayed below.
/* USB Endpoint Defines */
#define XUD_EP_COUNT_OUT 2 //Includes EP0 (1 OUT EP0 + 1 BULK OUT EP)
#define XUD_EP_COUNT_IN 3 //Includes EP0 (1 IN EP0 + 1 INTERRUPT IN EP + 1 BULK IN EP)

/* Endpoint type tables - informs XUD what the transfer types for each Endpoint in use and also
* if the endpoint wishes to be informed of USB bus resets
*/
XUD_EpType epTypeTableOut[XUD_EP_COUNT_OUT] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_BUL};
XUD_EpType epTypeTableIn[XUD_EP_COUNT_IN] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_INT, XUD_EPTYPE_
↪→BUL};

These defines describe the endpoints configuration for this device. This example has bi-
directional communication with the host machine via the standard endpoint0 and three
other endpoints for implementing the part of our CDC class device.
These defines are passed to the setup function for the USB library which is called from
main().

2.4 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main.xc
int main()
{

/* Channels to communicate with USB endpoints */
chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];

/* Interface to communicate with USB CDC (Virtual Serial) */
interface usb_cdc_interface cdc_data;

par
{

on USB_TILE: XUD_Main(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, epTypeTableOut, epTypeTableIn,
XUD_SPEED_HS, XUD_PWR_BUS);

(continues on next page)

4

AN00124: USB CDC Class as Virtual Serial Port

(continued from previous page)

on USB_TILE: Endpoint0(c_ep_out[0], c_ep_in[0]);

on USB_TILE: CdcEndpointsHandler(c_ep_in[1], c_ep_out[1], c_ep_in[2], cdc_data);

on tile[1]: app_virtual_com(cdc_data);
}
return 0;

}

Looking at this in a more detail you can see the following:

· The par statement starts four separate tasks in parallel.

· There is a task to configure and execute the USB library: XUD_Main(). This library
call runs in an infinite loop and handles all the underlying USB communications and
provides abstraction at the endpoints level.

· There is a task to startup and run the Endpoint0 code: Endpoint0(). It handles the
control endpoint zero and must be run in a separate logical core inorder to promptly
respond to the control requests from host.

· There is a task to handle all the other three endpoints required for the CDC class:
CdcEnpointsHandler(). This function handles one bulk OUT and one bulk IN end-
points for data transmissions and one interrupt IN endpoint for sending notifications
to host.

· There is a task to run the application logic that interacts with user over the virtual serial
port: app_virtual_com().

· The define USB_TILE describes the tile on which the individual tasks will run.

· The xCONNECT communication channels and the xC interface cdc_data used for inter
task communication are setup at the beginning of main() and passed on to respec-
tive tasks.

· The USB defines discussed earlier are passed into the function XUD_Main().

2.5 Configuring the USB Device ID

The USB ID values used for vendor ID, product ID and device version number are defined
in the file xud_cdc.xc. These are used by the host machine to determine the vendor of
the device (in this case XMOS) and the product plus the firmware version.
/* USB CDC device product defines */
#define BCD_DEVICE 0x0100
#define VENDOR_ID 0x20B1
#define PRODUCT_ID 0x0401

5

AN00124: USB CDC Class as Virtual Serial Port

2.6 USB Descriptors

USB CDC class device has to support class-specific descriptors apart from the standard
descriptors defined in the USB specifications. These class specific descriptors are cus-
tomized according to the need of the USB CDC device. In the example application code,
the descriptors implement the ACM model of the CDC class and are customized to suit
a virtual serial port.

Fig. 3 shows the descriptors used in the example code.

Device
- Supported USB version, Device version,
- Max packet size of control endpoint,
- Product & Vendor IDs,
- Manufacturer, Product name, Serial number
- Device class (USB CDC),

Configuration
- Number of interfaces,
- Device power requirements,
- Configuration identification.

Communication Interface
- Interface class (CDC communications),
- Subclass (Abstract Control Model),
- Interface protocol (AT Command V.25Ter),
- Number of endpoints (One).

