
XS1-L System Specification

1 Introduction

This document specifies the XS1-L boot protocol, link specification, switch speci-
fication and token specifications. It is related to the L1 and L2 processors which
are single and dual core. The XS1-G4, and XS1-G2 specification can be found in
the XS1-G System Specification document. The core architecture (instruction set)
specification can be found in the XS1 Instruction Set Architecture document.

Each XS1-L package has a datasheet that contains a pin-out and port-map. In
particular, it specifies on which physical pin each port and link is bonded out, and
on which pins the MODE signals are bonded out.

2 Booting the XS1-L

The standard boot procedure is to first boot Core 0 from either a XMOS Link, JTAG,
or an external ROM or Flash memory that is connected via an SPI interface. The
boot mode is selected by setting pins MODE3 and MODE2:

00 do not boot; used for booting over JTAG

10 boot from ChanEnd 0, enabling XMOS Links E, F, G and H. Also enables XMOS
Link B when set to boot from XMOS Link.

11 boot from SPI

A further option is to use secure boot for one or more of the cores. Each core can
be configured to boot from a program held in its security module. This is enabled
by setting a bit in the core’s security module and causes the core to always use
secure boot.

2.1 Boot format

When a core is booting over the SPI interface, from an XMOS Link or from the
security module, the boot ROM built into the L1 reads in a program and stores it in
on-chip RAM starting at the lowest memory location. The program is then started
by transferring control to the lowest location in RAM.

The boot format used for the program to boot from an SPI interface, XMOS Link or
security module is represented as follows:

1. The program size s in words - a 32-bit value, least significant byte first.

2. Program consisting of s × 4 bytes.

3. A 32-bit CRC, least significant byte first.

2012/3/28 Document Number: X1151D,

XMOS © 2012, All Rights Reserved

Publication Date: 2012/03/28



XS1-L System Specification 2/35

The CRC is calculated over the byte stream represented by the program size and
the program itself. The polynomial used is 0xEDB88320 (IEEE 802.3); the CRC
register is initialised with 0xFFFFFFFF and the residue is inverted to produce the
CRC.

The CRC check can be disabled by setting the CRC to 0x0D15AB1E.

2.2 Boot from SPI interface

To boot from an SPI interface, an SPI slave device must be connected as follows.

Port Use

P1A0 SPI_MISO

P1B0 SPI_SS

P1C0 SPI_SCLK

P1D0 SPI_MOSI

A READ command is issued with a 24-bit address 0x000000. Based on the 100
MHz reference clock of the XCore, an SPI clock rate of 2.5 MHz is used. The clock
polarity / phase is of 0 / 0.

The XCore expects each byte to be transferred with the least-significant bit first.
Many programmers write bytes into an SPI interface using the most significant bit
first, so you may have to reverse the bits in each byte of the image stored in the
SPI device.

If a large boot image is to be read in, it is faster to first load a small boot-loader
that reads the large image using a faster SPI clock, for example 50 MHz or as fast
as the flash device supports.

If field-upgradeable firmware is required, a small boot-loader should be stored in
the first sector of flash memory, followed by two boot-images starting on sector
boundaries. The boot-loader should be written to read the first image initially, and
on CRC failure boot from the second image. On upgrade, the first image should be
upgraded first, followed by the second image. If the upgrade process is interrupted
at any point, there is always a working boot image.

2.3 Boot from XMOS Link

When boot from XMOS Link is selected, the boot ROM enables XMOS Link B. A
HELLO message is then sent on each enabled XMOS Link following the protocol
defined in Section 3.2.

To boot a core the following procedure must be followed:

· Allocate a channel-end and connect it to the channel end of the core you want to
boot using a SETD instruction. The identifier to be written with SETD typically has
the form 0xzzzz0002, where zzzz is the core-identifier. By default the allocated
channel-end is called c.

X1151D,



XS1-L System Specification 3/35

· Output the 32-bit identifier c of the channel over c, allowing the other side to
open a back-channel.

· Send the sequence of bytes representing size, code, and CRC as specified above.

· Send an END control token.

· Receive an END control token.

· Free c using FREER.

Boot from XMOS Link is designed to work on systems where power-up sequences
are controlled (i.e. no hot plugging). In systems where the HELLO message could
be missed by the core that is trying to send out boot code, it should not send
channel end 0xzzzz0002 but a null channel-end identifier instead. When booted,
the boot-code should resend a HELLO message to open the downstream channel.

2.4 Boot from Security Module

If a core is set to use secure boot, the program in boot format is taken from
address 0 of the OTP memory in the core’s security module. Each core has its
own individual OTP memory, and hence some cores can be booted from OTP
while others are booted from SPI or the channel interface. This enables an 1L to
be partially programmed, dedicating one or more cores to perform a particular
function, leaving the other cores user-programmable.

3 XMOS Link specification

The interconnect provides communication between all cores on the system. A
system can comprise one or more nodes, that may be physically separated. In
conjunction with simple programs, the interconnect can also be used to support
access to the memory on any core from any other core, and to allow any core to
initiate programs on any other core.

The interconnect allows streams of data to be communicated with low latency. A
stream comprises data tokens and control tokens, where data tokens contain 8
bits of data, and control tokens specify operations. Streams are circuit switched,
but they can be set-up and terminated at low cost. This enables the network to be
used as a packet switching network, where short packets are carried through the
interconnect in a pipelined manner.

Each core has four links that connect the core to an on-chip switch that provides
non-blocking communication between the cores on a node. The on-chip switch
also provides a number off-chip XMOS Links that can be connected to XMOS Links
of other nodes. The structure and performance of the XMOS Link connections can
be varied to meet the needs of applications. The topology of the interconnect is
not fixed, a topology appropriate to the application can be used.

An XS1-L node comprises a single core, connected to a switch. The switch has eight
links, denoted Link A, B, C, D, E, F, G, and H; typically the datasheet abbreviates
them as “X0LA” which means Link A of XCore 0. XS1-L devices with multiple
cores, for example an XS1-L2, have one switch for each core. Each node may have

X1151D,



XS1-L System Specification 4/35

some links bonded out (denoted for example X0LA, or X3LB), and the switches are
internally connected using XMOS Links (typically links E, F, G, and H). Note that
this is different from the XS1-G series where each node comprises a switch with
four cores; where the switch has 16 internal and 16 external links.

The network supports partitioning. For example, partitioning provides separation
between data intensive streams and control streams. Partitioning provides real
time guarantees for parts of the network that need the guarantees.

As far as a program is concerned, communication always takes place between two
channel ends. A channel end is a physical resource that is allocated on the XCore.
Channels-ends reside on a core and are identified by means of an identifier on
the core, a core-identifier, and a node-identifier. Data is transmitted to a channel
end by using a sequence of OUT and OUTCT instructions; when a communication
is complete, an END token is transmitted by the program, which frees up any
resources allocated in the network. The architecture guarantees that all data-
tokens and control-tokens sent over this stream are delivered in order. Multiple
streams can be set up, no guarantee is given about the ordering of data and control
tokens between streams.

This document describes the stream (the transport layer), the switching method
(the packet layer), the point-to-point protocol (the link layer) and the physical layer.

There are four groups of control tokens:

· Tokens 0x00-0x7f: (Application tokens). Intended for use by compilers or
applications software to implement streamed, packetised and synchronised com-
munications, to encode data-structures and to provide run-time type-checking
of channel communications.

