
XS1 Ports: use and specification

(VERSION 1.02)

2008/11/25

Authors:

PETER HEDINGER
ALI DIXON
ROSS OWEN
NEIL RICHARDS
DAVID MAY
HENK MULLER

Copyright © 2008, XMOS Ltd.
All Rights Reserved



XMOS 1/34

1 Introduction

Ports define the interface between hardware attached to an XCore and software
running on an XCore. The port logic can take care of timing, serialisation/de-
serialisation, strobing and pattern matching. This document gives a number of
examples of how to use ports (Sections 2) followed by a specification of how to
use ports (Section 3). The examples are presented in the form of XC programs
and assembly programs, in combination with waveform diagrams. Reference
manuals for the libraries [1] and language [2] are documented separately.

2 Ports by Example

Below are a number of sample programs explaining how to use ports and many
port features. For a specification on how to use ports, see Section 3. The
simplest port toggles pins up or down, or samples the value of input pins. More
complex ports use specific times, handshaking, or conditions.

2.1 Simple ports: high and low wires

A simple program that toggles a pin high and low once is shown below:

#include <xs1.h>

out buffered port:1 x = XS1_PORT_1P;
clock ref = XS1_CLKBLK_REF;

int main(void) {
configure_out_port_no_ready(x, ref, 0);
x <: 1; // Set pin high
x <: 0; // Set pin low

}

A port is a logical end-point (in assembly and in XC) of one or more input or
output pins. A port is defined using a port declaration, and is then used by
using the input (:>) and output (<:) statements. The port declaration uses an
architecture port identifier, eg XS1_PORT_1P. This is translated into a resource
identifier in assembly, eg a word 0x00010F00.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 2/34

The port identifier XS1_PORT_1P refers to the XS1-architecture; a port that com-
prises 1 pins (the port width); and the P identifies the particular 1-bit wide port of
the processor. In assembly code this is translated into 0x00010F00, where the
01 is the port width, and 0F identifies the particular 1-bit wide port. Physically,
port 1P on the XS1 is connected to pin X0D39 where the 0 identifies the core
that the pin is connected to (core 0) and the digits are a logical pin number be-
tween 0 and 63 inclusive. The physical position of pin X0D39 on depends on the
packaging. A list of all ports and the mapping between pins and ports is listed in
Table 1 near the end of this document. The mapping of pins onto locations on
the package is provided in the data-sheet for your package.

This program configures its port by calling the function
configure_out_port_no_ready(x, ref, 0). This particular function initialises
the port to be an output port with initial value 0. The port is dedicated to have
“no ready signals” (ready signals are discussed in Section 2.4), and states that
the port shall be sampled using the reference clock (the variable ref set to
XS1_CLKBLK_REF, this is discussed in more detail in Section 2.2).

The program in Figure 1 shows a slightly more complex example of ports, using
both a 1-pin output port, and a 4-pin input port. The 4-pin input port is called
inP, and the 1-pin output port is called outP. The 4-pin port is port 4A which is
connected to pins X0D02, X0D03, X0D08, and X0D09; the 1-pin port is port 1B
which is connected to pin X0D01 (see Table 1 on page 30, all our programs run
on core 0 and hence connect to X0DN). The program continuously reads the
input port (it samples the 4 input pins), and outputs a “1” on the output port if
the input value exceeds 9. Note that unless configured otherwise, a value of “0”
is represented by a low voltage (0V) and a value of “1” is represented by a high
voltage (3.3V).

Example input and output to this program are shown at the bottom of Figure 1.
The input stimulus on port 4A (pins 2, 3, 8, and 9) is binary values 1000, 1010,
0010, and 0011; the program drives output values 0, 1, and 0 in response on
pin 1.

2.2 Timing I/O: A square wave on a 1-bit port

Many I/O operations need to be performed at some specific time. This may be
a time in relation to an external event, or a time in relation to the code being
executed. Depending on which is of interest, either timers or port counters can

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 3/34

#include <xs1.h>

out buffered port:1 outP = XS1_PORT_1B;
in buffered port:4 inP = XS1_PORT_4A;
clock ref = XS1_CLKBLK_REF;

int main(void) {
int value;
configure_out_port_no_ready(outP, ref, 0);
configure_in_port_no_ready(inP, ref);
while (1) {

inP :> value;
if (value > 9)

outP <: 1;
else

outP <: 0;
}

}

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

Port 1B, X0D01

Port 4A0, X0D02

Port 4A1, X0D03

Port 4A2, X0D08

Port 4A3, X0D09

Figure 1 Basic use of input and output ports.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 4/34

be used. Timers are 32-bit counters that are relative to the internal 100 MHz
reference clock. Port counters are 16-bit counters clocked by either an external
clock, or by a divided internal reference clock. Port counters are guaranteed
to perform I/O operations at precisely defined moments related to an externally
visible clock signal. Timers are discussed in the XC documentation[3, 2]; in this
document we focus on the port counters.

A simple example that pulls a pin high on the third clock, and that lowers it on
the fifth is shown in Figure 2. It uses two 1-bit ports, an output port on port 1B
(pin X0D01 on an XS1), and an input clock from some external source on port
1C (pin X0D02). The output port is declared as before, but the port used for the
clock signal has to be declared unbuffered; it is neither possible (nor desirable) to
buffer clock signals. The example also uses a clock block, which is the unit that
makes the pin into a clock. There are 5 clock blocks available, XS1 CLKBLK 1
.. XS1 CLKBLK 5, and you can connect each clock block to at most one input
clock. Alternatively, you can run a clock block from the divided reference clock.