Data Interface
- Interface class (CDC Data)
- No subclass and protocol,
- Number of endpoints (Two).

Notification Endpoint
- Interrupt IN endpoint,
- Polling interval (255)
- Max packet size (512 bytes)

Header Functional
- Supported CDC version (1.1).

Abstract Control Model
Functional

- Supported commands (Subset of ACM).

Union Functional
- Union of interfaces,
- Master interface and

subordinate interface numbers.

Call Management
Functional

- Capabilities of call management,
- Data interface number.

Data OUT Endpoint
- Bulk OUT endpoint,
- Max packet size (512 bytes)

Data IN Endpoint
- Bulk IN endpoint.
- Max packet size (512 bytes).

Fig. 3: USB descriptors hierarchical structure of CDC example

6

AN00124: USB CDC Class as Virtual Serial Port

USB Device Descriptor

xud_cdc.xc is where the standard USB device descriptor is declared for the CDC class
device. Below is the structure which contains this descriptor. This will be requested by
the host when the device is enumerated on the USB bus.
/* USB Device Descriptor */
static unsigned char devDesc[] =
{

0x12, /* 0 bLength */
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType - Device*/
0x00, /* 2 bcdUSB version */
0x02, /* 3 bcdUSB version */
USB_CLASS_COMMUNICATIONS,/* 4 bDeviceClass - USB CDC Class */
0x00, /* 5 bDeviceSubClass - Specified by interface */
0x00, /* 6 bDeviceProtocol - Specified by interface */
0x40, /* 7 bMaxPacketSize for EP0 - max = 64*/
(VENDOR_ID & 0xFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & 0xFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct */
(BCD_DEVICE & 0xFF), /* 12 bcdDevice */
(BCD_DEVICE >> 8), /* 13 bcdDevice */
0x01, /* 14 iManufacturer - index of string*/
0x02, /* 15 iProduct - index of string*/
0x03, /* 16 iSerialNumber - index of string*/
0x01 /* 17 bNumConfigurations */

};

From this descriptor you can see that product, vendor and device firmware revision are
all coded into this structure. This will allow the hostmachine to recognise the CDC device
when it is connected to the USB bus.

7

AN00124: USB CDC Class as Virtual Serial Port

USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device
class and the endpoints setup. The hierarchy of descriptors under a configuration in-
cludes interfaces descriptors, class-specific descriptors and endpoints descriptors.
when a host requests a configuration descriptor, the entire configuration hierarchy in-
cluding all the related descriptors are returned to the host. The following code shows
the configuration hierarchy of the demo application.
/* USB Configuration Descriptor */
static unsigned char cfgDesc[] = {

0x09, /* 0 bLength */
USB_DESCTYPE_CONFIGURATION, /* 1 bDescriptortype - Configuration*/
0x43, 0x00, /* 2 wTotalLength */
0x02, /* 4 bNumInterfaces */
0x01, /* 5 bConfigurationValue */
0x04, /* 6 iConfiguration - index of string */
0x80, /* 7 bmAttributes - Bus powered */
0xC8, /* 8 bMaxPower - 400mA */

/* CDC Communication interface */
0x09, /* 0 bLength */
USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType - Interface */
0x00, /* 2 bInterfaceNumber - Interface 0 */
0x00, /* 3 bAlternateSetting */
0x01, /* 4 bNumEndpoints */
USB_CLASS_COMMUNICATIONS, /* 5 bInterfaceClass */
USB_CDC_ACM_SUBCLASS, /* 6 bInterfaceSubClass - Abstract Control Model */
USB_CDC_AT_COMMAND_PROTOCOL,/* 7 bInterfaceProtocol - AT Command V.250 protocol */
0x00, /* 8 iInterface - No string descriptor */

/* Header Functional descriptor */
0x05, /* 0 bLength */
USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptortype, CS_INTERFACE */
0x00, /* 2 bDescriptorsubtype, HEADER */
0x10, 0x01, /* 3 bcdCDC */

