
XK-1A Development Board Tutorial

IN THIS DOCUMENT

· Introduction

· Illuminate an LED

· Flash an LED

· Flash and cycle LEDs at different rates

· Run tasks concurrently

· What to read next

1 Introduction

The XK-1A is a low-cost development board based on the XMOS XS1-L1 device. It
includes a single L1, four LEDs, two press-buttons, SPI flash memory, two 16-way
IDC connectors and an XSYS debugging interface.

This tutorial shows you how to write some simple XC programs that control and
respond to the XK-1A board components. In this tutorial you learn how to:

· illuminate the LEDs

· flash the LEDs at a fixed rate

· flash the LEDs in sequence

· respond to a button press

· connect multiple boards together

2 Illuminate an LED

This part of the tutorial shows you how to illuminate an LED on your XK-1A, using
an XC port and an output statement.

2.1 Create a project

2.2 Add the application code

The program below illuminates an LED on an XK-1A.

#include <xs1.h>

out port led = XS1_PORT_4F;

Publication Date: 2012/11/8 Document Number: X7366A

XMOS © 2012, All Rights Reserved

XK-1A Development Board Tutorial 2/20

int main () {
led <: 0b0001;
while (1)

;
return 0;

}

Copy and paste the code into your project, and then choose File · Save () to save
your changes to file.

2.3 Examine the code

Take a look at the code in the editor. The declaration

out port led = XS1_PORT_4F;

declares an output port named led, which refers to the 4-bit port 4F. On the XK-1A,
the I/O pins of port 4F are connected to the LEDs labeled LED0, LED1, LED2 and
LED3.

Show image of port map..

XS1_PORT_4F[1]

LED0 LED1 LED2 LED3

BUT1 BUT2

XS1_PORT_4F[0]

XS1_PORT_4F[2]

XS1_PORT_1L

XS1_PORT_1K

XS1_PORT_4F[3]

XS1-L1

X7366A

XK-1A Development Board Tutorial 3/20

XC input and output statements make it easy to express I/O operations on ports.
The statement

led <: 0b0001;

causes the value specified to the right of <: to be output to the port specified to
its left (led). The port then drives LED0 high and the other LEDs low, causing LED0
to illuminate yellow and the other LEDs to remain off.

The empty while loop prevents the program from terminating, which ensures that
the LED remains illuminated.

2.4 Build and run your project

To build and run your project, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE displays its progress in the Console. When the build is complete, the
XDE adds the compiled binary file to the subfolder bin/Debug.

2. Choose Run · Run Configurations.

3. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

4. In the right panel, in Name, enter the name illuminate.

X7366A

XK-1A Development Board Tutorial 4/20

5. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

6. In C/C++ Application, click Search Project to open the Program Selection
dialog, select your application binary, and then click OK.

7. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XTAG-2 connected to L1[0]” is selected.

If your hardware is not displayed, ensure that your XK-1A is connected to your
PC, and then click Refresh list.

8. Click Run to save your configuration and run it.

The XDE loads the binary onto your XK-1A, displaying its progress in the
Console. When the binary is loaded, the Console is cleared.

9. On your XK-1A, verify that LED0 is illuminated yellow.

10. In the Console, click the Terminate button () to stop your application running.

2.5 Exercise

To complete this part of the tutorial, perform the following steps:

1. Modify your application so that it illuminates all four LEDs.

Show a tip..

You should change the value output to the port led so that all four LEDs are
driven high.

Show a sample answer..

#include <xs1.h>

out port led = XS1_PORT_4F;

int main () {
led <: 0b1111;
while (1)

;
return 0;

}

2. Click the Run button () to reload your last Run Configuration.

The XDE determines that your source code has been updated and re-builds it,
displaying progress in the Console.

If your application contains errors, the XDE displays a dialog asking if you want
to continue launching the application. Click No, locate the first error in the
Console and double-click it to go to the offending line in the editor. When you
have fixed all errors, re-run your application.

X7366A

XK-1A Development Board Tutorial 5/20

3. On your XK-1A, verify that all four LEDs are illuminated, and then click the
Terminate button () to stop your application running.

3 Flash an LED

This part of the tutorial shows you how to flash an LED at a fixed rate, using an XC
timer and an input statement.

3.1 Create a new project

3.2 Add the application code

The program below flashes a single LED on an XK-1A.