· Tokens 0x80-0xbf: (Special tokens) Architecturally defined and may be inter-
preted by hardware or software. They are used to give standard encodings of
common data types and structures.

· Tokens 0xc0-0xdf: (Privileged tokens) Architecturally defined and may be inter-
preted by hardware or privileged software. They are used to perform system
functions including hardware resource sharing, control, monitoring and de-
bugging. An attempt to transfer one of these tokens to or from unprivileged
software will cause an exception.

· Tokens 0xe0-0xff: (Hardware tokens) Only used by hardware; they control the
physical operation of the link. An attempt to transfer one of these tokens using
an output instruction will cause an exception.

The sections below define the protocol layers bottom up: physical layer (Sec-
tion 3.1), link layer (Section 3.2), switch layer (Section 3.3), physical layer (Sec-
tion 3.1), processor communication (Section 3.5), and channel communication
(Section 3.6). A summary is provided in Figure 3.

X1151D,



XS1-L System Specification 5/35

Node ID ChID 2

Sending ordinary data

Dreg

Message Pse EomFirst part of mess Another part of mess

Message Pse

Eom

First part of mess

Another part of mess

Node ID ChID

Node ID ChID

Sent to switch and over links

Message Pse

Eom

First part of mess

Another part of mess

ChID

ChID

Sent to processor NodeID on switch NodeID

Message EomFirst part of mess Another part of mess

Seen on channel ChID on node NodeID 

Node ID
SSctl
PSctl 12Dreg

Message EomReply channel,
address & data

Message Node ID

Sent to switch and over links

Cwr

EomReply channel,
address & dataCwrCwrSSctl

PSctl

Channel layer

Sending configuration data

Channel layer
Figure 1:

Summary:
tokens

transferred
for ordinary

and
configuration
data. Control

tokens are
white on

black.

3.1 Physical layer

XMOS Link communication uses a transition-based non return-to-zero signalling
scheme. Bits are sent at a rate derived from the XS1 clock; this rate can be
programmed to meet applications requirements. All links have a weak pull down,
but an external pull down may be required to avoid spurious transitions on reset.

The XMOS Links can be switched between between a slow serial mode that uses
four wires, and a fast, wide mode that needs 10 wires. These two modes use
different encoding schemes.

X1151D,



XS1-L System Specification 6/35

3.1.1 Serial XMOS Link

The serial XMOS Link uses two data wires, “0” and “1” in each direction (four wires
in total). A transition on wire “0” represents a zero bit and a transition on wire “1”
represents a one bit. Note that it is the transition that signals the bit; the level of
the wire is irrelevant.

For each token 10 transitions are made, transmitting 10 bits. The first 8 bits are
the token value. transmitted most significant bit first. The next bit signals whether
the transmission is a control or a data token. A 1-bit signals a control-token, a
zero-bit signals a data-token. The final bit is an even parity bit that causes both
wires to go back to low state when transmitted. The two signal wires are both at
rest between tokens.

For example, to send control token 0x09, transmit the following:

1. Set wire “0” to high (signals a zero in bit 7)

2. Set wire “0” to low (signals a zero in bit 6)

3. Set wire “0” to high (signals a zero in bit 5)

4. Set wire “0” to low (signals a zero in bit 4)

5. Set wire “1” to high (signals a one in bit 3)

6. Set wire “0” to high (signals a zero in bit 2)

7. Set wire “0” to low (signals a zero in bit 1)

8. Set wire “1” to low (signals a one in bit 0)

9. Set wire “1” to high (signals control token)

10. Set wire “1” to low (terminate transmission - both wires are in rest state)

3.1.2 Fast XMOS Link

The fast XMOS Link uses five wires in each direction to transmit data; 10 wires in
total. The wires are called “0”, “1”, “2”, “3”, and “4”. One of fives codes are used to
transmit data; changing the state of one of the five wires transmits a symbol. A
transition on each of the wires has the following meaning:

Transition on Symbol Meaning

“0” v value 00

“1” v value 01

“2” v value 10

“3” v value 11

“4” e escape

X1151D,



XS1-L System Specification 7/35

A sequence of four symbols are used to encode the data and control tokens. If
all four symbols are data v symbols, a total of 8 bits of data are transferred (a
data-token). If one of the four symbols is an e symbol, and the other three are v
symbols, a control-token is transmitted.

Transitions Use

first second third fourth

v v v v 256 data tokens

e v v v 64 control tokens 192-255

v e v v 64 control tokens 128-191

v v e v 64 control tokens 64-127

v v v e 64 control tokens 0-63

The bits of data and control tokens are always transmitted starting with the two
most significant bits. In the case of control tokens, the first two bits of the control
token are determined by the position of the e symbol.

For example, to send control token 0x09, transmit the following:

1. Set wire “0” to high (signals 00 bits in bits 5 and 4)

2. Set wire “2” to high (signals 10 bits in bits 3 and 2)

3. Set wire “1” to high (signals 01 bits in bits 1 and 0)

4. Set wire “4” to high (signals an escape, bits control token bits 6 and 7 are 0)

After transmitting one token, none, two, or four wires are high. Wires are only
returned to zero when a message is completed (when data is streamed wires do
not return to zero). To return to zero, a sequence of an END token and an optional
return-to-zero-NOP are transmitted. They are chosen so that after them all wires
are low.

Transitions Use

first second third fourth

e e v v END tokens

e 0 e 0 CREDIT8 token

e 1 e 1 CREDIT64 token

e 2 e 2 HELLO token

e 3 e 3 CREDIT16 token

v v e e PAUSE tokens

e v v e NOPD tokens

e 3 3 v NOPE tokens (control tokens 252...255)

X1151D,



XS1-L System Specification 8/35

There are sixteen possible sequences to transmit an END token on the 5-wire XMOS
Link. All of them signal END; but by choosing the appropriate sequence, it can be
guaranteed that none, one, or two of wires “0” to “3” are left high. After the END
token, one of the NOP tokens may have to be transmitted in order to return the
final wires to zero.

· If wire “4” is high after the END token, the NOPE token is transmitted, and the
final transition is chosen to return the last high wire low (note that if wire “4” is
high, exactly one of wires “0”... “3” must be high).

· If wire “4” is low after the END token, the NOPD token is transmitted. The NOPD
token has two transitions on wire “4” and hence leaves wire “4” low. The two v
transitions are chosen to return the final two wires to low.

For example, to send an end-of-message after the control token sent earlier (wires
“0”, “1”, “2”, and “4” are high), transmit the following:

1. Set wire “4” to low (signals an escape).

2. Set wire “4” to high (signals a second escape, this is an END).

3. Set wire “0” to low.

4. Set wire “1” to low. Sends the END token, and only wires “4” and “2” are left
high; hence, a NOPE token must be transmitted.

5. Set wire “4” to low (signals an escape).

6. Set wire “3” to high (transmits token value 11).

7. Set wire “3” to low (transmits token value 11).

8. Set wire “2” to low (transmits token value 10). This has transmitted token 254,
which is a NOP token that is ignored by the receiver. All wires are now low.

A XMOS Link can be paused by transmitting one of the PAUSE tokens, followed by
a NOP token that brings all five wires to a low state.

