
lib_spi: SPI Library

Publication Date: 2025/9/12
Document Number: XM-006232-UG v4.0.0

lib_spi: SPI Library

IN THIS DOCUMENT

1 Introduction . 3
2 Available SPI components . 4

2.1 SPI Master (Synchronous) . 4
2.2 SPI Master (Asynchronous) . 4
2.3 SPI Slave . 4

3 SPI Modes . 5
3.1 Mode 0 - CPOL: 0 CPHA 0 . 5
3.2 Mode 1 - CPOL: 0 CPHA 1 . 5
3.3 Mode 2 - CPOL: 1 CPHA 0 . 6
3.4 Mode 3 - CPOL: 1 CPHA 1 . 6

4 External signal description . 7
5 Connecting to the xcore SPI master . 8

5.1 Disabling master data lines . 8
6 Connecting to the xcore SPI slave . 9

6.1 Disabling slave data lines . 9
7 Master Usage . 10

7.1 SPI master synchronous operation . 10
7.1.1 Synchronous master usage state machine 11

7.2 SPI master asynchronous operation . 12
7.2.1 Asynchronous master command buffering 14
7.2.2 Asynchronous master usage state machine 14

7.3 Master inter-transaction gap . 15
8 Slave usage . 16
9 SPI master timing characteristics . 18

9.1 Synchronous SPI master clock speeds . 18
9.2 Asynchronous SPI master clock speeds . 18
9.3 MISO port timing . 18

10 SPI slave timing characteristics . 19
11 Examples . 20

11.1 SPI Master Example . 20
11.1.1 Overview . 20
11.1.2 Declaring ports . 20
11.1.3 The application main() function . 21
11.1.4 The app() task . 21
11.1.5 Building . 23
11.1.6 Running . 23

11.2 SPI Slave Example . 24
11.2.1 Overview . 24
11.2.2 Declaring ports . 25
11.2.3 The application main() function . 26
11.2.4 The reg_file() task . 26
11.2.5 The app() task . 29
11.2.6 The tester() task . 29
11.2.7 Building . 29
11.2.8 Running . 30

12 Resource Usage . 32
13 API Reference . 33

13.1 Master API . 33
13.1.1 Supporting types . 33
13.1.2 Creating an SPI master instance . 34
13.1.3 SPI master interface . 35
13.1.4 SPI master asynchronous interface 38

13.2 Slave API . 41
13.2.1 Creating an SPI slave instance . 41
13.2.2 The SPI slave interface API . 43

2

lib_spi: SPI Library

1 Introduction

SPI is a four-wire hardware bi-directional serial interface. This library provides a software
defined, industry-standard, SPI (serial peripheral interface) component that allows you to
control an SPI bus via the xcore GPIO ports.

The SPI bus can be used bymultiple taskswithin the xcore device and (each addressing
the same or different slaves) and is compatible with other slave devices on the same bus.

3

lib_spi: SPI Library

2 Available SPI components

Three components are provided in this library which offer different functionality. They
are all defined as a task with an interface which provides methods for transmitting and
receiving data. All components offer a shutdown() method allowing the component to
be exited at runtime which frees any resources used.

2.1 SPI Master (Synchronous)

This component is the standard SPI master and is simplest to use. The synchronous
aspect refers to the API and operation and means that calls to this component block
until the transaction has completed. The component server may be placed on the same
or a different tile from the client. If placed on the same tile, the task may be distributed
by the compiler which means it gets turned into a function call and consequently does
not consume an xcore thread.

Multiple clients are supported and are arbitrated by the component. Multiple devices are
also supported by means of individual slave select bits within a port.

2.2 SPI Master (Asynchronous)

This component offers buffering functionality over the synchronous SPI master. The
asynchronous feature means that calls to this component can be non-blocking and SPI
transfers may be queued. The component server may be placed on the same or a differ-
ent tile from the client.

Due to the buffering logic, the asynchronous version always consumes an xcore thread.

Multiple clients are supported and are arbitrated by the component. Multiple devices are
also supported by means of individual slave select bits within a port.

2.3 SPI Slave

The SPI slave component task always runs in its own xcore thread because it needs to
be responsive to the external master requests. It offers a single slave device with basic 8
or 32 bit transfer support. It provides callbacks for when the slave needs data to transmit
or has received data, as well as a callback to indicate the end of a transaction.

4

lib_spi: SPI Library

3 SPI Modes

The data sample points for SPI are defined by the clock polarity (CPOL) and clock phase
(CPHA) parameters. SPI clock polarity may be inverted or non-inverted by the CPOL and
the CPHA parameter is used to shift the sampling phase. The following four sections
illustrate the MISO and MOSI data lines relative to the clock. The timings are given by:

Table 1: SPI timings

Parame-
ter

Description

t1 The minimum time from the start of the transaction (SS asserted) to the
first sample point/active clock edge.

t2 The minimum amount of time from the last sample point/active clock
before SS is de-asserted.

t3 The inter-transmission gap. This is theminimum amount of time that the
slave select must be de-asserted between accesses on the same device.

MAX
CLOCK
RATE

This is the maximum clock rate supported by the configuration.

The setup and hold timings are inherited from the underlying xcore device. For details
on these timing please refer to the device datasheet.

When operating above 20 Mbps please also see the MISO port timing section.

3.1 Mode 0 - CPOL: 0 CPHA 0

CLK

MOSI MSB LSB

MISO MSB LSB

SS

t1 t2 t3a b c d e

Fig. 1: Mode 0

The master and slave will drive out their first data bit before the first rising edge of the
clock then drive on subsequent falling edges. They will sample on rising edges.

3.2 Mode 1 - CPOL: 0 CPHA 1

CLK

MOSI MSB LSB

MISO MSB LSB

SS

t1 t2 t3a b c d e

Fig. 2: Mode 1

5

lib_spi: SPI Library

The master and slave will drive out their first data bit on the first rising edge of the clock
and sample on the subsequent falling edge.

3.3 Mode 2 - CPOL: 1 CPHA 0

CLK

MOSI MSB LSB

MISO MSB LSB

SS

t1 t2 t3a b c d e

Fig. 3: Mode 2

The master and slave will drive out their first data bit before the first falling edge of the
clock then drive on subsequent rising edges. They will sample on falling edges.

3.4 Mode 3 - CPOL: 1 CPHA 1

CLK

MOSI MSB LSB

MISO MSB LSB

SS

t1 t2 t3a b c d e

Fig. 4: Mode 3

The master and slave will drive out their first data bit on the first falling edge of the clock
and sample on the subsequent rising edge.

6

lib_spi: SPI Library

4 External signal description

The SPI protocol requires a clock, one or more slave selects and either one or two data
wires.

Table 2: SPI data wires

Signal Description

SCLK Clock line, driven by the master
MOSI Master Output, Slave Input data line, driven by the master
MISO Master Input, Slave Output data line, driven by the slave
SS Slave select line, driven by the master

During any transfer of data, the master will assert the SS line and then output a series of
transitions on the SCLK wire. During this time, the slave will drive data to be sampled by
the master and the master will drive data to be sampled by the slave. At the end of the
transfer, the SS is de-asserted.

If the slave select line is not driven high then the slave should ignore any transitions on
the other lines.

7

lib_spi: SPI Library

5 Connecting to the xcore SPI master

The SPI wires need to be connected to the xcore device as shown in Fig. 5. The signals
can be connected to any one bit ports, with the exception of slave select which may be
any width port. All ports must be on the same tile.

xCORE

device

SCLK1 bit

port

MOSI1 bit

port

MISO1 bit

port

SS0

SSn

Any

port
...