#include <xs1.h>

#define FLASH_PERIOD 20000000

out port led = XS1_PORT_4F;

int main (void) {
timer tmr;
unsigned isOn = 1;
unsigned t;
tmr :> t;
while (1) {

led <: isOn;
t += FLASH_PERIOD;
tmr when timerafter (t) :> void;
isOn = !isOn;

}
return 0;

}

Copy and paste the code into your project, and then choose File · Save () to save
your changes to file.

3.3 Examine the code

Take a look at the code in the editor. The declaration

timer tmr;

declares a variable named tmr, and allocates an available hardware timer. The L1
provides 10 timers, which can be used to determine when an event happens, or to
delay execution until a particular time. Each timer contains a 32-bit counter that is
incremented at 100MHz and whose value can be input at any time.

The statement

tmr :> t;

X7366A

XK-1A Development Board Tutorial 6/20

inputs the value of tmr‘s counter into the variable t. Having recorded the current
time, the statement

t += FLASH_PERIOD;

increments this value by the required delay, and the statement

tmr when timerafter(t) :> void;

delays inputting a value until the specified time is reached. The input value is not
needed, which is expressed as an input to void.

3.4 Build and run your project

To build and run your project, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

The XDE builds your project, displaying its progress in the Console. When
the build is complete, the XDE adds the compiled binary file to the application
subfolder bin/Debug.

2. Create a new Run Configuration for your application named flash, and run it.

Show reminder..

Follow these steps:

3. Choose Run · Run Configurations.

4. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

5. In the right panel, in Name, enter the name flash.

6. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

7. As there are now two applications in your project, the XDE is unable to select
one automatically. To select, in C/C++ Application, click Search Project to
open the Program Selection dialog, select your application binary, and then
click OK.

8. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XTAG-2 connected to L1[0]” is selected.

If you did not stop your previous application running, your hardware may be
displayed as “XMOS XTAG-2 connected to None”.

9. Click Run to save your configuration and run it.

The XDE loads the binary onto your XK-1A, displaying its progress in the
Console. When the binary is loaded, the Console is cleared.

X7366A

XK-1A Development Board Tutorial 7/20

10. On your XK-1A, verify that LED0 is flashing on-off, and then click the Terminate
button () to stop your application running.

3.5 Switch between projects

The Run button () can be used to switch between projects. To complete this
part of the tutorial, follow these steps:

1. Click the arrow to the right of the Run button and select the Run Configuration
named illuminate.

2. On your XK-1A, verify that all four LEDs are illuminated.

3. Click the arrow to the right of the Run button and select the Run Configuration
named flash.

4. On your XK-1A, verify that LED0 is flashing on-off.

5. Modify the source of the flashing LED application to change the value of
FLASH_PERIOD from 20000000 to 40000000.

6. To build and run, just click the Run button.

The XDE launches the Run Configuration you most recently selected.

7. On your XK-1A, verify that LED0 is flashing on-off at half the rate it was flashing
previously, and then click the Terminate button () to stop your application
running.

3.6 Exercise

To complete this part of the tutorial, perform the following steps:

1. Modify your flashing LED application so that both LED0 and LED1 are flashed,
with LED0 flashed twice as fast as LED1.

Show a tip..

You should output the following pattern to the port led: 0b0011, 0b0010,
0b0011, 0b0010, 0b0001, 0b0000, 0b0001 and 0b0000.

Explain the solution in more detail..

You can define an array of integers an initialize it with the values 0b0011,
0b0010, 0b0011, 0b0010, 0b0001, 0b0000, 0b0001 and 0b0000. Then use a
loop to output this sequence of values to the port 4F.

Show a sample answer..

#include <xs1.h>

#define FLASH_PERIOD 20000000

out port led = XS1_PORT_4F;

X7366A

XK-1A Development Board Tutorial 8/20

int pattern [] = {0b0011 ,
0b0010 ,
0b0011 ,
0b0010 ,
0b0001 ,
0b0000 ,
0b0001 ,
0b0000};

int main (void) {
timer tmr;
unsigned t;
unsigned i = 0;
tmr :> t;
while (1) {

t += FLASH_PERIOD;
tmr when timerafter (t) :> void;
led <: pattern[i];
i = (i+1) % 8;

}
return 0;

}

2. Run your application.

3. On your XK-1A, verify that the two LEDs are flashing at different speeds, and
then click the Terminate button () to stop your application running.