NOTE: The physical layer transmits tokens 0x1 and 0x2 using two escapes; they
are not transmitted using the conventional single escape for control tokens less
than 64. It is also the task of the physical layer to transmit a NOP after either a
PAUSE or END token. Finally, on reception of a double escape END or PAUSE token,
the physical layer must report this as a 0x1 or 0x2 control token, and the physical
layer shall discard any NOP tokens that are received.

The encoding of the four hardware tokens operated by the physical layer is:

Name Value Description

RTNZ1 0xfc NOP (return “0” to zero).

RTNZ2 0xfd NOP (return “1” to zero).

RTNZ3 0xfe NOP (return “2” to zero).

RTNZ4 0xff NOP (return “3” to zero).

X1151D,



XS1-L System Specification 9/35

The PAUSE and END tokens are application level control tokens, and their encodings
for higher levels are discussed in Section 3.6.1.

3.1.3 XS1-L Physical layer configuration

Bits are transmitted at a speed that is set under software control. Both speed and
width are set by writing to the XMOS Link’s speed register. Each of the speed
registers specifies the width of the link, the gap between bits, and the gap between
tokens. The addresses and contents of the speed registers are summarised in
Section 9.3.

On a system-reset the link is set to a serial XMOS Link mode using two pairs. This
enables boot over XMOS Link to work. The number of clock cycles spacing tokens
should be reset to 400 and the number of clock cycles between symbols should be
set to 400.

The speed of an XMOS Link is adjusted by changing the number of clock cycles
between tokens and the number of clock cycles between symbols. Generally, these
are both set to the same value. The token spacing field is encoded with an offset
of 2, ie, 0x000 represents 2 cycles delay, 0x001 represents 3 cycles delay, up to
0x7ff representing 2049 cycles delay. The symbol spacing field is encoded with an
offset of 1, ie, 0x000 represents a single cycle delay, 0x001 represents a two-cycle
delay, etc and 0x7ff represents a 2048 cycle delay. The XS1-L cannot receive data
if the transmitter does not space the symbols by at least two clock cycles. All clock
cycles are relative to the switch clock, which clocks at 400 MHz by default, but can
be set to run slower using register 7 (see Section 9.3).

For a 400 MHz system clock and bit spacing s ≥ 2, the data rate achievable using 2
signal wires is (160/s) Mbits/second; the data rate using 5 signal wires is (400/s)
Mbits/second. The actual speed that can be achieved depends on the electrical
characteristics of the physical connection. Note that the XS1-L cannot receive bits
faster than half the switch clock rate. When two XS1-Ls are running at the same
clock, they should set their inter symbol delay to at least 2. If one of the XS1-Ls
has a lower switch-clock-speed, the other one should adjust its inter symbol rate
accordingly.

3.2 Link layer

The link layer protocol operates a point-to-point connection over a full-duplex
XMOS Link. The link layer governs when data is transmitted, and how links start
communicating. Four control tokens are used by the link layer: CREDIT8, CREDIT16,
CREDIT64, and HELLO.

A link can be disabled or enabled. When disabled, no outside signals are coming
through to the link state machine. When enabled, signals come through and are
assembled into tokens.

When asked to transmit a HELLO, the XMOS Link resets its credits counter, and
transmits a HELLO. On reception of a HELLO, the receiving XMOS Link resets its
credits-issued counter, and issues at least eight credits. This sets the credits-

X1151D,



XS1-L System Specification 10/35

issued counter to eight and transmits a CREDITX . On reception of a CREDITX , the
receiving XMOS Link increments its credit-counter by X .

When asked to RESET, a XMOS Link resets the shift register capturing a token,
clearing out any half tokens that may have been received.

3.2.1 Credits

The standard mode of operation is that a switch can issue credits on a link - when it
does so, the switch allows the transmitter on the remote end of the link to transmit
data to this switch.

The switch specifies how much credit is issued (8 to 64 bytes) using the reserved
control tokens CREDIT8, CREDIT16 and CREDIT64. The transmitter will not transmit
more tokens then there are credits. When multiple credit messages are issued,
credits are summed together at the transmitting side; a transmitter must have
a credit counter of at least 7 bits. Hence, it is illegal to send two subsequent
CREDIT64 tokens, but legal to send a second CREDIT64 when one token has been
received.

A transmitter should issue credits to the receiver, if it knows that the receiver is
running low on credits, and if there is space in its input buffer. To save bandwidth,
the transmitter should try and issue the largest possible credit token.

All data tokens require and consume credits. Most control tokens require and
consume credits when transmitted, the exceptions are CREDITn, HELLO, and RTNZn;
these tokens can be transmitted when there are no credits present because the
link layer interprets them and does not insert them into the buffer. The application
level tokens END and PAUSE consume credits as usual since they do end up in the
buffer.

An enabled link is initialised by requesting it to send a HELLO token. This request
can come from a local processor, or from a remote processor; possibly even over
the link itself. HELLO signals that this side is ready to receive credits. It requests
that the other side clears its “issued-counter”, and issues credits.

NOTE: The HELLO token is not compatible with the XS1-G.

The definition of the three hardware control tokens used at the link layer is:

Name Value Description

CREDIT8 0xe0 Give additional 8 tokens of credit.

CREDIT64 0xe1 Give additional 64 tokens of credit.

CREDIT16 0xe4 Give additional 16 tokens of credit.

HELLO 0xe6 Solicit CREDIT

Note that the HELLO token is encoded in such a manner that an out-of-sync
transmission over 2-wires will not result in a HELLO token, but in some other token.
(A HELLO is transmitted as 1110011010.)

X1151D,



XS1-L System Specification 11/35

3.2.2 Initialising an XMOS Link comprising a single power and reset domain

On start-up, the credit counters are always zero. The boot-ROM enables all dedi-
cated links (links E-H), and if boot-over-link is enabled it also enables link D.

If data needs to be transferred over a link, (say processor X wants to boot processor
Y), processor X must ensure that it has credits. It does this by writing ’1’ to the bit
that issues a HELLO, establishing an upstream (half-duplex) link. If bi-directional
communication is required, processor X can initialise the other side (by using a
control message over the established half-duplex link), or the booted code can
initialise the other side. The register used to write a HELLO token is listed in
Section 9.3

3.2.3 Initialising an XMOS Link comprising a hot plug

If hot-plugging is required, links shall be set to non-routed mode in software,
a software layer shall first enable the link, then repeatedly issue HELLO until it
establishes a link by reading the "credits issued" bit. The software waits between
issuing RESETs and HELLOs. The register used to write a HELLO token, and used to
check for credits is listed in Section 9.3.

X1151D,



XS1-L System Specification 12/35

3.2.4 Initialising an XMOS Link comprising master and slave domains

In some designs there is a master-slave relationship between nodes; for example
a “master” node that is always on controlling the power-supply of one or more
“slave”-nodes. In this particular case, the master has knowledge that the slave is in
a known state when booted. The master will hence wait for the slave to be booted,
and then the master will enable the link and issue a HELLO.

3.2.5 Network numbers

A link can be assigned to be part of one of four “networks”. That is, the link will
only carry traffic belonging to that network. For this to work, both channel ends
must also be made part of this network. The intended use of this is to assign
specific links to carry small control messages.

When setting up networks, no traffic should flow over the target network, as routing
would be ambiguous. Network assignments are designed to be static, but if a link
needs to be reassigned to, for example, the default network, the link should be
disabled before the assignment is changed.