Fig. 5: SPI master connection to the xcore device

If only one data direction is required then the MOSI or MISO line need not be connected.
However, asynchronous mode is only supported if the MISO line is connected.

The master component of this library supports multiple slaves on unique slave select
wires. The bit of the port used for each device is configurable and so multiple slaves
may share the same select bit if needed.

5.1 Disabling master data lines

The MOSI and MISO parameters of the spi_master() task are optional. So in the top-
level par statement the function can be called with null instead of a port e.g.
spi_master(i_spi, 1, p_sclk, null, p_miso , p_ss, 1, clk_spi);

Similarly, the MOSI parameter of the spi_master_async() task is optional (but the
MISO port must be provided).

8

lib_spi: SPI Library

6 Connecting to the xcore SPI slave

The SPI wires need to be connected to the xcore device as shown in Fig. 6. The signals
can be connected to any one bit ports on the device.

xCORE

device

SCLK1 bit

port

MOSI1 bit

port

MISO1 bit

port

SS1 bit

port

Fig. 6: SPI slave connection to the xcore device

The slavewill only send and receive datawhen the slave select is driven high. Additionally
the MISO line is set to high impedance when not in use.

If theMISO line is not required then it need not be connected. TheMOSI line must always
be connected.

6.1 Disabling slave data lines

The spi_slave() task has an optional MISO parameter (but the MOSI port must be
supplied).

9

lib_spi: SPI Library

7 Master Usage

7.1 SPI master synchronous operation

There are two types of interface for SPI master components: synchronous and asyn-
chronous.

The synchronous API provides blocking operation. Whenever a client makes a read or
write call the operation will complete before the client can move on - this will occupy
the core that the client code is running on until the end of the operation. This method is
easy to use, has low resource use and is very suitable for applications such as setup and
configuration of attached peripherals.

SPI master components are instantiated as parallel tasks that run in a par statement.
For synchronous operation, the application can connect via an interface connection us-
ing the spi_master_if interface type:

SPI
master
SPI

masterappapp
spi_master_if

Fig. 7: SPI master task diagram

For example, the following code instantiates an SPI master component and connect to
it.
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss = XS1_PORT_1B;
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;
clock clk_spi = XS1_CLKBLK_1;

int main(void) {
spi_master_if i_spi[1];
par {
spi_master(i_spi, 1, p_sclk, p_mosi, p_miso , p_ss, 1, clk_spi);
my_application(i_spi[0]);

}
return 0;

}

Note

The connection is an array of interfaces, so several tasks can connect to the same
component instance. The slave select ports are also an array since the same SPI
data lines can connect to several devices via different slave lines.

The final parameter of the spi_master() task is an optional clock block. If the clock
block is supplied then the maximum transfer rate of the SPI bus is increased (see Table
3). If null is supplied instead then the performance is lower but no clock block is used.

The application can use the client end of the interface connection to perform SPI bus
operations e.g.
void my_application(client spi_master_if spi) {
uint8_t val;
printf("Doing one byte transfer. Sending 0x22.\n");
spi.begin_transaction(0, 100, SPI_MODE_0);
val = spi.transfer8(0x22);
spi.end_transaction(1000);
printf("Read data %d from the bus.\n", val);

}

10

lib_spi: SPI Library

Here, begin_transaction selects the device 0 and asserts its slave select line.
The application can then transfer data to and from the slave device and finish with
end_transaction, which de-asserts the slave select line.

Operations such as spi.transfer8 will block until the operation is completed on the
bus. More information on interfaces and tasks can be be found in the XMOS Program-
ming Guide. By default the SPI synchronous master mode component does not use any
xcore threads of its own. It is a distributed task which means it will perform its function
on the xcore thread of the application task connected to it (provided the application task
is on the same tile).

7.1.1 Synchronous master usage state machine

The function calls made on the SPI master interface must follow the sequence shown
by the state machine in Fig. 8. If this sequence is not followed then the behaviour is
undefined.

Fig. 8: SPI master use state machine (synchronous)

11

https://www.xmos.com/documentation/XM-014363-PC/html/prog-guide/index.html
https://www.xmos.com/documentation/XM-014363-PC/html/prog-guide/index.html

lib_spi: SPI Library

7.2 SPI master asynchronous operation

The synchronous API will block your application until the bus operation is complete. In
cases where the application cannot afford to wait for this long, the asynchronous API
can be used.

The asynchronous API offloads operations to another task. Calls are provided to initi-
ate reads and writes and notifications are provided when the operation completes. This
API requires more management in the application but can provide much more efficient
operation.

It is particularly suitable for applications where the SPI bus is being used for continuous
data transfer.

Setting up an asynchronous SPI master component is done in the same manner as the
synchronous component.
out buffered port:32 p_miso = XS1_PORT_1A;
out port p_ss = XS1_PORT_1B;
out buffered port:22 p_sclk = XS1_PORT_1C;
out buffered port:32 p_mosi = XS1_PORT_1D;

clock cb = XS1_CLKBLK_1;

int main(void) {
spi_master_async_if i_spi[1];
par {
spi_master_async(i_spi, 1, p_sclk, p_mosi, p_miso, p_ss, 1, cb);
my_application(i_spi[0]);

}
return 0;

}

12

lib_spi: SPI Library

The application can use the asynchronous API to offload bus operations to the compo-
nent. This is done bymoving pointers to the SPI slave task to transfer and then retrieving
pointers when the operation is complete. For example, the following code repeatedly
calculates 100 bytes to send over the bus and handles 100 bytes coming back from the
slave.
void my_application(client spi_master_async_if spi) {
uint8_t outdata[100];
uint8_t indata[100];
uint8_t * movable buf_in = indata;
uint8_t * movable buf_out = outdata;

// create and send initial data
fill_buffer_with_data(outdata);
spi.begin_transaction(0, 1000, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out), 100);
while (1) {
select {
case spi.transfer_complete():
spi.retrieve_transfer_buffers_8(buf_in, buf_out);
spi.end_transaction();

// Handle the data that has come in
handle_incoming_data(buf_in);
// Calculate the next set of data to go
fill_buffer_with_data(buf_out);

spi.begin_transaction(0, 100, SPI_MODE_0);
spi.init_transfer_array_8(move(buf_in), move(buf_out));
break;

}
}

}

The SPI asynchronous task is combinable so can be run on a logical corewith other tasks
(including the application task it is connected to).

13

lib_spi: SPI Library

7.2.1 Asynchronous master command buffering

In order to provide asynchronous behaviour for multiple clients the asynchronous mas-
ter will store up to one begin_transaction and one init_transfer_array_8
or init_transfer_array_32 from each client. This means that if the master is
busy doing a transfer for client X, then client Y will still be able to begin a trans-
action and send data fully asynchronously. Consequently, after client Y has issued
init_transfer_array_8 or init_transfer_array_32 it will be able to continue
operation whilst waiting for the notification.

7.2.2 Asynchronous master usage state machine

The function calls made on the SPI master asynchronous interface must follow the se-
quence shown by the state machine in Fig. 9. If this sequence is not followed then the
behaviour is undefined.

Fig. 9: SPI master use state machine (asynchronous)

14

lib_spi: SPI Library

7.3 Master inter-transaction gap

For both synchronous and asynchronous modes the end_transaction requires
a slave select de-assert time. This parameter will provide a minimum de-assert
time between two transaction on the same slave select. In the case where
a begin_transaction asserting the slave select would violate the previous
end_transaction then the begin_transactionwill block until the slave select de-
assert time has been satisfied.