Figure 2 also shows the timing diagram of the input stimulus and the resulting
output signal. The port counter is incremented on falling edges of the clock.
Note that the port counter simply counts clock edges on the input clock. A port
counter counts in the application clock domain, and is only a measure of time if
the input clock is a signal that has clock edges at regular intervals. If the input
clock is irregular (such as the one shown in Figure 2), then the port counter is
not a measure of time. There is a limit to the speed at which an external clock
can run, which can be found in the datasheet.

If no external clock is available, a port can be clocked by the internal reference
clock, and can be divided. The functions to configure the port this way are
set_clock_ref(clk) and set_clock_div(clk, divide). This will run the
clock at 100 MHz divided by two times the given 8-bit value divide. The clock
block can then be used to drive a clock on an output pin, and the clock block can
be used to clock input and output ports.

An example use of a generated clock is the code to drive an LCD screen. Without
going in much detail as to how an LCD screen is driven, an LCD screen requires
a clock signal (DCLK), a horizontal sync (HSYNC) a data ready (DTMG) and
red/green/blue data (RGB). The code shown in Figure 3 has a clock block that
drives DCLK, and is used to output values at the right time on the HSYNC,
DTMG and RGB ports. The clock runs at 2.5 MHz. The output is shown in the
same Figure. The port driving the clock is initialised by calling
configure_port_clock_output(DCLK_port,clk), which dedicates the given

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 5/34

out buffered port:1 toggle = XS1_PORT_1B;
in port inClock = XS1_PORT_1C;
clock clk = XS1_CLKBLK_1;

int main(void) {
int count;

configure_clock_src(clk, inClock);
configure_out_port_no_ready(toggle, clk, 0);
start_clock(clk);

toggle <: 0 @ count; // read port counter
while (1) {

count += 3;
toggle @ count <: 1; // timed output
count += 2;
toggle @ count <: 0; // timed output

}
}

3.3V
0V

3.3V
0V

Port 1C, X0D02

Port 1B, X0D01

13 14 15 16 17 18 19 20Value of Port timer

Figure 2 Use of a port counter to count input clocks.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 6/34

port to output the given clock signal.

2.3 Buffering, Serialising and Deserialising data

Ports have the capability to serialise and deserialise data. In order to declare a
port that serialises or deseralises the data, the port is specified to be wider than
the physical number of pins. The number after the port declaration in that case
specifies the transfer-width of the port.

An example program is shown in Figure 4. The first line declares oneBit to be
attached to a single physical pin (X0D12, port 1E) which is driven from a 32-bit
shift register (the :32 after the port keyword). The least significant bits of the
shift register drive the pin, and on each rising edge of the clock, the shift register
is shifted one position, until it has been shifted 32 places, after which the next 32-
bit word could be written into the shift register. Using a shift register reduces the
number of instructions required to output data, for one output operation prepares
32 output transitions.

An example where this is useful is situations where you drive systems that have
a high data rate, such as USB or Ethernet over a port that is only a few bits wide.
With a buffered port the program only has to interact with the port once every 32
bits.

Note that the port declaration specifies the number of bits that are transferred
in each input and output operation; the transfer-width. The port initialisation
specifies the number of physical pins attached to the port, the port width.

Bits are shifted in and out starting with the least significant bit. When you need to
start with the most significant bit you can use a single cycle bit-reverse operation
(BITREV) that can be called by invoking the bitrev() function. Figure 4 shows
the timing output related to the example program above. Note that in reality the
signal will be not as sharp as shown in Figure 4, and because of capacitance on
the output pin the signal will be slowly approaching one and zero. This can be
used as a feature if an analogue signal is to be generated: a 1-bit DA converter
can be built using a serialising 1-bit port and a resistor/capacitor low-pass filter
on the output pin.

Below is an example of serial to parallel conversion on an input port, driven
by a 25 MHz clock. The input port declaration declares a port referring to four
physical pins (X0D04 - X0D07), with an 8-bit input shift register. This allows

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 7/34

out buffered port:4 HSYNC_port = XS1_PORT_4F;
out buffered port:1 DTMG_port = XS1_PORT_1B;
out port DCLK_port = XS1_PORT_1A;
out buffered port:32 RGB_port = XS1_PORT_32A;
clock clk = XS1_CLKBLK_1;

void lcd_init() {
unsigned rows, lines, x, time = 0;
set_clock_div(clk, 20);
configure_out_port_no_ready(HSYNC_port, clk, 0);
configure_out_port_no_ready(DTMG_port, clk, 0);
configure_out_port_no_ready(RGB_port, clk, 0);
configure_port_clock_output(DCLK_port, clk);
start_clock(clk);
x = nextRGBSample();
while(1) {

time += 500;
for(int lines = 0; lines < 320; lines++) {

time += 8; HSYNC_port @ time <: 1;
time += 31; DTMG_port @ time <: 1;
RGB_port @ time <: x;
x = nextRGBSample();
for(int rows = 1; rows < 240; rows++) {

RGB_port <: x;
x = nextRGBSample();

}
time += 240; DTMG_port @ time <: 0;
time += 13; HSYNC_port @ time <:0;

}
}

}

3.3V
0V

3.3V
0V

Port 1A, CLK, X0D00

Port 4F0, HSYNC, X0D28

508 539Value of Port timers

3.3V
0V

Port 1B, DTMG, X0D01

3.3V
0V

Port 32A0, RGB, X0D49

3.3V
0V

Port 32A1, RGB, X0D50

779 792 800

Figure 3 Program for an LCD driver and signals generated. Only the lowest two bits
of the 32-bit port are shown; the signals are data dependent.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 8/34

out buffered port:32 oneBit = XS1_PORT_1E;
clock ref = XS1_CLKBLK_REF;

int main(void) {
configure_out_port_no_ready(oneBit, ref, 0);
oneBit <: 0xFFFF00AA;

}

A
0101

A
0101

0
0000

0
0000

F
1111

F
1111

F
1111

F
1111

3.3V

0V

0
ns

100
ns

200
ns

300
ns

Port 1E, X0D12

Figure 4 Program showing serialising port, and the signal generated.

two 4-bit values to be stored before they must be processed by software. As
with the output, using a deserialising port reduces the number of instructions
required to perform an input. The clock is declared in two parts (as discussed
in Section 2.2): an output port that will be used to make the clock signal visible
on a pin, and a clock block declaration. An example program and signals are
shown in Figure 5; it will read the value 0x28 into the variable x.