/* ACM Functional descriptor */
0x04, /* 0 bLength */
USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptortype, CS_INTERFACE */
0x02, /* 2 bDescriptorsubtype, ABSTRACT CONTROL MANAGEMENT */
0x02, /* 3 bmCapabilities: Supports subset of ACM commands */

/* Union Functional descriptor */
0x05, /* 0 bLength */
USB_DESCTYPE_CS_INTERFACE,/* 1 bDescriptortype, CS_INTERFACE */
0x06, /* 2 bDescriptorsubtype, UNION */
0x00, /* 3 bControlInterface - Interface 0 */
0x01, /* 4 bSubordinateInterface0 - Interface 1 */

/* Call Management Functional descriptor */
0x05, /* 0 bLength */
USB_DESCTYPE_CS_INTERFACE,/* 1 bDescriptortype, CS_INTERFACE */
0x01, /* 2 bDescriptorsubtype, CALL MANAGEMENT */
0x03, /* 3 bmCapabilities, DIY */
0x01, /* 4 bDataInterface */

/* Notification Endpoint descriptor */
0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
(CDC_NOTIFICATION_EP_NUM | 0x80),/* 2 bEndpointAddress */
0x03, /* 3 bmAttributes */
0x40, /* 4 wMaxPacketSize - Low */
0x00, /* 5 wMaxPacketSize - High */
0xFF, /* 6 bInterval */

/* CDC Data interface */
0x09, /* 0 bLength */
USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType */
0x01, /* 2 bInterfacecNumber */
0x00, /* 3 bAlternateSetting */
0x02, /* 4 bNumEndpoints */
USB_CLASS_CDC_DATA, /* 5 bInterfaceClass */
0x00, /* 6 bInterfaceSubClass */
0x00, /* 7 bInterfaceProtocol*/
0x00, /* 8 iInterface - No string descriptor*/

/* Data OUT Endpoint descriptor */
0x07, /* 0 bLength */
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
CDC_DATA_RX_EP_NUM, /* 2 bEndpointAddress */
0x02, /* 3 bmAttributes */
0x00, /* 4 wMaxPacketSize - Low */
0x02, /* 5 wMaxPacketSize - High */
0x00, /* 6 bInterval */

/* Data IN Endpoint descriptor */
0x07, /* 0 bLength */

(continues on next page)

8

AN00124: USB CDC Class as Virtual Serial Port

(continued from previous page)
USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */
(CDC_DATA_TX_EP_NUM | 0x80),/* 2 bEndpointAddress */
0x02, /* 3 bmAttributes */
0x00, /* 4 wMaxPacketSize - Low byte */
0x02, /* 5 wMaxPacketSize - High byte */
0x01 /* 6 bInterval */

};

The configuration descriptor tells host about the power requirements of the device and
the number of interfaces it supports.

The interface descriptors describe on how the host should communicate with the device
in the class level. There are two interface descriptors in a USB CDC device.

The CDC Communication interface descriptor is for device management. You can see
from the code that the device uses Abstract Control Model and supports AT Command
V.25ter protocol. Though this example device doesn’t support AT V.25ter protocol, it is
mentioned to make the device compatible with standard host drivers. This interface
has subordinate descriptors like CDC functional descriptors and a notification endpoint
descriptor. The class-specific functional descriptors are discussed in detail in the next
section. The notification endpoint is an interrupt IN endpoint and is used to report the
device’s serial state to the host. This endpoint is not used in this example application but
will be employed when bridging a UART to the USB Virtual COM port.

TheCDCData interface descriptor defines the interface for data transmission and recep-
tion between host and device. This interface has two endpoints, one bulk OUT endpoint
for data transmissions from host to device and one bulk IN endpoint for data transmis-
sions from device to host.
0x00, /* 4 wMaxPacketSize - Low byte */
0x02, /* 5 wMaxPacketSize - High byte */

The above code from the endpoint descriptors shows that the maximum packet size of
these endpoints to be 512 bytes (0x200) which is suited for applications requiring high
data throughput.