15

lib_spi: SPI Library

8 Slave usage

SPI slave components are instantiated as parallel tasks that run in a par statement. The
application can connect via an interface connection.

SPI
slave
SPI
slaveappapp

spi_slave_callback_if

Fig. 10: SPI slave task diagram

For example, the following code instantiates an SPI slave component and connect to it.
out buffered port:32 p_miso = XS1_PORT_1E;
in port p_ss = XS1_PORT_1F;
in port p_sclk = XS1_PORT_1G;
in buffered port:32 p_mosi = XS1_PORT_1H;
clock cb = XS1_CLKBLK_1;

int main(void) {
interface spi_slave_callback_if i_spi;
par {
spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, cb, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
my_application(i_spi);

}
return 0;

}

Whena slave component is instantiated themode and transfer size needs to be specified.
If you wish to change mode or width, you can shutdown the component and re-start it.

16

lib_spi: SPI Library

The slave component acts as the client of the interface connection. This means it can
“callback” to the application to respond to requests from the bus master. For example,
the following code snippet showspart of an application that responds to SPI transactions
where the first word is a command to read or write command and subsequent transfers
either provide or consume data.
while (1) {
uint32_t command = 0;
size_t index = 0;
select {
case spi.master_requires_data() -> uint32_t data:

if (command == 0) {
// Not got the command yet. This will be the
// first word of the transaction.
data = 0;

} else if (command == READ_COMMAND) {
data = get_read_data_item(index);
index++;

} else {
data = 0;

}
break;

case spi.master_supplied_data(uint32_t data, uint32_t valid_bits):
if (command == 0) {
command = data;

} else if (command == WRITE_COMMAND) {
handle_write_data_item(data, index);
index++;

}
break;

case spi.master_ends_transaction():
// The master has de-asserted slave select.
command = 0;
index = 0;
break;

}
}

Note

The time taken to handle the callbacks will determine the timing requirements of the
SPI slave and so should be kept as short as possible. See the SPI slave example in
examples/app_spi_slave for more details on different ways of working with the
SPI slave component.

17

lib_spi: SPI Library

9 SPI master timing characteristics

9.1 Synchronous SPI master clock speeds

The maximum speed that the SPI bus can be driven depends on whether a clock block
is used, the speed of the xcore thread that the SPI code is running on and where both
the MISO and MOSI lines are used. The timings can be seen in Table 3.

Table 3: SPI master timings (synchronous)

Clock
blocks

MOSI en-
abled

MISO en-
abled

Max kbps (62.5 MHz
core)

Max kbps (100 MHz
core)

0 1 0 2500 3500
0 1 1 1200 1300
1 1 0 62500 75000
1 1 1 62500 75000

9.2 Asynchronous SPI master clock speeds

The asynchronous SPI master uses the same transport layer as the SPI master using a
clock block and so achieves similar performance.

Table 4: SPI master timings (asynchronous)

Clock
blocks

MISO en-
abled

MOSI en-
abled

Max kbps (62.5 MHz
core)

Max kbps (100 MHz
core)

1 x x 62500 75000

9.3 MISO port timing

Port timing is affected by chip pad and PCB delays. For the clock, slave-select and MOSI
signals, all of the delays will be broadly matched. This means port timing adjustment is
normally not required even up to the fastest supported SPI clock rates.

For the MISO signal, there will be a ‘round trip delay’ starting with the clock edge output
and finishing at the xcore’s input port. The presence of this delay will mean the xcore
may sample too early since data signal will arrive later. It may be necessary to delay the
sampling of the MISO pin to capture within the required window, particularly if the SPI
clock is above 20 MHz.

Control over the signal capture is provided for all SPI master implementations that re-
quire a clock block. Please see the API section spi_master_sync_timings()method which
exposes the controls available for optimising setup and hold capture.

For details on how to calculate and adjust round-trip port timing, please consult the IO
timings for xcore.ai or IO timings for xCORE200 document.

18

https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html
https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html
https://www.xmos.com/file/io-timings-for-xcore200

lib_spi: SPI Library

10 SPI slave timing characteristics

The xcore thread running the SPI slave task will wait for the slave select line
to assert and then begin processing the transaction. At this point it will call the
master_requires_data callback to application code. The time taken for the applica-
tion to perform this call will affect how long the xcore thread has to resume processing
SPI data. This will affect the minimum allowable time between slave select changing
and data transfer from the master (t1).

The user of the library will need to determine this time based on their application.

After slave select is de-asserted the SPI slave task will call the
master_ends_transaction callback. The time the application takes to process this
will affect the minimum allowable inter-transmission gap between transactions (t2).
The user of the library will also need to determine this time based on their application.

If the SPI slave task is combined will other tasks running on the same xcore thread then
the other task may process an event delaying the time it takes for the SPI slave task to
react to events. This will add these delays to the minimum times for both t1 and t2. The
library user will need to take these into account in determining the timing restrictions on
the master.

Note

The time taken to handle the callbacks will determine the timing requirements of the
SPI slave, and so must be kept as short as possible.

Throughput for SPI slave versus mode and MOSI usage is shown in the following table.

Table 5: SPI slave timings

SPIMode MOSI enabled Max kbps (62.5 MHz core) Max kbps (100MHz core)

0 0 40000 62500
1 0 40000 62500
2 0 40000 62500
3 0 40000 62500
0 1 7000 10000
1 1 7000 10000
2 1 7000 10000
3 1 7000 10000

19

lib_spi: SPI Library

11 Examples

11.1 SPI Master Example

11.1.1 Overview

The example uses the XMOSSPI library to perform somebus transactions as SPImaster.
The SPI master examples are run on the xcore.ai evaluation kit, XK-EVK-XU316 using the
WFM200 WiFi device as a simple SPI slave.

The application consists of two tasks:

· A task that drives the SPI bus

· An application task that connects to the SPI task

These tasks communicate via the use of xC interfaces. Note that for the SPI synchronous
cases, even though the SPI master and app are separate tasks, the compiler is able to
distribute the SPI master so that the application only uses a single hardware thread.

Fig. 11 shows the task and communication structure of the application.

Fig. 11: Task diagram of SPI master example

11.1.2 Declaring ports

The SPI library connects to external pins viaxcore ports. Inmain.xc these are declared
as variables of type port at the start of the file:
out buffered port:32 p_sclk = WIFI_CLK;
out port p_ss = WIFI_CS_N;
in buffered port:32 p_miso = WIFI_MISO;
out buffered port:32 p_mosi = WIFI_MOSI;

Note

The slave select declaration is for a mulit-bit port. The pin in this port that will be
used as SPI SS set by spi.set_ss_port_bit(0, 1);

How the ports (e.g. XS1_PORT_1I) relate to external pinswill dependon the exact device
being used. See the device datasheet for details.

20

https://www.xmos.com/xk-evk-xu316

lib_spi: SPI Library

11.1.3 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main.xc
int main(void) {
interface spi_master_async_if i_spi_async[1];
par {
on tile[0]: {
par {
async_app(i_spi_async[0]);
spi_master_async(i_spi_async, 1, p_sclk, p_mosi, p_miso, p_ss, 1, clk);

}
}

}
return 0;

}

int main(void) {
interface spi_master_if i_spi[1];
par {
on tile[0]: app(i_spi[0]);
on tile[0]: spi_master(i_spi, 1, p_sclk, p_mosi, p_miso, p_ss, 1, CLKBLK);

}
return 0;

}

Looking at this in more detail you can see the following:

· The par functionality describes running two separate tasks in parallel

· The spi_master() or spi_master_async() task drives the SPI bus and takes
the ports it will use as arguments.

