lib_logging: Debug Printing
|

Publication Date: 2025/8/18
Document Number: XM-006383-UG v3.4.0

XMOS

lib_logging: Debug Printing

IN THIS DOCUMENT

g wN -

Introduction
o
Debugunits
Enabling printing
Example
Example logging libraryusage
6.1 The CMakeLists.txt file
6.2 Include L
6.3 Example applicationoutputo
6.4 Building and Running the application using the command line
6.5 Debug units by example
6.6 XxSCOPE printing

NOteS
71 Resourceusage
7.2 Losslessvslossy L
7.3 Ordering
7.4 printh . . .

Further Reading

AP WWWW

~No oo o oo oSS DS

lib_logging: Debug Printing

1 Introduction

This library provides a lightweight printf function that can be enabled or disabled via con-
figuration defines. Code can be declared to be within a “debug unit” (usually a library or
application source base) and prints can be enabled/disabled per debug unit.

1lib_loggingisintended to be used with the XCommon CMake , the XMOS application
build and dependency management system.

2 API

To use this module, include 1lib_logging in the application’s
APP_DEPENDENT _MODULES list and include the debug_print.h header file.

void debug_printf(char fmt], ...)
A limited functionality version of printf that is low memory.

This function works like C-standard printf except that it only accepts d, x, s, u and
c format specifiers with no conversions.

The p format specifier is treated the same as a x.

The capital version of each format specifier performs the same as the lower case
equivalent.

Any alignment or padding characters are simply ignored.
The function uses the functions from print . h to do the underlying printing.
Unlike printf this function has no return value.

Whether the function does any output can be controlled via defines such as
DEBUG_PRINT_ENABLE or DEBUG_PRINT_ENABLE_[debug unit name] in
the application’s debug_conf.h

3 Debug units

A source file can be added to a debug unit by defining the DEBUG_UNIT macro before
inclusion of debug_print.h. For example,
#define DEBUG_UNIT ETHERNET_MODULE

#include "debug_print.h"

To include all source files in a module in a particular debug unit, it is convenient to do it
inthe 1ib_build_info.cmake file of the module e.g.

set(LIB_COMPILER_FLAGS ... -DDEBUG_UNIT=ETHERNET_MODULE ...)

If no DEBUG_UNIT is defined then the default debug unit is APPLICATION.
4 Enabling printing

By default, debug printing is turned off. To enable printing you need to pass the correct
command line option to compilation. The following defines can be set by using the -D
option to the compiler. For example, the following in your application CMakeLists. txt
will enable debug printing

set(APP_COMPILER_FLAGS ... -DDEBUG_PRINT_ENABLE=1 ...)

The following defines can be set:

DEBUG_PRINT_ENABLE
Setting this define to 1 or 0 will control whether debug prints are output.

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_logging: Debug Printing

DEBUG_PRINT_ENABLE_[debug unit]
Enabling this define will cause printing to be enabled for a specific debug unit. If
set to 1, this will override the default set by DEBUG_PRINT_ENABLE.

DEBUG_PRINT_DISABLE_[debug unit]
Enabling this define will cause printing to be disabled for a specific debug unit. If
set to 1, this will override the default set by DEBUG_PRINT_ENABLE.

5 Example

This included example shows how to use the logging library. It covers the difference
between the logging library (debug_printf()) and the system library printing function
(printf()).

It also covers the difference between JTAG and xSCOPE to perform the I/0 to the host,
including approximate values for resource usage and performance of each approach.

6 Example logging library usage

6.1 The CMakelLists.txt file

To start using the XMOS logging library, you need toadd 1ib_logging to the dependent
module list in the CMakeLists. txt file

set(APP_DEPENDENT_MODULES "1ib_logging")

The dependencies for this example are specified by deps.cmake in the examples di-
rectory and are included in the application CMakeLists. txt file.

Also, debug_printf() calls are only active if you enable them in your
CMakelLists.txt file. This is done by by setting DEBUG_PRINT_ENABLE to 1 in
the APP_COMPILER_FLAGS.

set(APP_COMPILER_FLAGS ... -DDEBUG_PRINT_ENABLE=1 ...)

6.2 Include

The function prototypes are declared in a single header file which must be included from
your source file.