3.2.6 XS1-L Link Layer configuration

Before a link can be used it must be enabled and a HELLO must be issued. These
actions are performed by writing a ’1’ to the appropriate bit in the speed registers
(details are shown in Section 9.3).

On a system-reset the input FIFO is emptied, the output FIFO is emptied, and the
credit and issued counters are set to zero. The link must then be enabled and a
HELLO must be issued. In the case of hot-plugging, two bits of the speed-register
can be read to establish whether credits have been issued or received.

3.3 Switch layer

The switch layer forwards messages from one link to another. This forwarding is
either static (non-routed links) or dynamic (routed links).

3.3.1 Non-routed links

Links can be set to deliver data to a statically determined channel-end, instead of
using the routing table. In non-routed mode no header is sent, and the message is
sent to a specified processor and channel-end. This mode is enabled by setting bit
31 in the XMOS Link static forwarding header register, on both sides of the XMOS
Link.

When an XCore wants to send data over a non-routed link it sets the channel-end
destination register to address a core that differs in place x from the local core-id.

X1151D,



XS1-L System Specification 13/35

Destination x is mapped in the lookup table to a direction that is associated with
the required link. The destination channel and processor number have no relevance
and are set to zero. No modifications are needed for this. The XMOS Link removes
the header in non-routed mode. This saves three bytes being transmitted over the
link.

On receiving data on a non-routed link, the link looks up which header to use
in the XMOS Link static forwarding header register (registers 0xA0..0xA7). Each
forwarding header register contains a channel identifier of up to 8 bits (in bits 7 ...
0), a core identifier of up to 8 bits (bits 15 ... 8), and an enable bit (bit 31). On the
XS1-L no processor needs to be specified. The data is transmitted as usual over
the internal link.

3.3.2 Routed links

Before data is transmitted on a stream, the switch sends a header to the destination
core. The header establishes a route through the interconnect, and subsequent
tokens follow the same route until the end-of-message (END) or pause (PAUSE)
token are encountered. The header contains the identifier of the destination
processor, which is encoded using either 16 bits or 3 bits. The processor address
comprises a switch address and a core-number on that switch. The number of bits
used to identify the core on the switch depends on the number of cores attached
to the switch; on an XS1-L there is only one core and no bits are required, leaving
all 16 bits to identify the switch. In the case of four cores on a switch, the lowest
two bits of the address are used to identify the core, and the highest 14 bits are
used to identify the switch.

The header mode can be set in software, by changing the lowest bit of configuration
register 0x4 (Section 9.3). By default 3-byte mode is used; if the 1-byte header is
used it should be used on all nodes in the system.

Each node has a switch with a configurable identifier and routing table. The
identifier is a bit pattern that (uniquely) identifies this node in the system. When
a stream enters the switch, the destination node identifier is compared bit-by-bit
with the switch-identifier. If all bits match the message is destined for this node
and the message is routed to one of the local cores using the core-identifier.

If the switch-identifier is not equal to the stream’s destination-node-identifier, the
number of the first bit that differs specifies the dimension (direction) in which the
message needs to be routed; this results in eight possible routing dimensions. The
routing table associates each outgoing link with exactly one dimension, and the
switch picks an available outgoing link for this dimension before forwarding the
stream. This mechanism enables system designers to construct the routing tables
for meshes, pipelines or hypercubes.

The node identifier of the XS1-L is initialised by writing its value in 15 ... 0 of the
node identifier register. The most significant 16 bits are ignored.

Each link can be associated with one of four logical networks by writing the network
number to bits 5 ... 4 of the link’s configuration register. These network numbers

X1151D,



XS1-L System Specification 14/35

correspond to the network numbers used when initialising channels using the SETN
instruction.

A 16-entry look-up table associates a mismatch in each of the 16 node address bits
with a logical direction. Each entry in this look-up table is large enough to hold an
outgoing logical direction. Assuming that there are no more than 16 directions,
this lookup-table logically comprises 64 bits; since there are only eight XMOS Links
on an XS1-L only 48 bits need to be present.

The table is accessible via the configuration registers at addresses 0xC and 0xD in
the system switch. The least significant four bits on address 0xC hold the direction
for node address bit 0, the most significant four bits on address 0xD hold the
direction for node address bit 15. Note that it is likely that multiple copies of
this look-up table will be needed to eliminate routing latency arising from access
contention.

Each XMOS Link can be associated with one of the directions by writing the direction
to bits 10 ... 7 of the XMOS Link’s configuration register. Four bits are sufficient for
up to 16 directions. On the XS1-L only 3 bits are used.

Note: The node address is received most significant bit first, so direction 15 is
selected if the first bit received does not match bit 15 of the node address.

Two example topologies are shown below; a regular pipeline Figure 3.3.2 shows
a regular pipeline and Figure 3.3.2 shows a mesh with missing wires (or pipe
of pipelines). Other examples (such as hypercubes, trees, meshes, tori, and
combinations of those) are easily constructed. Each node shows the node-id,
the direction associated with each link, and the direction associated with each
mismatching address bit.

00 01 10 11
1 26 75 2

15:5
14:5

15:6
14:2

15:7
14:1

15:2
14:2

Figure 2:

Example:
configuring a

pipeline of
four XS1-L1s

3.3.3 XS1-L Switch Layer configuration

The core in the XS1-L is connected to the switch by four internal links, and the
switch also allows connection to other chips via eight XMOS Links. The switch fully
connects its 12 links (four internal links and eight external links) and can support
12 simultaneous message transfers.

The switch is configured by sending it configuration messages. These messages
request the switch to write data to, or read data from, a bank of 32-bit configuration
registers internal to the switch. These messages are used when booting to set
the node identifier of the switch, associate specific links with logical networks
and set the speed and width of the XMOS Links , and set the routing strategy.
Section 9.3 summarises the registers (and the fields within the registers) that must

X1151D,



XS1-L System Specification 15/35

1 11 1 1 1

11 1

0000 0100

0001 0101

1000 1100

1001 1101

11

0010 0110

0011 0111

1010 1110

1011 1111
1 1

0

1 1 11

0 0 0

0 0 0 0

0 0 0 0

2 3 2 3 2 3
12:0
13:0
14:2
15:2

12:1
13:0
14:1
15:1

12:0
13:1
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:3
15:2

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:2
15:3

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:0
14:3
15:3

12:1
13:0
14:1
15:1

12:1
13:1
14:1
15:1

12:0
13:1
14:1
15:1

12:0
13:1
14:1
15:1

12:0
13:1
14:1
15:1

Bit 15 Bit 12

Lookup table that
associates bits
with directions

Node addr Node addr

direction
of link

Figure 3:

Example:
configuring a

pipeline of
four pipelines

of four
XS1-L1s

be initialised in order to use the switch. The addresses used in the configuration
messages are the register numbers of the 32-bit registers in the switch.

X1151D,



XS1-L System Specification 16/35

3.4 Arbitration

The arbitration is fair, and gives fair bandwidth to all input links and load-balance
all output links.