· The app() or app_async() task communicates to the SPI master task via the
shared interface argument i_spi or i_spi_async. This is an array since the SPI
master task could connect to many other tasks (clients) in parallel.

11.1.4 The app() task

The app() task uses its interface connection to the SPI master task to perform SPI
transactions. It performs two transactions (each transaction will assert the slave select
line, transfer some data and then de-assert the slave select line). The functions in the
SPI master interface can be found in the SPI library user guide.
void app(client spi_master_if spi)
{

uint8_t val;
printstrln("Sending SPI traffic");

p_rstn <: RESET_DEASSERT; //Take out of reset and wait
delay_microseconds(POST_RESET_DELAY_MICROSECONDS);

spi.set_ss_port_bit(0, 1); // We are using bit 1 in WIFI_CS_N for device 0

spi.begin_transaction(0, SPI_SPEED_KBPS, SPI_MODE_0);

uint32_t reg_addr = 0; // Read reg 0 CONFIG register
uint32_t read_cmd = 0x8000;
uint32_t num_16b_words = 2;
uint32_t reg_addr_shift = 12;
uint32_t command = read_cmd | num_16b_words | (reg_addr << reg_addr_shift); //Do read command

val = spi.transfer8(command >> 8);// MSB first
val = spi.transfer8(command & 0xff);

uint32_t reg;
reg = spi.transfer32(0x00); //Read result
spi.end_transaction(0);

printhexln(reg >> 16); // Should be 0x5400
printstrln("Done.");
spi.shutdown();

void async_app(client spi_master_async_if spi)
{

printstrln("Sending aynch SPI traffic");

(continues on next page)

21

lib_spi: SPI Library

(continued from previous page)

p_rstn <: RESET_DEASSERT; //Take out of reset and wait
delay_microseconds(POST_RESET_DELAY_MICROSECONDS);
spi.set_ss_port_bit(0, 1); // We are using bit 1 in WIFI_CS_N for device 0

spi.begin_transaction(0, SPI_SPEED_KBPS, SPI_MODE_0);

// Build command
uint32_t reg_addr = 0; // Read reg 0 CONFIG register
uint32_t read_cmd = 0x8000;
uint32_t num_16b_words = 2;
uint32_t reg_addr_shift = 12;
uint32_t command = read_cmd | num_16b_words | (reg_addr << reg_addr_shift); //Do read command

uint8_t outbuffer[2];
outbuffer[0] = (command >> 8) & 0xff; // MSB first
outbuffer[1] = command & 0xff;

uint8_t * movable inbuf = NULL; // We do not care about the read data for the cmd write
uint8_t * movable outbuf = outbuffer;

// This call passes the buffers over to the SPI task, after
// this the application cannot access the buffers until
// the retrieve_transfer_buffers_8 function is called.

spi.init_transfer_array_8(move(inbuf),
move(outbuf),
2);

// A select will wait for an event. In this case the event we are waiting
// for is the transfer_complete() notification event from the SPI task.
select {

case spi.transfer_complete():
// Once the transfer is complete, we can retrieve the
// buffers back into the inbuf and outbuf pointer variables
spi.retrieve_transfer_buffers_8(inbuf, outbuf);
break;

}

spi.begin_transaction(0, SPI_SPEED_KBPS, SPI_MODE_0);

uint32_t inbuffer32[1] = {0};
uint32_t * movable inbuf32 = inbuffer32;
uint32_t * movable outbuf32 = NULL; // We do not care what is written during reg reads

spi.init_transfer_array_32(move(inbuf32),
null,
1);

select {
case spi.transfer_complete():

// Once the transfer is complete, we can retrieve the
// buffers back into the inbuf and outbuf pointer variables
spi.retrieve_transfer_buffers_32(inbuf32,

outbuf32);
break;

}

printhexln(*inbuf32 >> 16); // Should be 0x5400
printstrln("Done.");

spi.shutdown();

Note

When begin_transaction is called the SPI device selected is determined by the
first argument. In this case it is 0. This is the method that is used to communiate
with multiple SPI slave devices. The speed and mode of the SPI protocol is also set
at in the begin_transaction call.

22

lib_spi: SPI Library

11.1.5 Building

The following section assumes that the XMOS XTC tools has been downloaded and in-
stalled (see README for required version).

Installation instructions can be found here. Particular attention should be paid to the
section Installation of required third-party tools.

The application uses the XMOS build and dependency system, xcommon-cmake.
xcommon-cmake is bundled with the XMOS XTC tools. It runs on the xcore.ai evalua-
tion kit, XK-EVK-XU316.

To configure the build, run the following from an XTC command prompt:
cd examples
cd app_spi_master
cmake -G "Unix Makefiles" -B build

Anymissing dependencies will be downloaded by the build system at this configure step.

Finally, the application binaries can be built using xmake:
xmake -j -C build

Multiple build profiles are included and will be built as follows:

· ASYNC - Example of using the asynchronous SPI master

· SYNC - Example of using the synchronous SPI master with clock-block (high perfor-
mance)

· SYNC_NO_CLKBLK - Example of using the synchronous SPI master without clock-
block (low performance / low resource usage)

The build profiles are guarded by the defines SPI_USE_ASYNC=1 for specifying the asyn-
chronous SPI master and CLKBLK=null when using the synchronous SPI master which
determines which underlying SPI master transport to use.

11.1.6 Running

To run the application return to the /examples/app_spi_master directory and run
the following command:
xrun --xscope bin/SYNC/app_spi_master_SYNC.xe

As application runs that reads a value from the SPI connected WiFi chip and prints the
following output to the console:
Sending SPI traffic
5400
Done.

The value 5400 represents bits 15 to 0 of the default value of the CONFIG register of the
WFM200.

Likewise, the following two commands should yield the same console output:
xrun --xscope bin/SYNC/app_spi_master_SYNC_NO_CLKBLK.xe
xrun --xscope bin/SYNC/app_spi_master_ASYNC.xe

23

https://www.xmos.com/software-tools/
https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.xmos.com/xk-evk-xu316

lib_spi: SPI Library

11.2 SPI Slave Example

11.2.1 Overview

The example in this application note uses the XMOS SPI library to act as SPI slave. It
maintains a register file which can be read and written by the internal application or by
the master on the SPI bus. To show the bus functioning the demo application also has
a tester component connected to an SPI master bus which is connected (in simulation)
to the the SPI slave, using the simulator loopback plug-in. This allows generation of SPI
traffic to show the communication functioning.

The application consists of five tasks:

· A task that controls the SPI slave ports

· A task that implements the register file handling calls from the SPI slave component
and the application

· An application task that connects to the register file task

· A task that controls the SPI master ports used for testing

· A tester task that outputs commands to the SPI master task

Fig. 12 shows the task and communication structure of the application.

Fig. 12: Block diagram of SPI slave application example

These tasks communicate via the use of xC interfaces. Fig. 13 shows the task and com-
munication structure of the application.

Fig. 13: Task diagram of SPI slave example

24

lib_spi: SPI Library

11.2.2 Declaring ports

The SPI library connects to external pins viaxcore ports. Inmain.xc these are declared
as variables of type port at the start of the file:
in port p_sclk = on tile[0]: XS1_PORT_1E;
in port p_ss = on tile[0]: XS1_PORT_1F;
out buffered port:32 p_miso = on tile[0]: XS1_PORT_1G;
in buffered port:32 p_mosi = on tile[0]: XS1_PORT_1H;
clock cb = on tile[0]: XS1_CLKBLK_1;

Note

There is also a clock declaration since the slave needs to use an internal clock as
well as ports inside the xcore device.