4 Flash and cycle LEDs at different rates

This part of the tutorial shows you how to flash an LED while cycling it along the
LEDs on your XK-1A.

4.1 Create an application

The program below inputs from one of two timers in a loop.

#include <xs1.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 50000000

out port led = XS1_PORT_4F;

int main (void) {
timer tmrF , tmrC;
unsigned timeF , timeC;

tmrF :> timeF;
tmrC :> timeC;
while (1) {

X7366A

XK-1A Development Board Tutorial 9/20

select {
case tmrF when timerafter(timeF) :> void :

/* add code to respond to timeout */
break;

case tmrC when timerafter(timeC) :> void :
/* add code to respond to timeout */
break;

}
}
return 0;

}

Before continuing to the next part of this tutorial, create a new project using this
code.

4.2 Examine the application code

Take a look at the application code in the editor. The first statement in main inputs
the value of the timer tmrF into the variable timeF, and the second statement
inputs the value of the timer tmrC into the variable timeC.

In the while loop, the select statement waits for the an input on either tmrF or
tmrC to become ready. It then performs the selected input and executes any code
after it up until the keyword break.

If more than one input becomes ready at the same time, only one is executed in a
single iteration of the loop; the other input is selected on the following iteration.

4.3 Exercise 1

To complete this part of the tutorial, perform the following tasks:

1. Modify the application so that:

· On each input from tmrC, the program changes which LED is flashed, cycling
between all four LEDs in sequence.

· On each input from tmrF, the program changes the state of the current LED
bewteen on and off.

Show a sample answer..

#include <xs1.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 50000000

out port led = XS1_PORT_4F;

int main(void) {

unsigned ledOn = 1;
unsigned ledVal = 1;

X7366A

XK-1A Development Board Tutorial 10/20

timer tmrF , tmrC;
unsigned timeF , timeC;

tmrF :> timeF;
tmrC :> timeC;

while (1) {
select {

case tmrF when timerafter(timeF) :> void:
ledOn = !ledOn;
if (ledOn)

led <: ledVal;
else

led <: 0;
timeF += FLASH_PERIOD;
break;

case tmrC when timerafter(timeC) :> void:
ledVal <<= 1;
if (ledVal == 0x10)

ledVal = 1;
timeC += CYCLE_PERIOD;
break;

}
}
return 0;

}

2. Build your project, create a new Run Configuration, and run it.

Show reminder..

Follow these steps:

3. In the Project Explorer, click your project to select it, and then choose the

menu option Project · Build Project ().

If any errors are reported in the Console, double-click an error to locate it in
the editor, fix the error and then re-build your application.

4. Choose Run · Run Configurations.

5. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

6. In the right panel, in Name, enter a name for the Run Configuration.

7. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

8. In C/C++ Application, click Search Project to open the Program Selection
dialog, select your application binary, and then click OK.

9. In Device options, in Run on, select the option hardware, and in Target,
ensure that the option “XMOS XTAG-2 connected to L1[0]” is selected.

X7366A

XK-1A Development Board Tutorial 11/20

10. Click Run to save your configuration and run it.

The XDE loads the application binary onto your XK-1A, displaying its progress
in the Console. When the binary is loaded, the Console is cleared.

11. On your XK-1A, verify that a flashing LED is cycled between the four LEDs, and
then click the Terminate button () to stop your project running.

4.4 Exercise 2

To complete this part of the tutorial, perform the following tasks:

1. Add an additional case to the select statement that responds to Button 1 being
pressed by displaying the string “pressed” on the console, and then waits for
Button 1 to be released and displays the string “released”.

Note that Button 1 drives a 1-bit port high. Pressing the button causes it to stop
driving the port, and releasing results in it driving again. You can test for these
conditions using the input condition pinseq(0) and pinseq(1).

Show image of port map..

XS1_PORT_4F[1]

LED0 LED1 LED2 LED3

BUT1 BUT2

XS1_PORT_4F[0]

XS1_PORT_4F[2]

XS1_PORT_1L

XS1_PORT_1K

XS1_PORT_4F[3]

XS1-L1

To print a message to the console, you can include the standard C library header
stdio.h and use the the library function printf.

Explain the solution in more detail..