#include "debug_print.h"

6.3 Example application output

The example application outputs “Hello world”.

int main() {

debug_printf("Hello world\n");

6.4 Building and Running the application using the command line

First open a command prompt/terminal window with the tools environment setup. A
setup batch/script file is provided in the XTC package to do this for you.

To configure the build run the following from an XTC command prompt.

cd examples
cd app_debug_unit
cmake -B build -G "Unix Makefiles"

lib_logging: Debug Printing

Finally, the application binaries can be built using xmake.

xmake -C build

Running the application is then done using the command.

xrun --xscope bin/app_debug_unit.xe

6.5 Debug units by example

Applications can be created with different units whose debug output is independently
controlled. The example application also calls a function in another unit:

void unit_function();

That file has put its debug messages as a separate debug unit by doing:

#define DEBUG_UNIT unit
#include "debug_print.h"

And by default these debug messages are not enabled, so running the program will only
produce the following output.

$ xrun --xscope bin/app_debug_unit.xe
Hello world

In order to enable the debug_print messages in unit.xc it is necessary to add to the
list of compiler flags in the CMakeLists. txt file.

set(APP_COMPILER_FLAGS ... -DDEBUG_PRINT_ENABLE_unit=1 ...)

After rebuilding the application it will now produce.

$ xrun --xscope bin/app_debug_unit.xe
Hello world
Unit print

6.6 xSCOPE printing

On the xCORE platform it is possible to have I/0 messages sent to the console using
either JTAG or XxSCOPE. The default is for JTAG to be used. However, when doing 1/0
over JTAG all cores on the xCORE are stopped and hence real-time functionality is no
longer maintained. As a result xXSCOPE 1/0 should be preferred.

xSCOPE I/0 is enabled by creating a config. xscope file. This file can be created in the
same folder as the CMakeLists . txt or with the source files. When config.xscope
exists, it controls whether I/0 messages are enabled, and whether they use xSCOPE or
JTAG. When xSCOPE is enabled it uses a link to communicate with the xTAG. The link is
specified in the target’s XN file. A basic file which enables 1/0 over xSCOPE contains:

<xSCOPEconfig ioMode="basic" enabled="true">
</xSCOPEconfig>

lib_logging: Debug Printing

7 Notes

7.1 Resource usage
The following table shows the memory and cycle requirements for doing a simple print

of “Hello world %d\n", using either printf() or debug_printf(), and using either
JTAG or xSCOPE as the transport to the host.

Table 1: Resource usage

Function Transport Program Memory (kB) Time (us) Channel Ends
None N/A 09 0.0 0
debug_printf() JTAG 1.86 72000 0
debug_printf() xSCOPE 2.88 8.5 1 per tile
printf() JTAG 9.02 72000 0

printf() xSCOPE 9.99 18.6 1 per tile

O Note

The JTAG timings are approximate and will depend on a number of factors including
the host machine being used.

7.2 Lossless vs lossy

The advantage of using xSCOPE instead of JTAG should be clear from the performance
figures above. However, it is important to understand that xSCOPE is a lossy transport
and as such if too much 1/0 is created then messages can be lost.

7.3 Ordering

It is also essential to understand that messages produced by different logical cores are
interleaved on the host console. There is no guarantee of the order in which they will be
printed.

7.4 print.h

The tools provide extremely lightweight printing functions in print.h. For exampleitis
possible to do.

#include <print.h>
printstr("The number ");

printint(10);
printstrln(" should be 10");

But each of these print fragments can arrive mixed with messages from other logical
cores. Whereas,

debug_printf("The number %d should be 1@\n", 10);

will be printed as a single line.

lib_logging: Debug Printing

8 Further Reading

» XMOS XTC Tools Installation Guide

» XMOS XTC Tools User Guide

» XMOS application build and dependency management system; xcommon-cmake

» XMOS Libraries

2 MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

/ Y,

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.xmos.com/libraries

	Introduction
	API
	Debug units
	Enabling printing
	Example
	Example logging library usage
	The CMakeLists.txt file
	Include
	Example application output
	Building and Running the application using the command line
	Debug units by example
	xSCOPE printing

	Notes
	Resource usage
	Lossless vs lossy
	Ordering
	print.h

	Further Reading

