Programming XC on XMQOS Devices

Douglas Watt

Updated versions of this document are available at:
XC Programming Guide: http://www.xmos.com/xc-programming-guide
XC Specification: http://www.xmos.com/xc-specification

XMOS

Programming XC on XMOS Devices
by Douglas Watt

The authors have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for direct, indirect, incidential or consequential damages in connection with or arising out of the use
of the information or programs contained herein. No representation is made that the information or
programs are or will be free from any claims of infringement and again, the authors shall have no
liability in relation to any such claims.

XMOS

Copyright © 2009 by XMOS Limited.
Cover photo by Jason Mayes, copyright © 2009 by XMOS Limited.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

Trademarks: XMOS and the XMOS logo are registered trademarks of XMOS Limited in the United
Kingdom and other countries, and may not be used without written permission. All other trademarks
are property of their respective owners. Where those designations appear in this book, and XMOS
was aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors typeset this book using ITgX in Lucida Bright, Lucida Sans and Computer Modern Type-
writter. Tom Hunt produced the XMOS documentation build system.

XMOS also publishes its books in electronic formats. Some content that appears in print may not be
available in electronic books.

For information on XMOS products, visit us on the Web: www.xmos . com.

Because of the dynamic nature of the Internet, any Web addresses or links contained in this book
may have changed since publication and may no longer be valid.

Printed and bound by CPI Antony Rowe, Chippenham.

ISBN: 978-1-907361-00-5 (PBK)
ISBN: 978-1-907361-03-6

Published by XMOS Limited.

Welcome to XMOS

The XMOS architecture enables a combination of interface, digital signal processing
and control functions to be performed in software. An XMOS device consists of one or
more XCores, each comprising an event-driven multi-threaded processor architected
for real-time performance with tightly integrated I/0 and on-chip memory. Each
processor has hardware support for executing several threads concurrently and has
dedicated instructions for input and output.

4 Link to another device
{ 1 N\
|
XCore 0 : XCore 1
i Thread 0 ‘I----. |
""""""" ! |
- | | L
i | | |__T£r£a£i_]_|
_____________ i |
i Thread 2 b--d I :
""""""" | |
| |
| I N S
o Switch
Full I I i
< — Thread 5 #-----% H »
------------------- H £
temnnn i Thread 6 — <

The architecture is deterministic, with each thread guaranteed a slice of the pro-
cessing. The threads can execute computations, handle real-time I/O operations
and respond to multiple events. The I/O pins can be sampled or driven using a
single instruction, and data rates can be controlled using timers or clocks. A high-
performance switch enables communication between processors and makes it easy

Welcome to XMOS

to construct systems from multiple devices. Communication between threads on
a processor incurs no latency, and between processors the latency can be deter-
mined for a known communication pattern. The hardware is described in a separate
book [1].

Programming Model

Programs are written using a combination of XC, C and C++. XC provides extensions
to C that simplify the control over concurrency, I/O and time. These extensions
map directly onto XCore hardware resources such as threads, channels and ports,
avoiding the need to make extensive use of library calls. XC’s constructs are efficient—
compiling into short instruction sequences, and safe—free from many sources of
deadlock, race conditions and memory violations. This makes programs easy to
write, understand and debug. The XC language is fully described in this book.

Tools Architecture

The XMOS tools are based on a standard embedded development flow and are built
upon industry-standard platforms, making them intuitive and easy to use.

XMOS DEVELOPMENT ENVIRONMENT

PG

COMPILER COLLECTION

BINARY

[SIMULATOR][BOARD UTILITIES]

A

4

: [HARDWARE]

Welcome to XMOS

The concurrent and real-time capabilities of the language and architecture are sup-
ported by the tools through all stages of development:

The compiler toolchain statically analyses generated binary code, attempting
to prove timing assertions specified in the source. This results in code that is
portable across multiple devices with different timing characteristics.

The compiler toolchain generates a single binary file that includes instruction
and data segments for all devices. The simulator and board utilities operate on
this file format, hiding complexity from the programmer.

An XN file describes the target platform, which may include networks of XMOS
devices, SPI flash memory, an oscillator and JTAG scan chain. XN files allow
the tools to fully automate system boot and configuration.