X7366A

XK-1A Development Board Tutorial 12/20

Follow these steps:

2. At the top of your source file, include the header file stdio.h.

3. Define an input port named but1 and initialize it with the value XS1_PORT_1K.

4. In the select statement, add the following case statement:

case but1 when pinseq(0) :> void:

5. In the body of this case, first call the function printf to display the first message;
then input from the button when the value sampled on the pin equals 1; and
then call printf again to display the second message.

Show a sample answer..

#include <xs1.h>
#include <stdio.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 50000000

out port led = XS1_PORT_4F;
in port but1 = XS1_PORT_1K;

int main(void) {

unsigned ledOn = 1;
unsigned ledVal = 1;
timer tmrF , tmrC;
unsigned timeF , timeC;

tmrF :> timeF;
tmrC :> timeC;

while (1) {
select {

case tmrF when timerafter(timeF) :> void:
ledOn = !ledOn;
if (ledOn)

led <: ledVal;
else

led <: 0;
timeF += FLASH_PERIOD;
break;

case tmrC when timerafter(timeC) :> void:
ledVal <<= 1;
if (ledVal == 0x10)

ledVal = 1;
timeC += CYCLE_PERIOD;
break;

case but1 when pinseq (0) :> void:
printf("Pressed\n");
but1 when pinseq (1) :> void;
printf("Released\n");

X7366A

XK-1A Development Board Tutorial 13/20

break;
}

}
return 0;

}

6. Run your application.

A flashing LED should cycle between the four LEDs on your XK-1A.

7. Verify that pressing and holding button BUT1 causes the message “pressed” be
displayed in the Console and the LEDs to stop flashing. Releasing the button
should cause the message “released” to be displayed and the flashing LED
should continue cycling.

Note that you may need to push the button down firmly on your XK-1A to
operate it.

8. In the Console, click the Terminate button () to stop your application running.

5 Run tasks concurrently

This part of the tutorial shows you how to run tasks concurrently on different
threads, using the XC par statement and channel communication.

5.1 Create a project

The program below creates two concurrent threads, which run two separate tasks
independently of each other.

#include <xs1.h>
#include <stdio.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 50000000

out port led = XS1_PORT_4F;
in port but1 = XS1_PORT_1K;

void flashLEDs4bitPort(out port led , int flashPeriod , int cyclePeriod) {
/* Code to flash 4 LEDs connected to a 4-bit port in a cycle */
unsigned ledOn = 1;
unsigned ledVal = 1;
timer tmrF , tmrC;
unsigned timeF , timeC;

tmrF :> timeF;
tmrC :> timeC;

while (1) {
select {

case tmrF when timerafter(timeF) :> void:
ledOn = !ledOn;
if (ledOn)

led <: ledVal;

X7366A

XK-1A Development Board Tutorial 14/20

else
led <: 0;

timeF += FLASH_PERIOD;
break;

case tmrC when timerafter(timeC) :> void:
ledVal <<= 1;
if (ledVal == 0x10)

ledVal = 1;
timeC += CYCLE_PERIOD;
break;

}
}

}

void respondToButton(in port but) {
/* Code to respond to a button press */

while (1) {
but when pinseq (0) :> void;
printf("Pressed\n");
but when pinseq (1) :> void;
printf("Released\n");

}
}

int main(void) {
par {

flashLEDs4bitPort(led , FLASH_PERIOD , CYCLE_PERIOD);
respondToButton(but1);

}
return 0;

}

Before continuing to the next part of this tutorial, create a new project using this
code.

5.2 Examine the application code

Take a look at the code in the editor. In main, the two statements inside the braces
of the par are run concurrently: the current thread allocates a new hardware thread;
the current thread then runs the function flashLEDs4bitPort; and the new thread
runs the function respondToButton. The L1 device has a total of eight available
hardware threads.

To complete this part of the tutorial, perform the following tasks:

1. Build your project, create a new Run Configuration, and run it.

2. Verify that a flashing LED cycles between the four LEDs on your XK-1A. Pressing
and holding button BUT1 should cause the message “pressed” be displayed
in the Console and the LEDs should continue to flash. Releasing the button
should cause the message “released” to be displayed.

3. In the Console, click the Terminate button () to stop your project running.

X7366A

XK-1A Development Board Tutorial 15/20

5.3 Communicate between threads

A channel provides a synchronous, bidirectional link between two threads. It
consists of two channel ends, which two threads can use to interact on demand
using the XC input and output statements.

