
AN10017 (1.0.0)

Application Note: AN10017

How to find the location of a crash using
XGDB
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows how to
find the location of a crash using XGDB.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM007417

AN10017 (1.0.0)

1 How to find the location of a crash using XGDB

If an exception occurs in the target code, XGDB can be used to find the location of the exception and
diagnose its root cause. For example, compile the following code ensuring that debug is enabled (-g):

int divide(int x, int y) {
return x / y;

}

int main() {
divide(5, 0);
return 0;

}

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM007417

AN10017 (1.0.0)

2 From within xTIMEcomposer Studio

Create a new debug configuration via Run->Debug Configurations->xCORE Applications, then start debug-
ging. Execution will now break when the exception occurs. The Debug view will display the trap type
information, in this case, ET_ARITHMETIC (caused by the divide by zero). It will also show the pc of the
excepting instruction. For more details the Registers view can be used to find the contents of the excep-
tion data register, which depending on the type of exception that occurred, can provide more information
as to its root cause.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM007417

AN10017 (1.0.0)

3 From the command line

For example, start XGDB, connect to the simulator and start debugging. Execution will now break when
the exception occurs, and the exception type will be displayed on the console. The stack trace of how
this location in the program was reached can be found using the backtrace command. You can then look
at the register contents to attempt to diagnose the root cause of the trap:

> xgdb a.xe
...etc...
(gdb) connect -s
0xffffc04e in ?? ()
(gdb) run
...etc...
Program received signal ET_ARITHMETIC, Arithmetic exception.
0x000100ba in divide (x=5, y=0) at find_the_location_of_a_crash.xc:10
10 return x / y;
(gdb) backtrace
#0 0x000100ba in divide (x=5, y=0) at find_the_location_of_a_crash.xc:10
#1 0x000100ce in main () at find_the_location_of_a_crash.xc:14
(gdb) print /x $spc
$1 = 0x100ba
(gdb) print /x $ssr
$2 = 0x0
(gdb) print /x $et
$3 = 0x7
(gdb) print /x $ed
$4 = 0x0

Note: In the above, the spc (saved program counter) and the ssr (saved status register) will contain the
values in the pc and the sr at the time of the exception. The et and ed registers contain the exception type
and exception data details. In this case, the exception type is 0x7, which corresponds to ET_ARITHMETIC
(see xs1b_user.h). The exception data register contents in general depend on the type of exception. For
example, for an ET_RESOURCE exception the exception data will contain the id of the resource causing
the trap. However, in the case of arithmetic exceptions, the ed will be set to zero.

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM007417

	How to find the location of a crash using XGDB
	How to find the location of a crash using XGDB
	From within xTIMEcomposer Studio
	From the command line