How the ports (e.g. XS1_PORT_1I) relate to external pinswill dependon the exact device
being used. See the device datasheet for details.

This application also has an SPI master interface on different ports:
out buffered port:32 p_test_sclk = on tile[0]: XS1_PORT_1I;
out port p_test_ss = on tile[0]: XS1_PORT_1J;
in buffered port:32 p_test_miso = on tile[0]: XS1_PORT_1K;
out buffered port:32 p_test_mosi = on tile[0]: XS1_PORT_1L;

25

lib_spi: SPI Library

11.2.3 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main.xc
int main(void) {
interface spi_slave_callback_if i_spi;
interface reg_if i_reg;
interface spi_master_if i_spi_master[1];
par {
on tile[0]: spi_slave(i_spi, p_sclk, p_mosi, p_miso, p_ss, cb, SPI_MODE_0,

SPI_TRANSFER_SIZE_8);
on tile[0]: reg_file(i_spi, i_reg);
on tile[0]: app(i_reg);

// These tasks are not part of the application but a test harness to
// provide SPI master data which is expected to be looped back in
// simulation to the SPI slave ports.
on tile[0]: tester(i_spi_master[0]);
on tile[0]: spi_master(i_spi_master, 1,

p_test_sclk, p_test_mosi, p_test_miso, p_test_ss,
1, cb_test);

}
return 0;

}

Looking at this in a more detail you can see the following:

· The par functionality describes running five separate tasks in parallel; three are for the
main application and two are for the tester.

· The spi_slave() task controls the application SPI bus and takes the ports it will
use as arguments.

· The reg_file() task is connected to the app() task and the spi_slave() task.

· The spi_slave() task has an argument for the mode it expects - in this case Mode
0 (see the SPI library user guide for more details on modes)

· Thespi_slave() task also has an argumentSPI_TRANSFER_SIZE_8which spec-
ifies the size of data chunk it will use when making callbacks to the application.

· The spi_master() task controls the test SPI bus and takes different ports to the
SPI slave bus as arguments. For details on using SPI master see application note
AN00160.

11.2.4 The reg_file() task

The reg_file() task is the main logic of this example. It will respond to calls from the
application and the SPI slave bus whilst maintaining a set of register values.

The task is marked as [[distributable]]whichmeans it can only responds to calls
from other tasks, rather than resource events. The main reason for this is so that the
reg_file() task itself does not need a hardware thread of its own it can use the hard-
ware thread of the task that calls it. See the XMOS programming guide for details of
distributable tasks.

The function takes two arguments, the interface connections to the application task and
the SPI slave task:
[[distributable]]
void reg_file(server spi_slave_callback_if i_spi,

server reg_if i_reg)
{

The reg_if interface has been defined in main.xc earlier. It defines the functions that
the app may call in the reg_file() tasks:

26

lib_spi: SPI Library

typedef interface reg_if {
uint8_t get_reg(uint8_t regnum);
void set_reg(uint8_t regnum, uint8_t value);

} reg_if;

In this case we have two functions - one for reading a register value and one for writing
a register value.

The reg_file() task first declares its state - an array to hold register value, a state
variable to hold what stage of an SPI transaction it is in and the currently addressed
register by the SPI bus.

/* This array holds the register values */
uint8_t reg_data[NUM_REG] = {0};

/* This variable holds the current state of the register file with respect
* to the SPI bus (i.e. what stage of the transaction over SPI it is at).
*/
enum reg_state_t state = IDLE;

/* This variable holds the current register being addressed over the SPI
* bus.
*/
uint8_t addr = 0;

The state variable is just an integer from the following enum type defined earlier in the
file:
enum reg_state_t {
WRITE_REG = 0,
READ_REG = 1,
WRITE_REG_DATA,
READ_REG_DATA,
IDLE

};

The implemented protocol on the SPI bus is as follows:

· The master will start a transaction (assert slave select)

· It will then send a byte of either a 0 for a write or a 1 for a read.

· It will then send the address of the register to read/write

· It will then send or receive the value of the register

27

lib_spi: SPI Library

To implement the protocol logic the reg_file() task must continually react to events
from the SPI slave tasks keeping track of its state, updating registers and supplying the
correct outputs. This is done via a while(1) loop with an xC select statement inside
it. A select statement will wait and then react to various events or calls from different
tasks - see the XMOS programming guide for more details.

The following cases in the main loop of the function handle this:
while (1) {

select {
/* These cases react to the SPI slave bus. A write from the bus will
* update the state of the transaction. A read from the bus will get
* sent the data from the currently addressed register. */
case i_spi.master_ends_transaction(void):

state = IDLE;
break;

case i_spi.master_requires_data(void) -> uint32_t data:
data = reg_data[addr];
break;

case i_spi.master_supplied_data(uint32_t datum, uint32_t valid_bits):
switch (state) {
case IDLE:

if (datum == WRITE_REG || datum == READ_REG)
state = datum;

break;
case READ_REG:

if (datum < NUM_REG) {
addr = datum;
state = READ_REG_DATA;

} else {
state = IDLE;

}
break;

case READ_REG_DATA:
// Do nothing with master data during a read data operation.
break;

case WRITE_REG:
if (datum < NUM_REG) {

addr = datum;
state = WRITE_REG_DATA;

} else {
state = IDLE;

}
break;

case WRITE_REG_DATA:
reg_data[addr] = datum;
break;

}
break;

We can see that the slave will always send the value of the currently addressed register
on every data transfer (this is allowable in the described protocol).

When the SPI master supplies some data to the slave then what happens depends on
the current state - either the state variable is updated, the currently addressed register is
updated or a register value is updated. This state machine will implement the previously
described protocol.

28

lib_spi: SPI Library

The main select statement also needs to react to request from the application. The
following cases implement this:

/* The following cases respond to the application when it
* requests to get/set a register.
*/
case i_reg.get_reg(uint8_t regnum) -> uint8_t value:

value = reg_data[regnum];
break;

case i_reg.set_reg(uint8_t regnum, uint8_t value):
reg_data[regnum] = value;
break;

11.2.5 The app() task

The app() task represents a sample application task that uses the register file. In this
demo, it doesn’t do much - it simple sets one register and repeatedly polls the value of
another register and prints out its value:
void app(client reg_if reg) {

uint8_t set_reg_data = 0xed;
reg.set_reg(0, set_reg_data);
debug_printf("APP: Set register %u to 0x%x\n", 0, set_reg_data);
while (1) {

uint8_t reg_data_read[2];
delay_microseconds(20);
reg_data_read[0] = reg.get_reg(0);
reg_data_read[1] = reg.get_reg(1);
debug_printf("APP: Register %d is 0x%x, Register %d is 0x%x\n", 0, reg_data_read[0], 1, reg_data_

↪→read[1]);
}

}

Note

The debug_printf function comes from the debug_print.h header supplied by
lib_logging. It is a low memory debug printing function that will print out mes-
sages to the console (either using JTAG or xSCOPE to communicate to the host via
the debug adaptor).

11.2.6 The tester() task

The tester task will send some test data to the SPI master bus. It does this using the SPI
master interface to communicate with the SPI master task:
void tester(client spi_master_if spi)
{

delay_microseconds(50); // Wait for slave to init
uint8_t val;
spi.begin_transaction(0, SPI_SPEED_KBPS, SPI_MODE_0);
spi.transfer8(READ_REG); // READ command
spi.transfer8(0); // REGISTER 0
val = spi.transfer8(0); // DATA
spi.end_transaction(SPI_SS_DELAY_10NS_TICKS);
debug_printf("SPI MASTER: Read register 0: 0x%x\n", val);

spi.begin_transaction(0, SPI_SPEED_KBPS, SPI_MODE_0);
spi.transfer8(WRITE_REG); // WRITE command
spi.transfer8(1); // REGISTER 1
spi.transfer8(0xac); // DATA
spi.end_transaction(SPI_SS_DELAY_10NS_TICKS);
printstr("SPI MASTER: Set register 1 to 0xAC\n");

delay_microseconds(100);
_Exit(0);

}

11.2.7 Building

The following section assumes that the XMOS XTC tools has been downloaded and in-
stalled (see README for required version).