The program below creates two threads which are connected using a channel, and
communicates a value over this channel.

void snd(chanend cout) {
cout <: 1;

}

void rcv(chanend cin) {
int x;
cin :> x;

}

int main (void) {
chan c;

par {
snd(c);
rcv(c);

}

return 0;
}

The function snd declares a channel end parameter cout, which refers to one end
of a channel. It uses the XC output statement to output the value 1 to a receiving
thread.

The function rcv declares a channel end parameter cin and uses the XC input
statement to input a value to the local variable x.

The function main declares a channel c. The locations of its two channel ends are
established through its use in two statements of the par.

5.4 Exercise 1

To complete this part of the tutorial, perform the following tasks:

1. Modify your application so that after pressing and releasing button BUT1, the
flashing LED changes direction. This requires the function respondToButton to
communicate with the function flashLEDs4bitPort.

Explain the solution in more detail..

Follow these steps:

2. In the function respondToButton:

· Add a parameter declaration chanend c.

X7366A

XK-1A Development Board Tutorial 16/20

· After the button is released, output a value 0 to this channel.

3. In the function flashLEDs4bitPort:

· Add a parameter declaration chanend c.

· Add a variable declaration unsigned direction and initialize to 0.

· Add a case to the select statement that inputs from channel c, and in the
body of this case update the variable direction.

· Modify the body of the case statement that inputs from tmrC so that the next
LED flashed depends upon the value of the variable direction.

Show a sample answer..

#include <xs1.h>
#include <stdio.h>

#define FLASH_PERIOD 10000000
#define CYCLE_PERIOD 50000000

out port led = XS1_PORT_4F;
in port but1 = XS1_PORT_1K;

void flashLEDs4bitPort(out port led , chanend c, int flashPeriod , int
↩ cyclePeriod) {
/* Code to flash 4 LEDs connected to a 4-bit port in a cycle */
unsigned ledOn = 1;
unsigned ledVal = 1;
unsigned direction = 0;
timer tmrF , tmrC;
unsigned timeF , timeC;

tmrF :> timeF;
tmrC :> timeC;

while (1) {
select {

case tmrF when timerafter(timeF) :> void:
ledOn = !ledOn;
if (ledOn)

led <: ledVal;
else

led <: 0;
timeF += FLASH_PERIOD;
break;

case tmrC when timerafter(timeC) :> void:
if (direction) {

ledVal <<= 1;
if (ledVal == 0b10000)

ledVal = 1;
}
else {

ledVal >>= 1;
if (ledVal == 0)

ledVal = 0b1000;
}
timeC += CYCLE_PERIOD;
break;

case c :> int x :

X7366A

XK-1A Development Board Tutorial 17/20

direction = !direction;
break;

}
}

}

void respondToButton(in port but , chanend c) {
/* Code to respond to a button press */
while (1) {

but when pinseq (0) :> void;
printf("Pressed\n");
but when pinseq (1) :> void;
printf("Released\n");
c <: 0;

}
}

int main(void) {
chan c;
par {

flashLEDs4bitPort(led , c, FLASH_PERIOD , CYCLE_PERIOD);
respondToButton(but1 , c);

}
return 0;

}

4. Run your application.

A flashing LED should cycle between the four LEDs on one of the XK-1As.

5. On your XK-1A, verify that pressing and releasing button BUT1 causes the
flashing LED to change direction, and then click the Terminate button () to stop
your project running.

5.5 Exercise 2

This part of the tutorial shows you how to put ports and threads on different
processor cores. It requires you to have two XK-1As available. Follow these steps:

1. Connect the two XK-1As together.

2. Choose File · New · XDE Source File ().

X7366A

XK-1A Development Board Tutorial 18/20

3. In the New XDE Source File dialog, in File Name, enter the name Dual-XK1A.xn.

4. In Location, ensure that your project folder is selected.

5. Click Finish.

The XDE creates an empty source file, adds it to your application and opens it
in the editor.

6. At the bottom left of the editor, click the Source tab, copy the code in the
window below into your new source file, and then save it.