The board utilities can configure a system to boot from a host development PC,
on-board flash memory or on-chip OTP memory.

The debugger interacts with all processors on the target platform, present-
ing a collection of threads to the programmer that can be viewed together.
This allows XMOS devices to be debugged in the same way as conventional
processors.

The tools are described in a separate user guide [2].

How to Read This Book

The main chapters in this book form a tutorial on how to write XC programs for
the XMOS architecture. The chapters are complemented by a set of appendices that
provide the full XC specification and details of the XC implementation on the first
generation of XMOS devices: the XS1. The tutorial assumes some prior programming
experience.

Chapter 1 outlines the support for computation in XC, including arithmetic

expressions, control-flow constructs and functions.

Chapter 2 explains how to input and output data on ports, which interface a

device with external components. It shows how to control I/0 data
rates using timers and how to interface multiple components using
the select statement.

Chapter 3 shows how to run multiple tasks concurrently as separate threads that

use channels to communicate with one another.

Chapter 4 describes how to synchronise I/0 operations to a clock, recording and

controlling on which edge each input and output occurs.

Vi

Welcome to XMOS

Chapter 5 demonstrates how buffers in the ports can improve overall perfor-
mance by decoupling I/0 operations from computations.

Chapter 6 explains how to serialise data onto I/0O pins and how to interpret and
generate strobe signals using built-in capabilities of the ports.

Appendix A provides the official XC language specification.
Appendix B provides the official XC I/0O semantics of ports.

Appendix C documents the XS1 implementation of XC, including support for the
different I/0 operations, the port-to-pin mapping, and the size and
alignment of XC’s data types.

The computational framework of XC is similar to C, in particular with respect to its
type system and control-flow constructs. Experienced C programmers may therefore
wish to read Chapters 2-6 first, which cover the I/O and concurrency constructs.
These chapters should be read in order as each chapter builds upon concepts
introduced in previous chapters.

Development of the XMOS architecture and XC language are continuing. The
current implementation is discussed in Appendix C, which also serves as a roadmap
for future direction and standardisation of the technology.

Acknowledgements

Many of the examples of port usage were originally developed by Henk Muller for the
XS1 ports tutorial [3]. The case studies which develop an LCD driver and Ethernet
controller were developed jointly with Larry Snizek. Richard Osborne wrote the XS1
standard library documentation and Huw Geddes painstakingly produced all of the
waveform diagrams and illustrations.

Ali Dixon, Peter Hedinger, Russell Gallop and many others have carefully reviewed
drafts of the English manuscript. Their comments, corrections and suggestions have
significantly improved the quality of the final text.

2

Contents

1 Computation 1
1.1 Hello, World! e e e e 1
1.2 Variables, Constants and Expressions 2

1.2.1 ConstantsS i ittt e e 3
1.2.2 EXPressions i ittt e e e 4
1.2.3 Type Conversions. i i i ittt i e e et e 4
1.3 Control Flow i e e 6
1.3.1 IfElse e e e 6
1.3.2 Switch e e 7
1.3.3 LOOPS . . v oo e e e e e 7
1.3.4 Breakand Continue vuun.. 8
1.4 Functions i it e e e e e 9
1.4.1 Function Arguments uenin. 9
1.4.2 Optional Argumentst 10
1.4.3 Multiple-Return Functions 11
1.5 Reinterpretation e e e e 12
1.6 Comparisonwith C it 12
Input and Output 13
2.1 OutputtingData i e e e 14
2.2 Inputting Data e e 15
2.3 Waiting for a Condition on an InputPin 15
2.4 Controlling I/0 Data Rates with Timers 16
2.5 CaseStudy: UART (Part1) @it 18
2.6 Responding to MultipleInputs 20
2.7 Case Study: UART (Part 2) v o v v ot e e e e e e e e e e e e e 21
2.8 Parameterised Selection 23
Concurrency 27
3.1 Creating Concurrent Threads 27
3.2 Thread DisjointnessRules 28

3.2.1 Examples 29

viii Contents
3.3 Channel Communication.o, 31
3.3.1 Channel DisjointnessRules. 32