29

https://www.xmos.com/software-tools/

lib_spi: SPI Library

Installation instructions can be found here. Particular attention should be paid to the
section Installation of required third-party tools.

The application uses the XMOS build and dependency system, xcommon-cmake.
xcommon-cmake is bundled with the XMOS XTC tools. It runs on the xcore.ai evalua-
tion kit, XK-EVK-XU316.

To configure the build, run the following from an XTC command prompt:
cd examples
cd app_spi_slave
cmake -G "Unix Makefiles" -B build

Anymissing dependencies will be downloaded by the build system at this configure step.

Finally, the application binaries can be built using xmake:
xmake -j -C build

11.2.8 Running

To run the application return to the /examples/app_spi_slave directory and run the
following command:
xsim --xscope '-offline trace.xmt' bin/app_spi_slave.xe \
--trace-plugin VcdPlugin.dll '-tile tile[0] -o trace.vcd -xe bin/app_spi_slave.xe \
-ports -functions -cores -instructions' --plugin LoopbackPort.dll \
'-port tile[0] XS1_PORT_1I 1 0 -port tile[0] XS1_PORT_1E 1 0 \
-port tile[0] XS1_PORT_1J 1 0 -port tile[0] XS1_PORT_1F 1 0 \
-port tile[0] XS1_PORT_1K 1 0 -port tile[0] XS1_PORT_1G 1 0 \
-port tile[0] XS1_PORT_1L 1 0 -port tile[0] XS1_PORT_1H 1 0'

Note

This command line is provided as a file in the /examples/app_spi_slave di-
rectory under the filename simulate_cmd.txt. You can rename this file to
simulate_cmd.sh or simulate_cmd.bat and run it directly, depending on your
host OS.

As application runs that reads a value from the SPI connected WiFi chip and prints the
following output to the console:
APP: Set register 0 to 0xED
APP: Register 0 is 0xED, Register 1 is 0x0
APP: Register 0 is 0xED, Register 1 is 0x0
SPI MASTER: Read register 0: 0xED
APP: Register 0 is 0xED, Register 1 is 0x0
SPI MASTER: Set register 1 to 0xAC
APP: Register 0 is 0xED, Register 1 is 0xAC
APP: Register 0 is 0xED, Register 1 is 0xAC
APP: Register 0 is 0xED, Register 1 is 0xAC

Both registers were initialised to 0x00 so you can see the successful application side
write to register 0 of value 0xED, followed by the SPI master read of that register shortly
afterwards. You can also see that the SPI master writes to register 1 with the value of
0xAC which is then successfully read by the application.

If you wish, you can also view the simulation in a VCD (Voltage Change Description)
viewer, such as gtkwave, by running the following command:
gtkwave slave_simulation.gtkw

This will show the four SPI lines and zoom into the section where the SPI transactions
occur, as can be seen in Fig. 14.

30

https://xmos.com/xtc-install-guide
https://www.xmos.com/documentation/XM-014363-PC-10/html/installation/install-configure/install-tools/install_prerequisites.html
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.xmos.com/xk-evk-xu316

lib_spi: SPI Library

Fig. 14: VCD waveform trace for SPI slave with registers simulation

31

lib_spi: SPI Library

12 Resource Usage

Each of the SPI implementations use a number of xcore resources which include ports,
clock-blocks and may include hardware threads. The table Table 6

Table 6: xcore resource usage for SPI

configuration api pins ports threads

Master (synchronous,
zero clock blocks)

spi_master(i, 1, p_sclk, p_mosi,
p_miso, p_ss, 1, null);

4 3 * 1-bit, 1
* any-bit

0

Master (synchronous,
one clock block)

spi_master(i, 1, p_sclk, p_mosi,
p_miso, p_ss, 1, cb);

4 3 * 1-bit, 1
* any-bit

0

Master (asyn-
chronous)

spi_master_async(i, 1, p_sclk,
p_mosi, p_miso, p_ss, 1, cb);

4 3 * 1-bit, 1
* any-bit

1

Slave (32 bit transfer
mode)

spi_slave(i, p_sclk, p_mosi,
p_miso, p_ss, cb, SPI_MODE_0,
SPI_TRANSFER_SIZE_32);

4 4 (1-bit) 1

Slave (8 bit transfer
mode)

spi_slave(i, p_sclk, p_mosi,
p_miso, p_ss, cb, SPI_MODE_0,
SPI_TRANSFER_SIZE_8);

4 4 (1-bit) 1

The number of pins is reduced if either of the data lines are not required.

32

lib_spi: SPI Library

13 API Reference

13.1 Master API

All SPI master functions can be accessed via the spi.h header:
#include "spi.h"

You will also have to add lib_spi to the application’s APP_DEPENDENT_MODULES list
in CMakeLists.txt, for example:
set(APP_DEPENDENT_MODULES "lib_spi")

13.1.1 Supporting types

The following type is used to configure the SPI components.

enum spi_mode_t
This type indicates what clocking mode a SPI component should use
Values:

enumerator SPI_MODE_0
SPI Mode 0 - Polarity = 0, Phase = 0

enumerator SPI_MODE_1
SPI Mode 1 - Polarity = 0, Phase = 1

enumerator SPI_MODE_2
SPI Mode 2 - Polarity = 1, Phase = 0

enumerator SPI_MODE_3
SPI Mode 3 - Polarity = 1, Phase = 1

struct spi_master_ss_clock_timing_t
This type contains timing settings for SS assert to clock delay and last clock to
SS de-assert delay. The unit is reference timer ticks which is nominally 10 ns. The
maximum setting is 65535 which equates to 655 us, over which the setting will
overflow back to zero

struct spi_master_miso_capture_timing_t
This type contains timing settings for capturing theMISO pin for SPI master. When
the SPI clock is above 20MHz it is usually necessary to delay the sampling of the
MISO pin. These settings can be coarse grained using miso_sample_delay setting
which increments in SPI half clocks or fine grained in units of core clock (eg. 600
MHz -> 1.66 ns) using the miso_pad_delay setting.
See the following document for details on xcore.ai port timing: https://www.xmos.
com/documentation/XM-014231-AN/html/rst/index.html

33

https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html
https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html

lib_spi: SPI Library

13.1.2 Creating an SPI master instance

void spi_master(
SERVER_INTERFACE(spi_master_if, i[num_clients]),static_const_size_t
num_clients,out_buffered_port_32_t sclk,NULLABLE_RESOURCE(out_buffered_port_32_t,
mosi),NULLABLE_RESOURCE(in_buffered_port_32_t, miso),out_port
p_ss,static_const_size_t num_slaves,NULLABLE_RESOURCE(clock, clk),

)
Task that implements the SPI proctocol in master mode that is connected to a
multiple slaves on the bus.
Each slave must be connected to using the same SPI mode.
You can access different slave devices over the interface connection using the de-
vice_index parameter of the interface functions. The task will allocate the device
indices in the order of the supplied array of slave select ports.