3.5 Processor communication

When processors communicate with each other, they transmit messages over the
switches that, in addition to the 16- or 3-bit switch header include an 8- or 5-bit
channel-end identifier. When a message is transmitted to the switch, it has a 24-bit
(16 bits core-id + 8 bits channel-end) or 8-bit (3 bits core-id + 5 bits channel-end)
header. When a message is transmitted to the processor over an internal XMOS
Link, the message always has an 8-bit header which indicates the channel-end. If
1-byte switch headers is used, the first three bits of this byte will always be 0.

Processors can also communicate with switches. In this case the switch must be set
to 3-byte header mode. When a message is transmitted to the switch, it contains a
2-byte header, and then a control token PSCTRL or SSCTRL. This indicates that the
message is destined for the processor-control or switch-control associated with
the processor addressed by the first two bytes. Messages that are transmitted to
the PSCTRL or SSCTRL follow the following format:

· Two byte header identifying the destination processor/switch

· PSCTRL or SSCTRL token

· WRITEC control token

· Two bytes identifying core that reply should go to

· One byte identifying Channel-end for reply

· Two bytes identifying address within switch (address[15 ... 8], address[7 ... 0])

· Four bytes data to be written (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

· END control token (value (0x01)

This results in the following reply message.

· Three bytes header (two bytes core identifier, one byte channel)

· ACK control token

· END control token

A read message is sent as follows:

· Two byte header identifying the destination processor/switch

· PSCTRL or SSCTRL token

· READC control token

X1151D,



XS1-L System Specification 17/35

· Two bytes identifying core that reply should go to

· One byte identifying Channel-end for reply

· Two bytes identifying address within switch (address[15 ... 8], address[7 ... 0])

· END control token

This results in the following reply message.

· Three bytes header (two bytes core identifier, one byte channel)

· ACK control token

· Four bytes data read (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

· END control token

The four privileged tokens used to control the switch are defined as follows:

Name Value Description

WRITEC 0xc0 Write control register

READC 0xc1 Read control register

PSCTRL 0xc2 PSwitch configuration message

SSCTRL 0xc3 SSwitch configuration message

3.6 Channel Communication

At application level, the basic communication entity is a stream of data. A stream
does not need to be limited in length, but it can be terminated after a short
number of tokens has been transmitted, and can hence act as a "packet" in a
packet switched network. A stream is circuit switched and must be set up and
terminated. If the destination channel end is local, data is exchanged directly.
If the destination channel end is on a remote core, the switch first transmits a
header to the other remote core. This header sets up a circuit for the stream. After
the header is transmitted, the data-tokens and control-tokens of the stream are
transmitted.

When the END token is transmitted, the switches free any resources, folding up
the circuit that was used for streaming the data. The END token also returns all
communication wires to a low-power state. A thread can temporarily suspend a
stream by issue a PAUSE token at any time, which frees up the circuit and returns
the communication wires to a low power state. Unlike the END token, the PAUSE
token is invisible to the receiver, and is discarded once the final switch has freed
its resources (analogous to the final switch discarding the header that was sent
when the stream started).

Streams can be used to stream data such as audio or video just by opening the
stream and sending volumes of data. The number of streams that can be opened
simultaneously is limited by the number of physical links on the path. Each open
uni-directional stream occupies one physical link in the direction of the stream.
Given that an XS1-L has 4 links between the core and switch, no more than 4

X1151D,



XS1-L System Specification 18/35

streams can be open in one direction simultaneously. If switches are connected by
less than 4 Links, then the number of simultaneous streams that can be used is
limited to the number of Links connecting the switches.

Complex data types can be transmitted over a stream by opening a stream, and
serialising the data, interspersed with user defined control tokens. This allows
software to be constructed defensively by using control tokens to mark known
synchronisation points in the data stream. If, at any time, the receiver were to
try and input data when a control token is available or vice versa, the thread is
trapped, and the program can flag or maybe recover from software errors.

By keeping streams short and synchronising often, streams can also be used to
exchange packets of data. The cost of setting up a stream and terminating a
stream is small, and unlike traditional packet-oriented networks, the packet is
transmitted while it is being constructed; this overlaps packet creation and packet
reception, reducing latency.

3.6.1 Application Tokens

Application tokens are defined by the compiler or application program. Four
Application Control Tokens have been predefined, which should not be used for
any other purpose:

Name Value Description

END 0x01 End - free up interconnect and tell target

PAUSE 0x02 Pause - free up interconnect but do not tell target

ACK 0x03 Acknowledge operation completed successfully

NACK 0x04 Acknowledge that there was an error

NOTE: These are the token values seen by the application software. When transmit-
ted over a 5-wire XMOS Link the END and PAUSE tokens are represented by special
token values. All other token values can be used by the application software in any
way that it sees fit.

In addition to the application tokens, there is a block of tokens that are reserved
for specific operations. These tokens have predefined meanings, and any imple-
mentation should use those meanings. Below 11 of those tokens are defined, all
other 53 token values between 0x8b and 0xc0 are reserved for future use.

X1151D,



XS1-L System Specification 19/35

Name Value Description

READN 0x80 Read data.

READ1 0x81 Read one byte.

READ2 0x82 Read two bytes.

READ4 0x83 Read four bytes.

READ8 0x84 Read eight bytes.

WRITEN 0x85 Write data.

WRITE1 0x86 Write one byte.

WRITE2 0x87 Write two bytes.

WRITE4 0x88 Write four bytes.

WRITE8 0x89 Write eight bytes.

CALL 0x8a Call code at the specified address.

3.6.2 XS1-L Configuration messsages over channels

To send configuration messages over a channel, the channel needs to be config-
ured to transmit messages to the SSCTRL or PSCTRL logic. The destination of a
configuration message is specified by a configuration resource identifier; this must
be used to initialise a channel end using a SETD instruction in the usual way. The
configuration resource identifier is a 32-bit word consisting of the following bytes:

byte value

3,2 The Node Identifier of the switch to be configured

1 The numerical value for the PSCTRL or SSCTRL control token: 0xC2
or 0xC3

0 12

NOTE: The Node Identifier in a configuration message need not match the Node
Identifier in the destination switch, allowing a configuration message to be used to
initialise the switch Node Identifier.

Configuration messages follow the format specified in the previous section (re-
member that the header is generated by the channel-end):

· WRITEC control token (value 0xC0)

· Return channel end identifier (Node, Processor, Channel-end)

· Address within switch (address[15 ... 8], address[7 ... 0])

· Data to be written (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

· END control token (value (0x01)

This results in the following reply message:

X1151D,



XS1-L System Specification 20/35

· ACK control token (value 0x03)

· END control token (value 0x01)

LDC r11, 0 // preload0
LDC r0, 0xC30C // Chan end for SSwitch ctrl on node 0
GETR r5, 2 // Get a channel end
SETD r5, r0 // set dest of chan end to SSwitch
OUTCTI r5, 0xC0 // WRITEC token
OUTT r5, r11 // return address: node 0
OUTT r5, r11 // return address: processor 0
SHR r1, r0, 8
OUTT r5, r1 // return address: chan-id stored in r0
OUTT r5, r11 // high 16 bits of reg value: 0
OUTT r5, r2 // low 16 bit of reg address, from r2
OUT r5, r3 // value to be stored in r3
OUTCTI r5, 1 // in token
CHKCTI r5, 3 // check for ACK packet coming back
CHKCTI r5, 1 // termination of ACK packet
FREER r5 // release channel end

To read data, the following sequence is sent:

· READC control token (value 0xC1)

· Return channel end identifier (Node, Processor, Channel-end)

· Address within switch (address[15 ... 8], address[7 ... 0])

· END control token (value (0x01)

This results in the following reply message:

· ACK control token (value 0x03)

· Data read (data[31 ... 24], data[23 ... 16], data[15 ... 8], data[7 ... 0])

· END control token (value 0x01)

All messages for SSCTRL must be sent on network 0, and all responses will be on
network 0 too. SSCTRL messages must not be sent from other network numbers.