9

AN00124: USB CDC Class as Virtual Serial Port

USB CDC Functional Descriptor

Functional descriptors describe the content of class-specific informationwithin theCom-
munication Class interface. The ‘USB_DESCTYPE_CS_INTERFACE’ define is used in the
descriptor structures to identify them. There are four functional descriptors used in this
CDC example. They are:

1. Header functional descriptor.

2. ACM functional descriptor.

3. Union functional descriptor.

4. Call management functional descriptor.

Header functional descriptor mentions the version of the CDC specification the interface
compiles with and it is shown below as found in the cfgDesc[] structure.
0x10, 0x01, /* 3 bcdCDC */

Note: The CDC version number (1.10) is mentioned as BCD in little endian format.

ACM functional descriptor tells the class-specific commands and notifications sup-
ported by the CDC device. The application code supports a subset of commands cor-
responding to ACM subclass and thus the bit D1 is set to 1 in bmCapabilities field of the
descriptor as shown below
0x02, /* 3 bmCapabilities: Supports subset of ACM commands */

Union functional descriptor groups the interfaces that forms a CDC functional unit. It
specifies one of the interfaces as master to handle control messages of the unit. In the
CDC example, the Communication Class interface acts as master and the Data Class
interface acts as subordinate and together forming a single functional unit.

Call management functional descriptor decides on how the device manages calls. The
bit fields D0 andD1 of bmCapabilities are set to one in the descriptor to tell host driver that
the device handles call management by itself and it could even use Data class interface
for that purpose. The below code shows that configuration.
0x03, /* 3 bmCapabilities, DIY */

USB String Descriptors

String descriptors provide human readable information for your device and you can con-
figure them with your USB product information. The descriptors are placed in an array
as shown in the below code.
/* String table - unsafe as accessed via shared memory */
static char * unsafe stringDescriptors[]=
{
"\x09\x04", /* Language ID string (US English) */
"XMOS", /* iManufacturer */
"CDC Virtual COM Port", /* iProduct */
"0123456789" /* iSerialNumber */
"Config", /* iConfiguration string */

};

The XMOS USB library will take care of encoding the strings into Unicode and structures
the content into USB string descriptor format.

10

AN00124: USB CDC Class as Virtual Serial Port

2.7 USB Standard and Class-Specific requests

In xud_cdc.xc there is a function Endpoint0() which handles all the USB control requests
sent by host to control endpoint 0. USB control requests includes both standard USB
requests and the CDC class-specific requests.

In Endpoint0() function, a USB request is received as a setup packet by calling
USB_GetSetupPacket() library function. The setup packet structure is then examined to
distinguish between standard and class-specific requests.

The XMOS USB library provides a function USB_StandardRequests() to handle the stan-
dard USB requests. This function is called with setup packet and descriptors structures
as shown below

/* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset */

unsafe{
result = USB_StandardRequests(ep0_out, ep0_in, devDesc,

sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 0, null, 0, stringDescriptors, sizeof(stringDescriptors)/

↪→sizeof(stringDescriptors[0]),
sp, usbBusSpeed);

}

The CDC Communication interface uses endpoint 0 as management element and re-
ceives class-specific control requests on it. The following code shows how the class-
specific requests are filtered and passed to a function ControlInterfaceClassRequests()
for further handling.

switch(bmRequestType)
{

/* Direction: Device-to-host and Host-to-device
* Type: Class
* Recipient: Interface
*/

case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:

/* Inspect for CDC Communications Class interface num */
if(sp.wIndex == 0)
{

/* Returns XUD_RES_OKAY if handled,
* XUD_RES_ERR if not handled,
* XUD_RES_RST for bus reset */
result = ControlInterfaceClassRequests(ep0_out, ep0_in, sp);

}
break;

}

The ControlInterfaceClassRequests() function handles a subset of CDC ACM requests
which are defined in the xud_cdc.xc as follows:
/* CDC Communications Class requests */
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define CDC_SEND_BREAK 0x23

In virtual serial port, the above commands are used to set and get serial port parameters
like baud rate, parity, stop bits etc and also to emulate hardware flow control using DTR
(Data Terminal Ready) and RTS (Request To Send) signals.