The data is sampled on the rising edges of the clock. The clock does not need
to be output on a port, but it has been output on port 1A (X0D00) in order to
clarify the timing diagram. The lowest bit of port 4B is connected to pin X0D04,
the highest to pin X0D07. When shifting the LSB is read first, resulting in 0x28
being read. Note that this code relies on when the clock starts - the next section
on strobing discusses how to read (and deserialise signals) at specific times.

The sampling can be performed on the rising edge of the clock if desired, by
setting the sdelay mode. The clock can also be inverted, meaning that the output
will happen on the rising edge, and input on the falling edge.

2.4 Using strobe signals

In many cases input and output signals are accompanied by strobing signals.
The ports on an XS1 can input and interpret strobe signals generated by out-

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 9/34

in buffered port:8 inP = XS1_PORT_4B;
out port clockOut = XS1_PORT_1A;
clock clk25 = XS1_CLKBLK_1;

int main(void) {
set_clock_ref(clk25);
set_clock_div(clk25,2);
configure_in_port_no_ready(inP, clk25);
configure_port_clock_output(clockOut,clk25);
start_clock(clk25);

inP :> int x;
}

0
ns

100
ns

200
ns

300
ns

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

Port 1A, X0D00

Port 4B0, X0D04

Port 4B1, X0D05

Port 4B2, X0D06

Port 4B3, X0D07

Sample Sample

Figure 5 Example showing the use of a 4-bit deserialising port.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 10/34

side sources, and ports can generate strobe signals to accompany outputted
data. These signals are known as ready-in and ready-out, and the port can be
configured in one of four modes:

• No ready signals: this is the normal mode that was used in all preceding
sections.

• Strobed master, in which case ready signals are only output. The config-
uration function requires a one bit output port that is to be used for ready-
output.

• Strobed slave, in which case ready signals are only input. The configura-
tion function requires a one bit input port that is to be used for ready-input.

• Bidirectional strobe, in which case ready out signals are both input and
output. The configuration function requires a one bit input port and a one
bit output port that are to be used for ready-input and ready-output.

As is the case with clocks, the ports that are used for ready input and output
cannot be buffered. When a ready input signal is used on a port, the port only
operates when the ready-input signal is high. When a ready output signal is
used, the port will raise the ready-output when it operates. If active low signals
are required, you can simply invert the port used for the ready signal(s).

Below we give two example sections of code, one that uses ready-output signals,
and one that uses ready-input signals. The LCD driver discussed earlier requires
a pin (DTMG) to be pulled high when data is output. After declaring the RGB
port to be a strobed master that uses DTMG as the ready output signal we can
simply remove the outputs to DTMG. This is shown in Figure 6.

An example section of slave code is shown in Figure 7. This code uses a ready
input signal, and samples data on a 4-bit port when the ready-input strobe is
high. When running this code on the stimulus shown at the bottom of Figure 7,
the input statement will input the value 0x82.

2.5 Conditional input

It is often useful to wait for some condition on an input line. For example, a
program may wait for a wire to go high or for a specific bit pattern to be sampled
on the line. The XS1 ports allow a program to wait for one of two conditions:

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 11/34

out buffered port:4 HSYNC_port = XS1_PORT_4F;
out port:1 DTMG_port = XS1_PORT_1B;
out port DCLK_port = XS1_PORT_1A;
out buffered port:32 RGB_port = XS1_PORT_32A;
clock clk = XS1_CLKBLK_1;

void lcd_init(chanend toLCD) {
unsigned rows, lines, x, time = 0;
set_clock_ref(clk);
set_clock_div(clk, 20);
configure_port_clock_output(DCLK_port, clk);
configure_out_port_no_ready(HSYNC_port, clk, 0);
configure_out_port_strobed_master(RGB_port, DTMG_port, clk, 0);
start_clock(clk);

x = inuint(toLCD);
while(1) {

time += 500;
for(int lines = 0; lines < 320; lines++) {

time += 8;
HSYNC_port @ time <: 1;
time += 31;
RGB_port @ time <: x;
x = inuint(toLCD);
for(int rows = 1; rows < 240; rows++) {

RGB_port <: x;
x = inuint(toLCD);

}
time += 240 + 13;
HSYNC_port @ time <:0;

}
}

}

Figure 6 Driving an LCD display using ready output; the output is the same as shown
in Figure 3.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 12/34

in buffered port:8 inP = XS1_PORT_4B;
in port clockIn = XS1_PORT_1A;
in port ready = XS1_PORT_1B;
clock clk = XS1_CLKBLK_2;

int main(void) {
set_clock_src(clk, clockIn);
configure_in_port_strobed_slave(inP, ready, clk);
start_clock(clk);

inP :> int x;
}

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

Port 1A, X0D00

Port 4B0, X0D04

Port 4B1, X0D05

Port 4B2, X0D06

Port 4B3, X0D07

Sample Sample

3.3V
0V

Port 1B, X0D01

Figure 7 Program and wave-forms showing use of ready-input signal.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 13/34

in buffered port:1 oneBit = XS1_PORT_1B;
out buffered port:4 counter = XS1_PORT_4A;
clock ref = XS1_CLKBLK_REF;

int main(void) {
int oldValue = 0, i = 0;
configure_in_port_no_ready(oneBit, ref);
configure_out_port_no_ready(oneBit, ref, 0);
oneBit :> oldValue;
while (1) {

oneBit when pinsneq(oldValue) :> oldValue;
counter <: ++i;