Parameters

· i – An array of interface connection to the clients of the task.
· num_clients – The number of clients connected to the task.
· clk – a clock block used by the task.
· sclk – The SPI clock port.
· mosi – The SPI MOSI (master out, slave in) port.
· miso – The SPI MISO (master in, slave out) port.
· p_ss – A port connected to the slave select signals of the slave.

Multiple slaves may be supported by specifying, for example,
a 4-bit port. Please specify mapping of bits to slaves using
i.set_ss_port_bit().

· num_slaves – The number of slave devices on the bus.
· clk – A clock for the component to use. May be set to null if low

speed operation is acceptable.

void spi_master_async(
SERVER_INTERFACE(spi_master_async_if, i[num_clients]),static_const_size_t
num_clients,out_buffered_port_32_t sclk,NULLABLE_RESOURCE(out_buffered_port_32_t,
mosi),in_buffered_port_32_t miso,out_port p_ss,static_const_size_t
num_slaves,clock clk,

)
SPI master component for asynchronous API.
This component implements SPI and allows a client to connect using the asyn-
chronous SPI master interface.

Parameters

· i – an array of interface connection to the clients of the task.
· num_clients – the number of clients connected to the task.
· sclk – the SPI clock port.
· mosi – the SPI MOSI (master out, slave in) port.
· miso – the SPI MISO (master in, slave out) port.
· p_ss – a port of any width which outputs the slave select signals
· num_slaves – The number of slave devices on the bus.
· clk – a clock block for the component to use.

34

lib_spi: SPI Library

13.1.3 SPI master interface

group Spi_master_if
This interface allows clients to interact with SPI master task.
Methods for synchronous SPI master interface.

Functions

void begin_transaction(
unsigned device_index,unsigned speed_in_khz,spi_mode_t mode,

)
Begin a transaction.
This will start a transaction on the bus. During a transaction, no other client
to the SPI component can send or receive data. If another client is currently
using the component then this call will block until the bus is released.

Parameters

· device_index – The index of the slave device to interact
with.

· speed_in_khz – The speed that the SPI bus should run at
during the transaction (in kHZ). When using the version with
clockblock, the minimum speed is 100 kHz.

· mode – The mode of spi transfers during this transaction.
void end_transaction(unsigned ss_deassert_time)

End a transaction.
This ends a transaction on the bus and releases the component to other
clients.

Parameters

· ss_deassert_time – Theminimum time in reference clock
ticks between assertions of the selected slave select. This
timewill be ignored if the next transaction is to a different slave
select.

uint8_t transfer8(uint8_t data)
Transfer a byte over the SPI bus.
This function will transmit and receive 8 bits of data over the SPI bus. The
data will be transmitted least-significant bit first.

Parameters

· data – The data to transmit the MOSI port.
Returns

The data read in from the MISO port.
uint32_t transfer32(uint32_t data)

Transfer a 32-bit word over the SPI bus.
This function will transmit and receive 32 bits of data over the SPI bus. The
datawill be transmitted least-significant bit first andmost significant byte first
(big endian)

Parameters

· data – The data to transmit the MOSI port.
Returns

The data read in from the MISO port.

35

lib_spi: SPI Library

void transfer_array(
NULLABLE_ARRAY_OF(const uint8_t, data_out),NULLABLE_ARRAY_OF(uint8_t,
data_in),static_const_size_t num_bytes,

)
Transfer an array of bytes over the SPI interface.
This function will transmit and receive 32 bits of data over the SPI bus. The
datawill be transmitted least-significant bit first in byte order inmemory. Note
that XMOS uses little endian and so 32b data etc. may need byteswap() first.

Parameters

· data_out – Reference to data to transmit the MOSI port.
May be null if only a read is needed.

· data_in – Reference to data to receive from the MISO port.
May be null if only a write is needed.

· num_bytes – Constant value of the size of the array to be
transferred.

void set_ss_port_bit(unsigned device_index, unsigned ss_port_bit)
Sets the bit of port which is used for slave select (> 1b port type only) and only
for spi_master. spi_master sets all bits in each port high/low
The default value (if this is not called) is the bit number is equal to the de-
vice_index (device 0-> bit 0, device 1-> bit 1 etc.).

Parameters

· device_index – The index of the device for which the port
bit is to be set.

· ss_port_bit –Which bit number in the port to use for slave
select.

void set_miso_capture_timing(
unsigned device_index,spi_master_miso_capture_timing_t
miso_capture_timing,

)
Configures the timing parameters for MISO capture. At frequencies above 20
MHz it is likely that some capture delays will need to be introduced to ensure
setup and hold times are met. These settings only affect the fast SPI master
which uses a clock block.
See the following document for details on xcore.ai port timing: https://www.
xmos.com/documentation/XM-014231-AN/html/rst/index.html

Parameters

· device_index – The index of the device for which the MISO
timing is to be set.

· miso_capture_timing – A structure of type
spi_master_miso_capture_timing_t with the desired settings.

void set_ss_clock_timing(
unsigned device_index,spi_master_ss_clock_timing_t ss_clock_timing,

)
Configures the timing settings for SS assert to clock delay, and last clock to SS
de-assert delay. The unit is reference timer tickswhich is nominally 10 ns. The
maximumsetting is 65535which equates to 655 us overwhich the settingwill
overflow back to zero. These settings only affect the fast SPI master which
uses a clock block.

Parameters

36

https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html
https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html

lib_spi: SPI Library

· device_index – The index of the device for which the SS
timing is to be set.

· ss_clock_timing – A structure of type
spi_master_ss_clock_timing_t with the desired settings.

void shutdown(void)
Shut down the SPI master interface server.

37

lib_spi: SPI Library

13.1.4 SPI master asynchronous interface

group Spi_master_async_if
Asynchronous interface to an SPI component.
This interface allows programs to offload SPI bus transfers to another task. An
asynchronous notification occurs when the transfer is complete.
Methods for asynchronous SPI master interface.

Functions

void begin_transaction(
unsigned device_index,unsigned speed_in_khz,spi_mode_t mode,

)
Begin a transaction.
This will start a transaction on the bus. During a transaction, no other client
to the SPI component can send or receive data. If another client is currently
using the component then this call will block until the bus is released.

Parameters

· device_index – The index of the slave device to interact
with.

· speed_in_khz – The speed that the SPI bus should run at
during the transaction (in kHZ). The minimum speed is 100
kHz.

· mode – The mode of spi transfers during this transaction
void end_transaction(unsigned ss_deassert_time)

End a transaction.
This ends a transaction on the bus and releases the component to other
clients.

Parameters

· ss_deassert_time – Theminimum time in reference clock
ticks between assertions of the selected slave select. This
timewill be ignored if the next transaction is to a different slave
select.

void init_transfer_array_8(
uint8_t_movable_ptr_t inbuf,uint8_t_movable_ptr_t outbuf,size_t nbytes,

)
Initialize Transfer an array of bytes over the SPI bus.
This function will initialize a transmit of 8 bit data over the SPI bus.

Parameters

· inbuf – A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this parameter is
NULL then the incoming data of the transfer will be discarded.

· outbuf – A movable pointer that is moved to the other task
pointing to the buffer area to with data to transmit. If this pa-
rameter is NULL then the outgoing data of the transferwill con-
sist of undefined values.

· nbytes – The number of bytes to transfer over the bus.
void init_transfer_array_32(

uint32_t_movable_ptr_t inbuf,uint32_t_movable_ptr_t outbuf,size_t
nwords,

)

38

lib_spi: SPI Library

Initialize Transfer an array of bytes over the SPI bus.
This function will initialize a transmit of 32 bit data over the SPI bus.