<?xml version="1.0" encoding="UTF -8"?>

<Network xmlns="http :// www.xmos.com"
xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http :// www.xmos.com http :// www.xmos.com"
↩ >

<Declarations >
<Declaration >core stdcore [2]</ Declaration >

</Declarations >

<Packages >
<Package Id="P1" Type="XS1 -L1A -TQ128">

<Nodes >
<Node Id="Master" Type="XS1 -L1A" InPackageId="0"

Oscillator="20MHz" SystemFrequency="400MHz">
<Boot >

<Source Location="SPI:bootFlash"/>
<Bootee NodeId="Slave" Core="0"/>

</Boot >
<Core Number="0" Reference="stdcore [0]">

<Port Location="XS1_PORT_1A" Name="PORT_SPI_MISO"/>
<Port Location="XS1_PORT_1B" Name="PORT_SPI_SS"/>
<Port Location="XS1_PORT_1C" Name="PORT_SPI_CLK"/>
<Port Location="XS1_PORT_1D" Name="PORT_SPI_MOSI"/>
<Port Location="XS1_PORT_4A" Name="PORT_LED"/>

</Core >
</Node >

</Nodes >
</Package >

<Package Id="P2" Type="XS1 -L1A -TQ128">
<Nodes >

<Node Id="Slave" Type="XS1 -L1A" InPackageId="0"
Oscillator="20Mhz" SystemFrequency="400MHz">

<Boot >
<Source Location="XMOSLINK"/>

</Boot >
<Core Number="0" Reference="stdcore [1]">

<Port Location="XS1_PORT_1K" Name="PORT_BUTTON"/>
</Core >

</Node >
</Nodes >

X7366A

XK-1A Development Board Tutorial 19/20

</Package >
</Packages >

<Links >
<Link Encoding="2wire" Delays="4,4">

<LinkEndpoint NodeId="Master" Link="X0LD"/>
<LinkEndpoint NodeId="Slave" Link="X0LC"/>

</Link >
</Links >

<ExternalDevices >
<Device NodeId="Master" Core="0" Name="bootFlash"

Class="SPIFlash" Type="AT25FS010">
<Attribute Name="PORT_SPI_MISO" Value="PORT_SPI_MISO"/>
<Attribute Name="PORT_SPI_SS" Value="PORT_SPI_SS"/>
<Attribute Name="PORT_SPI_CLK" Value="PORT_SPI_CLK"/>
<Attribute Name="PORT_SPI_MOSI" Value="PORT_SPI_MOSI"/>

</Device >
</ExternalDevices >

<JTAGChain >
<JTAGDevice NodeId="Master" Position="0"/>
<JTAGDevice NodeId="Slave" Position="1"/>

</JTAGChain >

</Network >

7. Make it default target

8. In the Project Explorer, expand your new file to reveal the header file
platform.h, and expand this header to reveal the symbols stdcore[0] and
stdcore[1].

These symbols name the two processor cores for your new target, which can be
referred to in your XC application.

9. In your XC source file, change the header include file <xs1.h> to <platform.h>.

10. Modify the declaration of the port led to place it on the first core, as shown
below:

on stdcore [0]: out port led = XS1_PORT_4F;

11. Modify the declaration of the port but1 to place it on the second core.

12. Modify the call to the function flashLED to place it on the first core, as shown
below:

on stdcore [0]: flashLED(arguments);

13. Modify the call to the function respondToButton to place it on the second core.

14. In the Project Explorer, expand your project and application folder, and then
double-click on the file Makefile.

X7366A

XK-1A Development Board Tutorial 20/20

15. In the Makefile editor, in Target, select the option Dual-XK1A, and then choose
File · Save () to save your changes to file.

16. Run your application.

A flashing LED should cycle between the four LEDs on one of the XK-1As.
Pressing and releasing button BUT1 on the other XK-1A should cause the
direction of the flashing LED to change.

6 What to read next

This tutorial provides only a basic introduction the XK-1A hardware.

For more information on the board refer to the XK-1A Hardware Manual1.

For more information on programming in XC see Programming XC on XMOS
Devices2.

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

1http:/www.xmos.com/published/xk1ahw
2http:/www.xmos.com/published/xc_en

X7366A

http:/www.xmos.com/published/xk1ahw
http:/www.xmos.com/published/xc_en

	Introduction
	Illuminate an LED
	Flash an LED
	Flash and cycle LEDs at different rates
	Run tasks concurrently
	What to read next