You can use the functions ControlInterfaceClassRequests() and the Endpoint0() as refer-
ence to handle more commands of the subclass or you can even implement a different
model/subclass for your USB CDC device.

2.8 Data handling

The two bulk data endpoints of the CDC Data interface are handled by the task CdcEnd-
pointsHandler() present in xud_cdc.xc. As there is no subprotocol used, the bytes re-
ceived through these endpoints represent the raw data sent from a host terminal soft-

11

AN00124: USB CDC Class as Virtual Serial Port

ware. This data is handled using a double buffer mechanism and hence increases the
performance of the device.

To handle asynchronous communication over two endpoints, events are used by means
of select statements as shown in the following piece of code from CdcEndpointsHan-
dler() task.

select
{
case XUD_GetData_Select(c_epbulk_out, epbulk_out, length, result):

if(result == XUD_RES_OKAY)
{

/* Received some data */
rxLen[!readBufId] = length;

/* Check if application has completed reading the read buffer */
if(rxLen[readBufId] == 0) {

/* Switch buffers */
readBufId = !readBufId;
readIndex = 0;
/* Make the OUT endpoint ready to receive data */
XUD_SetReady_Out(epbulk_out, rxBuf[!readBufId]);

} else {
/* Application is still reading the read buffer
* Say that another buffer is also waiting to be read */
readWaiting = 1;

}
} else {

XUD_SetReady_Out(epbulk_out, rxBuf[!readBufId]);
}
break;

case XUD_SetData_Select(c_epbulk_in, epbulk_in, result):

/* Packet sent successfully when result in XUD_RES_OKAY */
if (0 != txLen) {

/* Data available to send to Host */
XUD_SetReady_In(epbulk_in, txBuf[writeBufId], txLen);
/* Switch write buffers */
writeBufId = !writeBufId;
txLen = 0;

} else {
writeWaiting = 1;

}

break;

When OUT endpoint receives data, an event is triggered and the XUD_GetData_Select()
case is executed. Similary, when IN endpoint completes sending data to host the
XUD_SetData_Select() case is executed. This event driven approach not only handles
multiple endpoints but also provides way to include other events and build more logic
into the task.

2.9 Application interface

The application interface is the set of functions defined as xC interface that enables ap-
plication tasks to send/receive data over the USB CDC endpoints. This API funtions ab-
stract out all the buffering implementation details done at the endpoint level for data
communications. This xC interface is declared in xud_cdc.h file and it is shown below.
interface usb_cdc_interface {

[[guarded]] void put_char(char byte);

[[guarded]] char get_char(void);

[[guarded]] int write(unsigned char data[], REFERENCE_PARAM(unsigned, length));

[[guarded]] int read(unsigned char data[], REFERENCE_PARAM(unsigned, count));

int available_bytes(void);

void flush_buffer(void);
};

These interface functions pass arguments and return values over xCONNECT channels
and provides well defined inter-task communication. The server side of these functions
are defined under select case statements in the CdcEndpointsHandler() task.

12

AN00124: USB CDC Class as Virtual Serial Port

In the example code, main.xc has the app_virtual_com() function which uses this inter-
face to implement a simple loopback to interact with user. The following code is taken
from app_virtual_com() function
void app_virtual_com(client interface usb_cdc_interface cdc)
{

while (1)
{

char cdc_char = cdc.get_char();
cdc.put_char(cdc_char);
if (cdc_char == '\r')

cdc.put_char('\n');
}

}

In the above code you can observe that the interface’s functions are accessed via a vari-
able ‘cdc’. This variable is the client side of the usb_cdc_interface.

13

AN00124: USB CDC Class as Virtual Serial Port

2.10 Demo Hardware Setup

To setup the demo hardware the following boards are required.