}
}

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V

Port 1B, X0D01

Port 4A0, X0D02

Port 4A1, X0D03

Port 4A2, X0D08

Port 4A3, X0D09

Figure 8 Program and wave forms showing conditional input.

equal or not equal to some value. As an example, the code in Figure 8 counts
the number of transitions on its input wire. Example input stimuli and expected
output are shown below the code.

Patterns can be more complex on multi-bit ports. For example, in order to wait
for a preamble on an Ethernet cable the only operation required is:

in buffered port:32 ethData = XS1_PORT_4A;

int main(void) {
ethData when pinseq(0xD) :> int _;
//... packet has started...

}

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 14/34

2.6 Summary of port configuration

• Ports must be configured in order to specify how many (if any) ready wires
are used, or whether this port should be driving a clock. This is done by
calling a configure_*_port_* function. After this function completes, the
port is ready to be used for input and output. The functions used to set the
mode are
configure_*_port_no_ready,
configure_*_port_handshake,
configure_*_port_strobed_master,
configure_*_port_strobed_slave, and
configure_port_clock_output.

• Ports may have some modes set, such as inverting, pull-mode, and sde-
lay. These modes are set using the appropriate set_port_* function, and
must be called before configuring the port. set_port_inv(),
set_port_sample_delay(), and set_port_pull_up() can be used to
set the appropriate mode.

• Each port is clocked, either by the default reference clock, or by a specific
clock. The port source is specified in the call to configure.

• You can configure clock blocks to either generate a clock based on a di-
vided reference clock, or use an input pin as a clock. When you are done
configuring a clock you must call start_clock(). Call this function after
all ports are configured, and you are guaranteed that all ports will have the
same port counter values.

3 Port specification

Ports define the interface between hardware attached to an XCore and software
running on an XCore. The port logic can take care of timing, serialisation/dese-
rialisation, strobing and pattern matching.

Ports can be be configured to be in one of 10 modes. Most of those modes are
strobed, where data is input and output depending on the presence of strobing
signals. Two special modes implement input sampling and bidirectional I/O. The
ports are listed below, and are discussed in detail in subsequent sections.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 15/34

Direction Strobing Principal operations
Input Bidirectional Input, conditional input, both optionally timed
Input Master Input, conditional input, both optionally timed
Input Slave Input, conditional input, both optionally timed
Input Implicit Input, conditional input, both optionally timed
Output Bidirectional Output, optionally timed
Output Master Output, optionally timed
Output Slave Output, optionally timed
Output Implicit Output, optionally timed
Input - Timed sampling input
Bidirectional - Sampling Input, output

Buffered ports, discussed in Section 3.1, should be used unless bidirectional
ports (Section 3.3) or a precise timed sample (Section 3.2) are required.

All input and output operations always record the value of the port counter. This
value records when the last I/O operation happened, as measured according to
the port’s clock. All ports have a clock associated with them; the clock can be
set to come from an internal source (optionally divided) or an external source.
Clocks are discussed in Section 3.4

3.1 Buffered modes

Buffered modes allow:

• Optional use of a FIFO to serialise and deserialise data.

• Use of up to two pins for strobing.

• Perform conditional input on data.

3.1.1 FIFO

A double-buffering FIFO can be enabled on for 1, 4, 8, 16, and 32-bit ports.
The FIFO serialises (output) or deserialises (input) data. The double buffering
allows the entire contents of the FIFO to be copied for transfer to (input) or from
(output) the program. This enables data to be serialised using a high-frequency
clock decoupled from the program.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 16/34

The FIFO holds at most bpw bits; this enables a single word-wide operation to
transfer the entire contents of the FIFO to or from a register. Hence, for a w-bit
wide port, the size of the FIFO is limited to bpw

w elements. The topmost w bits of
the FIFO are the value that is most recently clocked in. The lengths of the FIFO
that are supported are:

• 1-bit ports: 4, 8, 32.

• 4-bit ports: 8 (2 elements), 32 (8 elements).

• 8-bit ports: 32 (4 elements).

• 16-bit ports: 32 (2 elements).

• 32-bit port: double buffering only.

On input, when the FIFO has been filled up, all bits are transferred to the transfer
register, and the FIFO is cleared. On output, when the FIFO is empty, data is
transferred from the transfer register into the FIFO, and the transfer register is
cleared. The value of the port counter is recorded when the FIFO is transferred
to or from the double buffer, and made available as a “timestamp”.

The FIFO can serialise (output) and deserialise (input) data. On output, data is
shifted out starting with the least significant bit (nibble, byte, or 16-bit entity). On
input, the data is read in starting with the least-significant bit.

3.1.2 Strobing

Up to two pins can be used for strobing of the data. This corresponds to four
strobing modes:

• Bidirectional strobing, where both an input strobe and an output strobe are
used. When both strobes are high, the data is ready and can be sampled.