Parameters

· inbuf – A movable pointer that is moved to the other task
pointing to the buffer area to fill with data. If this parameter is
NULL then the incoming data of the transfer will be discarded.

· outbuf – A movable pointer that is moved to the other task
pointing to the buffer area to with data to transmit. If this pa-
rameter is NULL then the outgoing data of the transferwill con-
sist of undefined values.

· nwords – The number of words to transfer over the bus.
void transfer_complete(void)

Transfer completed notification.
This notification occurs when a transfer is completed.

void retrieve_transfer_buffers_8(
REFERENCE_PARAM(uint8_t_movable_ptr_t, in-
buf),REFERENCE_PARAM(uint8_t_movable_ptr_t, outbuf),

)
Retrieve transfer buffers.
This function should be called after the transfer_complete() notification and
will return the buffers given to the other task by init_transfer_array_8().

Parameters

· inbuf–Amovable pointer thatwill be set to the buffer pointer
that was filled during the transfer.

· outbuf – A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

void retrieve_transfer_buffers_32(
REFERENCE_PARAM(uint32_t_movable_ptr_t, in-
buf),REFERENCE_PARAM(uint32_t_movable_ptr_t, outbuf),

)
Retrieve transfer buffers.
This function should be called after the transfer_complete() notification and
will return the buffers given to the other task by init_transfer_array_32().

Parameters

· inbuf–Amovable pointer thatwill be set to the buffer pointer
that was filled during the transfer.

· outbuf – A movable pointer that will be set to the buffer
pointer that was transmitted during the transfer.

void set_ss_port_bit(unsigned device_index, unsigned ss_port_bit)
Sets the bit of port which is used for slave select (> 1b port type only) and only
for spi_master. spi_master sets all bits in each port high/low
The default value (if this is not called) is the bit number is equal to the de-
vice_index (0->0, 1->1 etc.).

Parameters

· device_index – The index of the device for which the port
bit is to be set.

· ss_port_bit –Which bit number in the port to use for slave
select.

39

lib_spi: SPI Library

void set_miso_capture_timing(
unsigned device_index,spi_master_miso_capture_timing_t
miso_capture_timing,

)
Configures the timing parameters for MISO capture. At frequencies above 20
MHz it is likely that some capture delays will need to be introduced to ensure
setup and hold times are met.
See the following document for details on xcore.ai port timing: https://www.
xmos.com/documentation/XM-014231-AN/html/rst/index.html

Parameters

· device_index – The index of the device for which the MISO
timing is to be set.

· miso_capture_timing – A structure of type
spi_master_miso_capture_timing_t with the desired settings.

void set_ss_clock_timing(
unsigned device_index,spi_master_ss_clock_timing_t ss_clock_timing,

)
Configures the timing settings for SS assert to clock delay, and last clock to
SS de-assert delay. The unit is reference timer ticks which is nominally 10
ns. The maximum setting is 65535 which equates to 655 us over which the
setting will overflow back to zero.

Parameters

· device_index – The index of the device for which the SS
timing is to be set.

· ss_clock_timing – A structure of type
spi_master_ss_clock_timing_t with the desired settings.

void shutdown(void)
Shut down the SPImaster interface server. Must be done after all transactions
are complete to avoid leaving moveable pointers in the wrong place.

40

https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html
https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html

lib_spi: SPI Library

13.2 Slave API

All SPI slave functions can be accessed via the spi.h header:
#include <spi.h>

You will also have to add lib_spi to the APP_DEPENDENT_MODULES field of your ap-
plication CMakefile.

13.2.1 Creating an SPI slave instance

void spi_slave(
CLIENT_INTERFACE(spi_slave_callback_if, spi_i),in_port
p_sclk,in_buffered_port_32_t p_mosi,NULLABLE_RESOURCE(out_buffered_port_32_t,
p_miso),in_port p_ss,clock clk,static_const_spi_mode_t
mode,static_const_spi_transfer_type_t transfer_type,

)
SPI slave component.
This function implements an SPI slave bus.

Parameters

· spi_i – The interface to connect to the user of the component.
The component acts as the client and will make callbacks to the
application.

· p_sclk – The SPI clock port.
· p_mosi – The SPI MOSI (master out, slave in) port.
· p_miso – The SPI MISO (master in, slave out) port.
· p_ss – The SPI SS (slave select) port.
· clk – Clock to be used by the component.
· mode – The SPI mode of the bus.
· transfer_type – The type of transfer the slave will perform:

either SPI_TRANSFER_SIZE_8 or SPI_TRANSFER_SIZE_32.

41

lib_spi: SPI Library

enum spi_transfer_type_t
This type specifies the transfer size from the SPI slave component to the applica-
tion
Values:

enumerator SPI_TRANSFER_SIZE_8
Transfers should be 8-bit.

enumerator SPI_TRANSFER_SIZE_32
Transfers should be 32-bit.

42

lib_spi: SPI Library

13.2.2 The SPI slave interface API

group Spi_slave_callback_if
This interface allows clients to interact with SPI slave tasks by completing call-
backs that show how to handle data.
Methods for SPI slave interface.

Functions

void master_ends_transaction(void)
This callback will get called when the master de-asserts on the slave select
line to end a transaction.

uint32_t master_requires_data(void)
This callback will get called when the master initiates a bus transfer or when
more data is required during a transaction. The application must supply the
data to transmit to the master. Data is transmitted with the least significant
bit first. If the master completes the transaction before 8/32 bits (depending
on SPI_TRANSFER_SIZE_8 or SPI_TRANSFER_SIZE_32) are transferred and
the remaining bits are discarded.

Returns
the 8-bit or 32-bit value to transmit.

void master_supplied_data(uint32_t datum, uint32_t valid_bits)
This callback will get called after a transfer. It will occur after every 8 bits
transferred if the slave component is set to SPI_TRANSFER_SIZE_8. If the
component is set toSPI_TRANSFER_SIZE_32 then it will occur if themaster
ends the transaction before 32 bits are transferred.

Parameters

· datum – the data received from the master.
· valid_bits – the number of valid bits of data received from

the master.
void request_shutdown(void)

Request shut down the SPI slave interface client.
void shutdown_complete(void)

Acknowledgment that the SPI slave task has been shutdown.

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

43

	Introduction
	Available SPI components
	SPI Master (Synchronous)
	SPI Master (Asynchronous)
	SPI Slave

	SPI Modes
	Mode 0 - CPOL: 0 CPHA 0
	Mode 1 - CPOL: 0 CPHA 1
	Mode 2 - CPOL: 1 CPHA 0
	Mode 3 - CPOL: 1 CPHA 1

	External signal description
	Connecting to the xcore SPI master
	Disabling master data lines

	Connecting to the xcore SPI slave
	Disabling slave data lines

	Master Usage
	SPI master synchronous operation
	Synchronous master usage state machine

	SPI master asynchronous operation
	Asynchronous master command buffering
	Asynchronous master usage state machine

	Master inter-transaction gap

	Slave usage
	SPI master timing characteristics
	Synchronous SPI master clock speeds
	Asynchronous SPI master clock speeds
	MISO port timing

	SPI slave timing characteristics
	Examples
	SPI Master Example
	Overview
	Declaring ports
	The application main() function
	The app() task
	Building
	Running

	SPI Slave Example
	Overview
	Declaring ports
	The application main() function
	The reg_file() task
	The app() task
	The tester() task
	Building
	Running

	Resource Usage
	API Reference
	Master API
	Supporting types
	Creating an SPI master instance
	SPI master interface
	SPI master asynchronous interface

	Slave API
	Creating an SPI slave instance
	The SPI slave interface API