· XK-EVK-XU316 board (Fig. 4) - 2 x USB cables (A to micro-b)

Fig. 4: XMOS xcore.ai Evaluation Kit

The hardware should be configured as follows:

· Connect the USB receptacle of the XK-EVK-XU316 to the host machine using a USB
cable

· Connect the DEBUG receptacle XK-EVK-XU316 to the host machine using a USB cable

14

AN00124: USB CDC Class as Virtual Serial Port

2.11 Building the application

The application uses the xcommon-cmake build system as bundled with the XTC tools.
To configure the build run the following from an XTC command prompt:
cd app_an00124
cmake -G "Unix Makefiles" -B build

If any dependencies are missing it is at this configure step that they will be downloaded
by the build system.
Finally, the application binary can be built using xmake:
xmake -C build

This command will cause a binary app_an00124.xe file to be generated in the
app_an00124/bin directory,

2.12 Launching the demo application

Once the demo example has been built we can execute the application on the xcore.ai
device.

2.13 Launching from the command line

From the command line we use the xrun tool to download code to the xcore device.
From an XTC command prompt, from the app_an00124/bin directory, run:
xrun --xscope app_an00124.xe

Once this command has executed the application will be running on the xcore device.
The CDC device will have enumerated as virtual serial port on the host machine.

2.14 Running the Virtual COM demo

To run the demo, the host needs to have a serial terminal software installed on it.
Following sections describe in detail on how to run the demo on different OS platforms.

Running on Windows

· In Microsoft Windows, when the USB CDC device enumerates for the first time it will
ask for a host driver. Use ‘Install driver from specific location’ option to point to the
‘cdc_demo.inf’ supplied along with this application note. This will load the ‘usbser.sys’
host driver for the virtual COM device.

· Once the driver is installed, the device will be assigned with a COM port number and it
will look like the following figure in “Device Manager” (Start->Control Panel->System-
>Hardware->Device Manager) as shown in Fig. 5

· Use any terminal software to open the COM port with default settings. In this demo,
we have used Hercules as the terminal software.

· Any keys pressed in the terminal will be looped back to the terminal via the xCORE
device as you type, lower-case characters are made upper-case. Pressing enter will
add a new line to the terminal output on return from the xCORE application.

Running on Linux

· Under Linux, when the USB CDC device enumerates the built-in ACM driver will be
loaded automatically and the device will be mounted as /dev/ttyACMx where ‘x’ is a
number.

15

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

AN00124: USB CDC Class as Virtual Serial Port

Fig. 5: Enumerated Virtual COM Port Device in Windows

· You can execute dmesg command in a command prompt to determine the name on
which the device is mounted.

· Use any serial terminal software to open the virtual serial port with default settings.
In this demo, we have used Putty software and the serial port is opened as shown in
Fig. 6.

Fig. 6: Opening Virtual Serial Port in Putty

· Any keys pressed in the terminal will be looped back to the terminal via the xCORE
device as you type, lower-case characters are made upper-case. Pressing enter will
add a new line to the terminal output on return from the xCORE application.

Running on macOS

· In macOS, the USB CDC device is supported by a default driver available in the OS and
the device will appear as /dev/tty.usbmodem*. You can use ls /dev/tty.usbmodem*
command to determine the exact name of the virtual serial device.

· Use any serial terminal software to open the virtual serial port with default settings. In
this demo, we have used CoolTerm software and the serial port is opened as shown
in Fig. 7.

· Any keys pressed in the terminal will be looped back to the terminal via the xCORE
device as you type, lower-case characters are made upper-case. Pressing enter will
add a new line to the terminal output on return from the xCORE application.

16

AN00124: USB CDC Class as Virtual Serial Port

Fig. 7: Opening Virtual Serial Device in CoolTerm

3 Further reading

· XMOS XTC Tools Installation Guide

· XMOS XTC Tools User Guide

· USB 2.0 Specification

· XMOS application build and dependency management system; xcommon-cmake

· USB CDC Class Specification, USB.org

17

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.usb.org/sites/default/files/usb_20_20240604.zip
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.usb.org/document-library/class-definitions-communication-devices-12

AN00124: USB CDC Class as Virtual Serial Port

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

18

	Overview
	USB CDC Class application note
	Further reading