• Master strobing, where only an output strobe is generated by the XCore.
This strobe is pulled high to signal that data is available (OUT) or to signal
that there is space to input data (IN). This is equivalent to bidirectional
strobing with a high input strobe.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 17/34

• Slave strobing, where only an input strobe is read by the XCore. Data is
only input or output when the input strobe is high. This is equivalent to
bidirectional strobing with a high output strobe.

• Implicit strobing, where data is transferred every clock cycle. This is the
equivalent of bidirectional strobing with both strobes high.

If the port is an input port, then data is clocked in from the pins into the FIFO, and
then subsequently made available to the ISA (when the FIFO is full). If the port
is an output port, then data is clocked out from the FIFO onto the output pins.
Data has to be supplied to the FIFO fast enough to keep up with the clocked
strobing.

In the case of bidirectional or master strobing on an input port, the output strobe
is high if there is room in the FIFO, and low otherwise. On an output port, the
output strobe is high if there is data in the FIFO, and low otherwise.

3.1.3 Timed and conditional I/O

Input operations can be delayed by making the input timed and/or conditional.
If an input is timed then the port shall wait until the port counter has reached
the specified value. If an input is conditional, then the port shall wait until the
specified input condition is met. If both timing and conditions are used, then
the input will first wait for the specified value on the port counter, and then for
the specified condition. While waiting, the FIFO clocks data in according to the
strobing mode. Any data that overflows is discarded.

Output operations can be delayed by making the output timed. If an output is
timed, then the port shall wait until the port counter has reached the specified
value. While waiting, the FIFO clocks data out according to the strobing mode.
If there is insufficient data in the FIFO, the last data values held are held on the
pins.

The port counter is 16 bits wide and counts edges on its associated clock.

When performing a conditional input on a buffered port, the strobe output is kept
high while the condition does not match; any non matching input is discarded.
Then the strobe is kept high for as long as there is space in the FIFO and double
buffer. When performing a timed input on a buffered port, the strobe output is
kept low until the port counter reaches the specified value; at that stage, the

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 18/34

strobe is pulled high, requesting data, until the FIFO and secondary buffer are
filled up. When performing a timed output on a buffered port, the strobe output
is kept low until the port counter reaches the specified value; at that stage, the
strobe is pulled high, outputting data, until the FIFO and secondary buffer are
empty.

3.2 Sampling input mode

When a port is configured in sampling mode, the Xcore I/O instructions in the
ISA communicate directly with the hardware pins. When an IN is performed in
sampling mode, the data latched at the previous clock edge is returned. If an
IN is performed twice within a clock-cycle, then the second IN will block until
the next clock edge. Input can be timed, in which case the input operation is
performed immediately after the port counter reaches the specified value. The
data that is input is the data actually clocked in at that specific moment.

Input can be delayed until a condition is met, for example, until the port does not
equal the value ’0xA’. This condition stays on the port, hence only matching data
will be read until the condition is reset.

When using a WAIT instruction to wait for conditional input, the data must be
input when the WAIT completes - this will return the data that matched the con-
dition. If this data is not read, a later read will return the matched data.

3.3 Bidirectional mode

When a port is configured in bidirectional mode, it will tri-state when an IN oper-
ation is performed, and will start to drive when an OUT operation is performed.
In the case of a timed IN or OUT, a change in tri-state or drive mode is de-
layed until the port counter reaches the specified value. When a conditional IN
is performed, the input pins are tristated on executing the IN instruction (not on a
SETD or SETC in the case of a conditional in). No buffering is available in Bidi-
rectional mode. IN operations behave as in the “Sampling input mode” output
operations behave as buffered without ready wires.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 19/34

3.4 Clocks

All ports are synchronised to a clock provided by a clock block. By default, the
ports are clocked from a clock block that runs at the reference frequency of 100
MHz. A port can be clocked from a different clock block, which can be driven
using either a divided reference clock, or using a clock from an external source.
Note that any external clock is itself clocked-in using the 400 MHz core clock.
When using ports with a ready-input signal, this ready input is dealt with by the
clock block.

There are five clock blocks available for general use. These are not allocated
by the compiler or architecture, and like ports have to be assigned by the pro-
grammer. They are referred to by using one of CLKBLK 1 to CLKBLK 5. The
reference clock block is denoted XS1 CLKBLK REF.

clock blocks govern port delays (timed input, timed output), port counters, and
clocking of the signal. clock blocks can also generate a clock on an external pin.

3.5 Use from XC

All input and output operations can be timestamped by adding “@ variable”
to the right of an input or output statement.

3.5.1 Buffered ports

A buffered port is declared in XC using the keyword buffered. If a FIFO is re-
quired, this is denoted by inserting :length immediately after the keyword port.
For example:

in buffered port:Y x;
out buffered port:Y z;

The port must subsequently be configured with the appropriate clock input and
ready signals; unconfigured ports have no defined behaviour. The configuration
can be performed using a single function call, or can be written as a sequence
of low-level operations:

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 20/34

Bidirectional Strobe assigning ready pins for bidirectional strobe to a port

void configure_in_port_handshake(
void port p, in port readyin,
out port readyout, clock clk);

void configure_out_port_handshake(
void port p, in port readyin,
out port readyout, clock clk,
int initial);

Master Strobe assigning ready pin for master strobe to a port

void configure_in_port_strobed_master(
void port p, out port readyout,
clock clk);

void configure_out_port_strobed_master(
void port p, out port readyout,
clock clk, int initial);

Slave Strobe assigning ready pin for slave strobe to a port

void configure_in_port_strobed_slave(
void port p, in port readyin,
clock clk);

void configure_out_port_strobed_slave(
void port p, in port readyin,
clock clk, int initial);

No Strobe Configure a port that needs no strobing

void configure_in_port_no_ready(
void port p, clock clk);

void configure_out_port_no_ready(
void port p, clock clk, int initial);

Syntax for input:

• x :> y;

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 21/34

• x @ t :> y;

• x when pinsneq(1) :> y;

• x @ t when pinsneq(1) :> y;

Syntax for output:

• x <: y;

• x @ t <: y;

3.5.2 Sampling Input

A port is declared as sampling input by using in port as the type. Subse-
quently, a timed input can be performed:

in port x;

... x @ t :> y ...