3.6.3 Configuring channel ends

Channel ends are configured using the SETD instruction. The SETD instruction
takes a 32-bit resource-id. This resource-id must be either another channel end
(type 2), or a configuration channel (type 12). The least significant 8 bits are the
resouce type, the following 8 bits the number of the channel-end (or in the case of
a configuration special valus 0xc2 or 0xc3 to indicate whether to control PSCTRL
or SSCTRL), and the most significant 16 bits are the core and processor identifier.
Channel end 0xff indicates a null channel

X1151D,



XS1-L System Specification 21/35

4 Selecting the oscillator frequency

The XS1-L needs an oscillator as a clock source. It can work using clocks in the
range of 4.23 MHz to 100 MHz. Internally, a PLL is used to increase the clock
frequency to 400 MHz; this is the core frequency used to run the processor data
path and the switch. The 400 MHz is divided by 4 to derive the 100 MHz reference
clock.

Two pins, MODE1 and MODE0, are used to select one of four standard oscillator
frequencies (fosc): 13, 20, 48, or 100 MHz:

Fosc MODE [1:0] Fcore

13 MHz 00 399.75 MHz

20 MHz 11 400 MHz

48 MHz 10 400 MHz

100 MHz 01 400 MHz

If required, any other oscillator frequency in the range 4.22 - 100 MHz can be
used as the clock source. In that case, the boot software must reprogram the
PLL multiplier/dividers to get a core frequency of (close to) 400 MHz. Depending
on the oscillator frequency one of the four modes is selected using MODE1 and
MODE0, which results in the following power-up core frequencies:

Fosc MODE [1:0] Fcore PLL ratio OD F R
4.23-13 MHz 00 130-399.75 MHz 30.75 1 122 0

13-20 MHz 11 260-400 MHz 20 2 119 0

20-48 MHz 10 166.67-400 MHz ≈ 8.333 2 49 0

48-100 MHz 01 196-400 MHz 4 2 23 0

The above table also lists the values of OD, F and R, which are the registers that
define the ratio of the core frequency to the oscillator frequency:

Fcore = Fosc ×
F + 1

2
× 1

R + 1
× 1

OD + 1

OD, F and R must be chosen so that both Fcore ≤ 400MHz and 260MHz ≤ Fosc ×
F+1

2 × 1
R+1 ≤ 1.3GHz. The OD, F , and R values can be modified by writing to

register 6 in the interconnect. R must be in the range 0...63, F must be in the
range 0...4095, and OD in the range 0...7.

The MODE pins must be held at a static value until the third rising edge of the
system clock following the deassertion of the system reset.

5 Power control

The XS1-L has three modes:

· Active mode, where the core is active and all clocks run at operational frequency.

X1151D,



XS1-L System Specification 22/35

· Standby mode, where the core voltage remains present, but the chip is in a low
power state.

· Sleep mode, where the core voltage is removed.

5.1 Active and standby mode

The XS1-L can be set to consume less dynamic power by reducing the clock
frequency. When running at reduced clock frequency the XS1-L is in standby mode,
when running at full clock frequency the XS1-L is in active mode.

The level of standby power is determined by the value of PLL_CLK_DIVIDER in
the PSWITCH. A value of 0 means no power saving, a value of n means that the
frequency is reduced by a factor 1/(n + 1), reducing power by a factor 1/(n + 1).
Hence setting this register to 99 will cause the processor to run 100 times slower
in standby mode and use 100 times less dynamic power.

The processor can switch automatically between active and standby modes, or it
can switch when the program requests it to. This behaviour is controlled by bits 5
and 4 in PS_XCORE_CTRL0 (processor status register 2)

Bits [5:4] mode

00 Active mode only - processor runs at full speed (400 MIPS)

01 Standby mode only - processor runs at one n-th of the speed (400/n
MIPS)

11 Active mode if any thread is active, standby if there are no active
threads

Timers and non-buffered ports work as usual when in standby mode, hence either
can be used to wake-up a thread and switch the processor back to Active mode.

During standby mode, buffered ports using clocks faster than 400/n MHz cease to
work properly. The table below gives some example values for the clock divider,
and lists the resulting frequencies for all clocks.

Divider Processor Thread Port synchr Port transfer Ref timer

none 400 100 400 100 100

1 200 50 200 50 100

3 100 25 100 25 100

99 4 1 4 1 100

NOTE: If the clock frequency is dynamically adapted, all clock frequencies switch
between the top row and the chosen divider value, depending on the activity of
any threads.

X1151D,



XS1-L System Specification 23/35

In dynamic mode, the clock frequency is set to maximum after 5-8 rising edges of
the (slow) clock, and incurs a delay of 5− 8 PLL_CLK_DIVIDER+1

400 µs.

The switch can also be set to a lower clock speed, by sending a message to the
switch requesting a change to SSWITCH_CLK_DIVIDER. Changing the clock speed of
the switch affects the maximum speed at which data can be received and the speed
at which data is transmitted (because the symbol-intervals and token-intervals that
govern the transmission data-rate are measured in divided clock-ticks).

5.2 Sleep mode

The XCore can be made to completely switch off its core power, until an external
signal is received or an internal timer expires. This requires an external FET that
gates the core power supply (see Figure 5.2).

Users of the sleep mode should note the following:

· For minimal leakage, when the XCore is switched off, the internal pull-downs on
IO pads cannot be relied on. The system should maintain all I/O pins at valid
logic levels (pull-ups or pull-downs may be required).

· VDD at the chip IO must remain within specification, regardless of the voltage
drop across the FET.

· SS_VDD_GATE must be pulled to a minimum of 3.3v.

The XCore can only be switched off co-operatively by writing a ’1’ into the sleep
register (bit 0 of processor control register 9). It is woken up on one of two

+3.3v

SS_ENABLE

S
S

_V
D

D
_G

A
T
E

co
re

_v
d

d

+1VIO VDD

io
_v

d
d

SS_ENABLE

XS1 device
SS_CLKSS_CLK

Figure 4:

PCU system
diagram

X1151D,



XS1-L System Specification 24/35

conditions: the wake-up pin was asserted for at least 0.1µs, or the wake-up counter
reached 0. The wake-up counter can be set by writing a 32-bit value into the
wake-up counter register (processor control register 8). The wake-up counter
counts at the external oscillator frequency. On wake-up the chip is brought up
from power-on reset, which may take xµs.

Figure 5.2 shows the state machine of the XCore entering and leaving sleep mode.

Current state
Inputs Outputs

SS_RESETB SS_ENABLE SLEEP dec.zero core VDD OK Next state SS_VDD_GATE dec. enable CORE_RESETB

Sleep (S)
active X X X X A

0 active activeinactive active X X X E

inactive X X active X E

Energise (E)
active X X X X A

High-Z inactive active
inactive X X X X E

Active (A)
active X X X X A

High-Z inactive inactive
inactive X active X X S

NOTE: The registers can only be written by this XCore. If other cores need to
control the power-state of this processor, they need to activate a local thread.

It is recommended that user code tests the wakeup condition immediately before
issuing the sleep signal.

A potential race condition exists between the internal assertion of sleep and the
external assertion of SS_ENABLE. The race is between the test of the wakeup
(or ’work available’) condition by the instruction set (’ISA Test’) and the test of
the SS_ENABLE (external wakeup signal) from the FSM (’SS_ENABLE Test’). If the

Sleeping Energising

Active Waiting

Resetting

Count == 0

SS_ENABLE

Sleep

VDDCnt == 0

VDDCnt != 0

VDD_Core up

RST RST

RSTRST

RST
rel

Figure 5:

PCU state
diagram

X1151D,



XS1-L System Specification 25/35

SS_ENABLE pulse is swallowed between these two points, the device will not wake
up.

This is complicated by the fact that these two endpoints exist in different clock
domains and the duration of the period between the ISA Test and the assertion of
the sleep signal is determined by the number of instructions specified or implied
by the user. In the case where the assertion of sleep and SS_ENABLE are co-incident,
both signals must be synchronised into the FSM clock domain (2 cycles), the FSM
state must then transition into the sleep state (1 cycle). The wakeup condition must
still be valid in this state to ensure that it is not missed. It is recommended that the
pulse width of SS_ENABLE is a minimum of two SS_CLK cycles plus the additional
cycles to accomodate the core clock resynchronisation of the external wakeup
condition signal and the user instructions between ISA test and the assertion of
sleep.

X1151D,



XS1-L System Specification 26/35

6 JTAG

JTAG access to the XS1-L is exactly the same as JTAG to the XS1-G, except that the
MUX has three unconnected entries. It is a two-stage process. A MUX can be used
to:

· Run the scan chain through the core.

· Run the scan chain through the switch.

· Run the scan chain through neither (bypass).

The state of the MUX is programmed over JTAG. This enables an XS1-L2 to be
constructed by chaining four XS1-L1s, whilst keeping the scan chain short. The
MUX values are:

0000 NC
The TMS signal is only connected to the MUX controller. The TDO output is
taken directly from the MUX controller. In this mode the MUX controller can
be interrogated without knowing the length of the DR in the devices.

0001 SSWITCH
The TMS signal is connected to the SSwitch. The TDO output is connected to
the SSwitch TDO.

1xxx CORE0
The TMS signal is connected to XCore 0. The TDO output is connected to
XCore 0 TDO.

This encoding is backwards compatible with the XS1-G.

X1151D,



XS1-L System Specification 27/35

7 Free running oscillators

There are four free-running oscillators on the XS1-L. These free-running oscillators
are designed to operate at different frequencies. The oscillators clock four counters.
The counters and oscillators are controlled using a processor status register (using
SETPS on register 6). The counter values can be read using four separate processor
status registers (using GETPS on registers 7-10).

Oscillators can be enabled (started) by writing a ’1’ into the appropriate enable bit.
The oscillator is disabled (stopped) by writing a ’0’. Oscillators are disabled on a
system-reset.

Counters are not cleared on system-reset, but keep their old state. Counters can be
read by reading the associate counter registers using GETPS. Counters should only
be read when the associated oscillator is stopped. The ring oscillator is normally
used by reading the counter’s initial value, starting the oscillator, stopping the
osciallator, reading the counter’s final value, and computing the difference as
a signed short. Because the counters run asynchrounous, a reliable reading is
obtained by repeating this process (eg 5 times) and taking the median value.

X1151D,



XS1-L System Specification 28/35

8 Secure boot module

The security module comprsises two parts: a configuration register (32 bits), and a
one time programmable memory to store program code. The security register has
the following layout:

Bits Meaning

0 Disable JTAG debug access to this core

1 Disable access to Processor Control registers over the switch; all
reads of any pswitch register return 0, writes are ignored

5 Force boot from address 0x000 of OTP, ignore the boot configuration
register

7 Redundancy bit.

8 Disable programming of OTP sector 0

9 Disable programming of OTP sector 1

10 Disable programming of OTP sector 2

11 Disable programming of OTP sector 3

12 Disable OTP programming completely: disables updates to all sectors
and the security register

13 Disable all (read & write) access from the JTAG interface to this OTP

14 Disable any interaction with GlobalDebug for this XCore

21..15 General purpose software accessable security register available to
end-users

31..22 Core 0 - general purpose user programmable JTAG UserID code
extension; Cores 1, 2, and 3 - general purpose available to end-users

The memory itself comprises four sectors containing 2KBytes each. The banks are
organised contiguously and can be used as a single 8KByte bank, but each sector
can be locked independently if required.

The OTP memory is programmed using three special I/O ports: the OTP address
port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit
port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID
0x100300.

X1151D,



XS1-L System Specification 29/35

9 General configuration registers

The XS1-L has three types of control registers:

· registers in the processor itself - control information private to the processor.
The registers are accessed using GETPS and SETPS instructions.

· registers in the processor switch - control information specific to a processor
that can also be accessed by other processors.

· registers in the interconnect switch - control information related to the intercon-
nect and the logic shared between processors

Some information is available via multiple paths, to facilitate remote access and
quick access via the instruction set, and for remote debugging purposes.

X1151D,



XS1-L System Specification 30/35

9.1 Processor status registers

The following are processor status registers that are accessed using GETPS and
SETPS. The regsiter number must be translated to a resource ID by shifting the
register number left 8 bits, and oring 0x0B in (the resource ID that identifies a
processor control register).

Address Contents

0x00 PS_RAM_BASE RW Address of RAM. Keep at 0x00010000.

0x01 PS_VECTOR_BASE RW Base of all 0 resource vectors. Used for both
events and interrupts. Bits 31-16 should be set,
bits 15-0 should be kept 0.

0x02 PS_XCORE_CTRL0 RW General control

bit 0: (verif) Reference clock from core clock

bit 4: enable divider

bit 5: enable divider only on WAIT

0x03 RO Value of the boot mode pins

0x04 Reserved

0x05 Value of the OTP security register bits 0..31, see
Section 8

0x06 WO Oscillator control register

bit 0: enable oscillator PeCl, PeWi

bit 1: enable oscillator CoCl, CoWi

0x07 bits 15..0: RO Value of counter CoCl

0x08 bits 15..0: RO Value of counter CoWi

0x09 bits 15..0: RO Value of counter PeCl

0x0A bits 15..0: RO Value of counter PeWi

0x0B Power control wake-up counter.

0x0C Power control wake-up. Bit 0 indicates “go to
sleep”

X1151D,



XS1-L System Specification 31/35

Address Contents

0x10 PS_DBG_SSR DRW Saved SR for debug interrupts, dssr
0x11 PS_DBG_SPC DRW Saved PC for debug interrupts, dspc
0x12 PS_DBG_SSP DRW Stores the stack pointer during debug

interrupts, dssp
0x13 PS_DBG_T_NUM DRW The resource ID of the thread whose

state is to be read.

0x14 PS_DBG_T_REG DRW Register number to be accessed by
DGETREG.

0x15 PS_DBG_TYPE DRW The type of debug interrupt.

0x16 PS_DBG_DATA DRW The data causing the debug interrupt.