3.5.3 Bidirectional I/O

A port is declared as a bidirectional port by using port as the type. Subse-
quently, output and input operations can be interleaved with only few restrictions:

port x;

... x :> y ...

... x @ t :> y ...

... x when pinsneq(1) :> y ...

... x <: y ...

... x @ t <: y ...

It is illegal to perform a select on the port immediately after an output.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 22/34

3.5.4 Clock output

A clock can be output onto a pin by configuring the clock block accordingly:

void configure_port_clock_output
(void port p, clock c)

3.6 Use from Assembly

3.6.1 Buffered modes

Before a buffered port can be used, it must be switched on. The code below
switches the port on and configures it to be buffered. After that, one of the four
following code segments is required to set it to the appropriate strobing mode.

SETC R0,SETC_INUSE_ON
LDC R5,XS1_CLKBLK_REF; not required
SETCLK R5,R0 ; after reset
SETC R0,SETC_BUF_BUFFERS
LDC R1,width
SETTW R0,R1

In order to configure the bidirectional strobe, the ready pins have to be assigned
to a port. The ready input is assigned via the clock. The code below assumes
that R0 is the port to be configured, R1 the ready input wire, R2 the ready output
pin, and R3 the clock.

SETRDY R1,R3
SETCLK R3,R0
SETC R0,CTRL_RDY_HANDSHAKE
SETC R0,CTRL_RUN_CLRBUF
SETRDY R0,R2
SETC R2,CTRL_PORT_READYPORT

An output port needs to be initialised with its initial value (R4) prior to configu-
ration. In addition, the first two lines will cause the port to be reset to using the
reference clock.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 23/34

OUT R4,R0
SYNCR R0
SETRDY R1,R3
SETCLK R3,R0
SETC R0,CTRL_RDY_HANDSHAKE
SETC R0,CTRL_RUN_CLRBUF
SETRDY R0,R2
SETC R2,CTRL_PORT_READYPORT

In order to configure the master strobe, the ready output pin has to be assigned
to a port. The code below assumes that R0 is the port to be configured, R2 the
ready output pin, and R3 the clock.

SETCLK R3,R0 ; not required if REF
SETC R0,CTRL_RDY_MASTER
SETC R0,CTRL_RUN_CLRBUF
SETRDY R0,R2
SETC R2,CTRL_PORT_READYPORT

An output port needs to be initialised with its initial value (R4) prior to configu-
ration. In addition, the first two lines will cause the port to be reset to using the
reference clock.

OUT R4,R0
SYNCR R0
SETCLK R3,R0 ; not required if REF
SETC R0,CTRL_RDY_MASTER
SETC R0,CTRL_RUN_CLRBUF
SETRDY R0,R2
SETC R2,CTRL_PORT_READYPORT

In order to configure the slave strobe, the ready input pin has to be assigned to
a port. The ready input is assigned via the clock. The code below assumes that
R0 is the port to be configured, R1 the ready input wire, and R3 the clock.

SETRDY R1,R3

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 24/34

SETCLK R3,R0
SETC R0,CTRL_RDY_STROBED
SETC R0,CTRL_RDY_SLAVE
SETC R0,CTRL_RUN_CLRBUF

An output port needs to be initialised with its initial value (R4) prior to configu-
ration. In addition, the first two lines will cause the port to be reset to using the
reference clock.

OUT R4,R0
SYNCR R0
SETRDY R1,R3
SETCLK R3,R0
SETC R0,CTRL_RDY_STROBED
SETC R0,CTRL_RDY_SLAVE
SETC R0,CTRL_RUN_CLRBUF

In order to configure implicit strobing, the clock has to be assigned to a port. The
code below assumes that R0 is the port to be configured and R3 the clock.

SETCLK R3,R0
SETC R0,CTRL_RDY_NOREADY
SETC R0,CTRL_RUN_CLRBUF

An output port needs to be initialised with its initial value (R4) prior to configu-
ration. In addition, the first two lines will cause the port to be reset to using the
reference clock.

OUT R4,R0
SYNCR R0
SETC R0,CTRL_RDY_NOREADY
SETC R0,CTRL_RUN_CLRBUF

In all cases the FIFO can be set by executing the following code fragment:

XXXX

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 25/34

Input from a buffered port is performed by using one of the following four code
fragments:

; Input
IN y, x

; Timed input; the IN can be preceeded by a WAIT.
SETPT x, t
...
IN y, x

; Conditional input; the IN can be preceeded by a
; WAIT.

SETC x, COND
SETD x, DATA
...
IN y, x

; Timed conditional input; the IN can be preceeded
; by a WAIT.

SETPT x, t
SETC x, COND
SETD x, DATA
...
IN y, x

Conditional input (SETC) is automatically reset to unconditional on a match.
This allows subsequent data to be read in without delay into the FIFO. A timed
conditional input will not switch the condition on until the counter has reached
the specified value.

Output to a buffered port is performed by using one of the following two code
fragments:

; Output
OUT y, x

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 26/34

; Timed output; the OUT must be in time, otherwise
; data will be INPUT at that time. A timed OUT
; will not block, but a subsequent SETPT or OUT
; will block if the previous OUT has yet to happen

SETPT x, t
...
OUT y, x

3.6.2 Sampling input

A sampling input port must be switched on prior to use. After that, the clock must
be set. On reset, all clocks are set to XS1 CLKBLK REF.