0x18 PS_DBG_RUN_CTRL DRW Determine which threads are active in
when not in debug mode.

0x20-0x27 PS_DBG_SCRATCH DRW Scratch register for debug interrupts.
0-7

0x30-0x33 PS_DBG_IBREAK_ADDR DRW Instruction breakpoint address 0-3

0x40-0x43 PS_DBG_IBREAK_CTRL_0 DRW Instruction breakpoint control regis-
ter 0-3.

0x50-0x53 PS_DBG_DWATCH_ADDR1 DRW Data watchpoint address 1. 0-3

0x60-0x63 PS_DBG_DWATCH_ADDR2 DRW Data watchpoint address 2. 0-3

0x70-0x73 PS_DBG_DWATCH_CTRL DRW Data breakpoint control register. 0-3

0x80-0x83 PS_DBG_RWATCH_ADDR1 DRW Resources breakpoint address 1. 0-3

0x90-0x93 PS_DBG_RWATCH_ADDR2 DRW Resources breakpoint address 2. 0-3

0xA0-0xA3 PS_DBG_RWATCH_CTRL DRW Resources breakpoint control register.
0-3

X1151D,



XS1-L System Specification 32/35

9.2 Processor switch registers (per core)

The following registers are in the processor switch. They can be accessed over
JTAG or by sending a message to the processor switch. The message to be sent is
specified in Section 3.6.2. These registers are specific to a processor.

Address Contents

0x00 Device ID register

bits 7..0: XCore version, 0x0

bits 15..8: XCore revision, 0x3

bits 31..16: Node/Core number, taken from SSWitch

0x01 Number of resources - I

bits 7..0: Number of Threads

bits 15..8: Number of Synchronisers

bits 23..16: Number of Locks

bits 31..24: Number of Channel Ends

0x02 Number of resources - II

bits 7..0: Number of Timers

bits 15..8: Number of Clock Blocks

0x04 Control PSwitch permissions to debug registsers.

bit 0: Disable write access to processor registers.

bit 8: Disable remote access, can only be cleared locally.

bit 31: Disable further updates to any PSwitch register

0x05 Debug interrupts

bit 0: Writing a 1 generates a debug interrupt.

0x06 Processor clock divider (only lower 16 bits are used)

0x07 Value of the OTP security register bits 0..31, see Section 8

0x10-0x13 Internal XMOS Link status Internal XMOS Link PA, PB, PC PD, see Sec-
tion 9.4. Verification only.

0x20-0x27 Scratch register for debug software protocols 0-7
Register 0x20 can be used to set the address of a user debug handler

0x40-0x47 Copy of the PC of threads 0-7

0x60-0x67 Copy of the SR of threads 0-7

0x80-0x9F Link status of LINK 0-31, see Section 9.4. Verification only.

X1151D,



XS1-L System Specification 33/35

9.3 Interconnect registers (per node)

The following registers are in the interconnect - they can be accessed over JTAG
or by sending a message to the system switch. The message is specified in
Section 3.6.2. Changing these registers has a global effect on the chip.

Address Contents

0x00 Device identification

bits 7..0: SSwitch version, 0x1

bits 15..8: SSwitch revision, 0x0

bits 23..16: The value of the SS_MODE pins, sampled on reset

0x01 Number of resources

bits 7..0: Number of internal XMOS Links per core

bits 15..8: Number of Cores

bits 23..16: Number of XMOS Links

0x04 Node configuration

bit 0: Short headers (use 1-byte headers if set)

bit 8: Disable PLL modifications.

bit 31: Disable further updates to any SSwitch control register.

0x05 Node ID, lower 16 bits only

0x06 PLL control register.

bit 5..0: PLL reference divider: R
bit 20..8: PLL feedback divider: F
bit 25..23: PLL output divider: OD

0x07 Lowest 16 bits set the switch clock frequency, clk = pll/(n+ 1). Keep at 0
for 400 MHz.

0x08 Lowest 16 bits define the relation between the reference clock and the
PLL clock, ref = pll/(n + 1). Keep at 3 for 100 MHz.

0x0C Directions for bits 0 to 7

bits 3..0: Direction for bit 0

bits 7..4: Direction for bit 1

...

bits 31..28: Direction for bit 7

0x0D bits 3..0: Direction for bit 8

...

bits 31..28: Direction for bit 15

0x10 GlobalDebug configuration for XCore 0

bit 0: Drive the global debug pin on global debug events

bit 1: Allow the global debug pin to generate global debug events

0x1F global debug source.

bit 0: Set if XCore 0 is the source of the last global debug event

bit 4: Set if the global debug pin is the source of the last global debug
event

X1151D,



XS1-L System Specification 34/35

Address Contents

0x20 XMOS Link C direction and network, see Section 9.4

0x21 XMOS Link D direction and network, see Section 9.4

0x22 XMOS Link A direction and network, see Section 9.4

0x23 XMOS Link B direction and network, see Section 9.4

0x24 XMOS Link G direction and network, see Section 9.4

0x25 XMOS Link H direction and network, see Section 9.4

0x26 XMOS Link E direction and network, see Section 9.4

0x27 XMOS Link F direction and network, see Section 9.4

0x40 PLink 0 network, see Section 9.4

0x41 PLink 1 network, see Section 9.4

0x42 PLink 2 network, see Section 9.4

0x43 PLink 3 network, see Section 9.4

0x80 XMOS Link C speed, timing, and width

0x81 XMOS Link D speed, timing, and width

0x82 XMOS Link A speed, timing, and width

0x83 XMOS Link B speed, timing, and width

0x84 XMOS Link G speed, timing, and width

0x85 XMOS Link H speed, timing, and width

0x86 XMOS Link E speed, timing, and width

0x87 XMOS Link F speed, timing, and width

bit 10 ... 0: minimum number of system clock cycles between tokens

bit 21 ... 11: minimum number of system clock cycles between symbols

bit 23: RESET input state machine

bit 24: Issue a HELLO and clear credits-counter

bit 25: RO Link has credits and can transmit

bit 26: RO Link has issued credits and can receive

bit 27: RO (cleared by reading), XMOS Link protocol error.

bit 30: Number of signal wires - 0: two pairs; 1: five pairs

bit 31: Enable link

0xA0 XMOS Link C static forwarding header

0xA1 XMOS Link D static forwarding header

0xA2 XMOS Link A static forwarding header

0xA3 XMOS Link B static forwarding header

0xA4 XMOS Link G static forwarding header

0xA5 XMOS Link H static forwarding header

0xA6 XMOS Link E static forwarding header

0xA7 XMOS Link F static forwarding header

bit 7 ... 0: Channel end

bit 15 ... 8: Core identifier (0 on XS1-L)

bit 31: enable static forwarding

X1151D,



XS1-L System Specification 35/35

9.4 Link status/control bit formats

The internal and external XMOS Link registers have the following structure - where
the Direction bits are 0 for internal XMOS Links.

bits use

0 SRC_INUSE

1 DST_INUSE

2 JUNK

5..4 Network - a network ID can be written in those bits

11..8 the direction to which this link belongs

24..17 SRC_TARGET_ID

26..25 SRC_TARGET_TYPE

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X1151D,


	Introduction
	Booting the XS1-L
	XMOS Link specification
	Selecting the oscillator frequency
	Power control
	JTAG
	Free running oscillators
	Secure boot module
	General configuration registers