SETC R0,SETC_INUSE_ON
LDC R5,XS1_CLKBLK_REF; warm reset only
SETCLK R5,R0

There are then three methods for inputting data:

; Timed input; the IN can be preceeded by a WAIT.
SETPT x, t
...
IN y, x

Behaviour of the SETC instruction is subtly different from a buffered SETC; the
condition is not reset, hence only matching data is read until the port is made
unconditional.

3.6.3 Bidirectional I/O

A bidirectional port must be switched on prior to use. After that, the clock must
be set. On reset, all clocks are set to XS1 CLKBLK REF.

SETC R0,SETC_INUSE_ON

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 27/34

LDC R5,XS1_CLKBLK_REF; warm reset only
SETCLK R5,R0

Bidirectional input/output uses the same sequence of instructions for input, but
no WAIT can be issued in the case of a conditional IN that follows an OUT. In
order to perform an output, one of the following two sequences is used.

; Input
IN y, x

; Output
OUT y, x

; Timed input; the IN is guaranteed to return the
; data read at the specified time.

SETPT x, t
...
IN y, x

; Timed output; the OUT must be in time, otherwise
; data will be INPUT at that time. The OUT will not
; block, but a subsequent SETPT or OUT will block
; if the OUT has yet to happen.

SETPT x, t
...
OUT y, x

; Conditional input; the IN can be preceeded by
; a WAIT instruction

SETC x, COND
SETD x, DATA
...
IN y, x

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 28/34

3.6.4 Clock output

In order to output the clock of clock block R5 to port R0 use the following assem-
bly sequence:

SETCLK R5,R0
SETC R0,CTRL_PORT_CLOCKPORT

3.7 Drive modes

By default a pin is driven both high and low. It can be set to just drive high on
a 1 (and become high impedance on 0). This is done by calling the following
C-primitive:

set_port_pull_up(void port p);

Or the following assembly instruction:

SETC R0,CTRL_DRIVE_PULL_UP

A 1-bit port can be set to invert all data on both input and output

set_port_inv(void port p);

Or the following assembly instruction:

SETC R0,CTRL_INV_INVERT

A PEEK instruction is available to inspect the value of the port pins bypassing all
mechanisms described before. This can be used to, for example, check whether
a pull-up port is high or low.

PEEK R0,x

Gets the current value on port x into R0.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 29/34

3.8 Hardware Port pin-out

The XS1 architecture has 16 logical ports, and the total number of pins by far
exceeds the number of pins on the package. Ports, and Xlinks are therefore
multiplexed, and there is a defined precedence when overlapping ports and links
are used. The

3.8.1 Precedence

The mapping of ports to pins is shown in Table 1. This table lists for each pin
which ports and links can be connected to it. Links and ports on the left hand
side of the table have precedence over ports on the right hand side of the table.
Each port is identified by its width (the first number 1, 4, 8, 16, or 32) and a
letter that distinguishes multiple ports of the same width (A-P). The bits of the
port are identified with a superscripted digit 0-31. Links are identified by means
of a single letter identifier A-D. The wires of a link are identified by means of a
superscripted digit 0-4.

The port or link that is actually connected to a pin is determined by the program
running on the XS1. For each core, software can enable ports and links as
required:

• If a link is enabled, then this link will have access to the pins; the pins of
the underlying ports will be disabled.

• If a port is enabled then it will overrule any ports with higher widths that it
shares its pins with.

For example, suppose that on the software on core 2 link enable link C, and
ports 32A, 4C, and 8B. In that case:

• X2D01 - X2D10 will be connected to link C.

• X2D14, X2D15, X2D20, X2D21 will be connected to port 4C.

• X2D16 - X2D19 will be connected to bits 2 to 5 of port 8B.

• X2D49 - X2D70 will be connected to bits 0 to 19 of port 32A.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 30/34

⇐ highest Precedence lowest⇒
Pin link 1-bit ports 4-bit ports 8-bit ports 16-bit ports 32-bit port
XnD00 1A
XnD01 A4 in/out 1B
XnD02 A3 in/out 4A0 8A0 16A0 32A20

XnD03 A2 in/out 4A1 8A1 16A1 32A21

XnD04 A1 in/out 4B0 8A2 16A2 32A22

XnD05 A0 in/out 4B1 8A3 16A3 32A23

XnD06 A0 out/in 4B2 8A4 16A4 32A24

XnD07 A1 out/in 4B3 8A5 16A5 32A25

XnD08 A2 out/in 4A2 8A6 16A6 32A26

XnD09 A3 out/in 4A3 8A7 16A7 32A27

XnD10 A4 out/in 1C
XnD11 1D
XnD12 1E
XnD13 B4 in/out 1F
XnD14 B3 in/out 4C0 8B0 16A8 32A28

XnD15 B2 in/out 4C1 8B1 16A9 32A29

XnD16 B1 in/out 4D0 8B2 16A10

XnD17 B0 in/out 4D1 8B3 16A11

XnD18 B0 out/in 4D2 8B4 16A12

XnD19 B1 out/in 4D3 8B5 16A13

XnD20 B2 out/in 4C2 8B6 16A14 32A30

XnD21 B3 out/in 4C3 8B7 16A15 32A31

XnD22 B4 out/in 1G
XnD23 1H
XnD24 1I
XnD25 1J
XnD26 4E0 8C0 16B0

XnD27 4E1 8C1 16B1

XnD28 4F0 8C2 16B2

XnD29 4F1 8C3 16B3

XnD30 4F2 8C4 16B4

XnD31 4F3 8C5 16B5

XnD32 4E2 8C6 16B6

XnD33 4E3 8C7 16B7

XnD34 1K
XnD35 1L
XnD36 1M 8D0 16B8

XnD37 1N 8D1 16B9

XnD38 1O 8D2 16B10

XnD39 1P 8D3 16B11

XnD40 8D4 16B12

XnD41 8D5 16B13

XnD42 8D6 16B14

XnD43 8D7 16B15

XnD49 C4 in/out 32A0

XnD50 C3 in/out 32A1

XnD51 C2 in/out 32A2

XnD52 C1 in/out 32A3

XnD53 C0 in/out 32A4

XnD54 C0 out/in 32A5

XnD55 C1 out/in 32A6

XnD56 C2 out/in 32A7

XnD57 C3 out/in 32A8

XnD58 C4 out/in 32A9

XnD61 D4 in/out 32A10

XnD62 D3 in/out 32A11

XnD63 D2 in/out 32A12

XnD64 D1 in/out 32A13

XnD65 D0 in/out 32A14

XnD66 D0 out/in 32A15

XnD67 D1 out/in 32A16

XnD68 D2 out/in 32A17

XnD69 D3 out/in 32A18

XnD70 D4 out/in 32A19

Table 1 Available links and ports for each pin in order of decreasing precedence.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 31/34

Normally, the system designer will be ensure that there is no overlap, but the
precedence has been designed so that, if required, portions of the wider ports
can still be used when overlapping narrower ports are used. Note that the rel-
ative place of input and output links depends on the core number in order to
simplify routing tracks on a PCB.

3.8.2 Banks

Table 1 is divided in six parts which are six banks. Different packaging options
export different numbers of banks; all banks of all cores may be exported (512
BGA), or only four banks of each of two cores (144 BGA). The first few banks
have a selection of 1, 4, and 8 bit ports, and a link each. Banks further down
incorporate port 32. On small packages the 32-bit port will not be available.

3.8.3 Port identifiers

Each port is, architecturally, represented with a bpw-bit identifier, called a re-
source identifier. The least significant byte of a port-resource-identifier is 0
(identifying this as a port as opposed to for example a channel or timer), the
next bytes identifies the port and the width of the port. A full list of ports is given
in Table 2. Note that in almost all cases one can use XS1_PORT_1E rather than
0x10600 since the include file xs1.h contains all mappings.

Acknowledgements

Many thanks to Robert Jarnot (JPL) and Koen Buskes for their feedback on
earlier versions of this document.

References

[1] XC library documetation. Website, 2008. https://www.xmos.com/
support/documentation.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25

https://www.xmos.com/support/documentation
https://www.xmos.com/support/documentation


XMOS 32/34

Port name Resource identifier
XS1_PORT_32A 0x200000

XS1_PORT_16A 0x100000

XS1_PORT_16B 0x100100

XS1_PORT_8A 0x80000

XS1_PORT_8B 0x80100

XS1_PORT_8C 0x80200

XS1_PORT_8D 0x80300

XS1_PORT_4A 0x40000

XS1_PORT_4B 0x40100

XS1_PORT_4C 0x40200

XS1_PORT_4D 0x40300

XS1_PORT_4E 0x40400

XS1_PORT_4F 0x40500

XS1_PORT_1A 0x10200

XS1_PORT_1B 0x10000

XS1_PORT_1C 0x10100

XS1_PORT_1D 0x10300

XS1_PORT_1E 0x10600

XS1_PORT_1F 0x10400

XS1_PORT_1G 0x10500

XS1_PORT_1H 0x10700

XS1_PORT_1I 0x10a00

XS1_PORT_1J 0x10800

XS1_PORT_1K 0x10900

XS1_PORT_1L 0x10b00

XS1_PORT_1M 0x10c00

XS1_PORT_1N 0x10d00

XS1_PORT_1O 0x10e00

XS1_PORT_1P 0x10f00

Table 2 Resource identifiers for all XS1 ports

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25



XMOS 33/34

[2] Douglas Watt and Richard Osborne and David May. XC Reference Man-
ual (8.7). Website, 2008. http://www.xmos.com/published/
xc87.

[3] XC tutorial. Website, 2008. https://www.xmos.com/support/
documentation.

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25

http://www.xmos.com/published/xc87
http://www.xmos.com/published/xc87
https://www.xmos.com/support/documentation
https://www.xmos.com/support/documentation


XMOS 34/34

XMOS Ltd is the owner or licensee of this design, code, or Information (collec-
tively, the “Information”) and is providing it to you “AS IS” with no warranty of any
kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementa-
tion thereof, is or will be free from any claims of infringement and again, shall
have no liability in relation to any such claims.

(c) 2008 XMOS Limited - All Rights Reserved

XS1 PORTS: USE AND SPECIFICATION (1.02) 2008/11/25


	Introduction
	Ports by Example
	Simple ports: high and low wires
	Timing I/O: A square wave on a 1-bit port
	Buffering, Serialising and Deserialising data
	Using strobe signals
	Conditional input
	Summary of port configuration

	Port specification
	Buffered modes
	FIFO
	Strobing
	Timed and conditional I/O

	Sampling input mode
	Bidirectional mode
	Clocks
	Use from XC
	Buffered ports
	Sampling Input
	Bidirectional I/O
	Clock output

	Use from Assembly
	Buffered modes
	Sampling input
	Bidirectional I/O
	Clock output

	Drive modes
	Hardware Port pin-out
	Precedence
	Banks
	Port identifiers