3.4 TransactionsS v v v v i i e e e e e e e e e e e e e e 32
3.5 Sreams e 34
3.6 Parallel Replication 35
3.7 SeIVICES . . i i i i i i e e e e e e e e e e e e e e e e e e 36
3.8 Thread Performance, 37
Clocked Input and Output 39
4.1 Generating aClock Signal 39
4.2 Using an External Clock 41
4.3 Performing I/O on Specific Clock Edges 42
4.4 Case Study: LCD Screen Driver ittt i 43
4.5 Summary of Clocking Behaviour 46
Port Buffering 49
5.1 UsingaBufferedPort, 49
5.2 Synchronising Clocked I/O on Multiple Ports 52
5.3 Summary of Buffered Behaviour 53
Serialisation and Strobing 55
6.1 Serialising Output DatausingaPort 55
6.2 Deserialising Input DatausingaPort 56
6.3 Inputting Data Accompanied by a Data Valid Signal 57
6.4 Outputting Data and a Data Valid Signal 58
6.5 CaseStudy: EthernetMII 59
6.5.1 MIITransmit o v it i e e e e e e e e e e 60
6.5.2 MIIReceive e e e e 62

6.6 Summary e e e e e e e 65
XC Language Specification 67
Al LexicalConventions ittt te e 67
A2 Syntax Notation i it e e e e e e e 69
A.3 Meaning of Identifiers 70
A4 Objectsand Lvalues. i e 72
A5 CONverSiONS v i e e e e e e e e e e e e e e e 72
A6 EXPressions e e e e 73
A.7 Declarations i e e e e e e 82
A8 Statements e e e e e e 91
A.9 External Declarations i 99
A.l0Scopeand Linkage e 101
A.11 Channel Communication. 102
A.l2Invalid Operations. o i i i i i e e e e e 102
A3 Preprocessing e e e e e e 102

AT4AGrammar v e 103

Contents

B XC I/O Specification
B.1 The Functional Model of ClockedI/O
B.2 Clocking, Timing and Strobing Component
B.3 Serialisation Component it
B.4 Buffering Component.
B.5 Conditional Input: pinseq and pinsneq

C XS1 Implementation of XC
C.1 Support for XC Port Specification
C.2 XS1 PortLibrary: <xsl.h>
C.3 Specifying Port-to-Pin Mappings
C.4 Channel Communication. einnnn..

C.5 Data Types
Bibliography

Index

111
112
114
116
118
121

123
123
124
128
130
130

131

133

CHAPTER

Computation

XC is an imperative programming language with a computational framework based
on C. XC programs consist of functions that execute statements that act upon
values stored in variables. Control-flow statements express decisions, and looping
statements express iteration.

In the following sections, constructs that are new to XC or that differ from C are
noted in the margin.

1.1 Hello, World!

The first task often performed when learning a new programming language is to
print the words “Hello, world!” A suitable XC program is shown below.

#include <stdio.h>

main(void) {
printf ("Hello, world!\n");
}

The first line of this program tells the compiler to include information from the
header file stdio.h. This file contains a declaration of the function printf, which
outputs a string to standard output, for example a terminal window on a development
system.

Every program must contain a single main function, which is where the program
begins executing. In this example, main is defined as a function that expects no
arguments, indicated by the keyword void.

The body of a function is enclosed in braces {} and contains statements that
specify operations to be performed. In this example, main contains a single statement

Computation

that calls the function puts with a string literal as its argument. The escape sequence
\n denotes a newline character.

1.2 Variables, Constants and Expressions

A variable represents a location in memory in which data is storred. All variables
must be declared before use and given a type. The most common arithmetic types
are char and int. A char is a byte that represents 8-bit integral numbers and an int
represents 32-bit integral numbers. The declaration

char c;

declares c to be an 8-bit signed character that takes values between -128 and 127.
The qualifier signed or unsigned may be used to specify the signedness of a type.
The declaration

unsigned char c;

declares c to be an 8-bit unsigned character that takes values between 0 and 255.
A variable may be assigned an initial value. The declaration

int i = 0, j = 1;

declares i and j to be integers, initialised with the values 0 and 1.
The qualifier const may be applied to any variable declaration to prevent its value
from being changed after initialisation. The declaration

const int MHz = 1000000;

declares MHz to represent an integer constant of value 1000000. Attempting to
modify its value after initialisation is invalid.

One or more variables of the same type may be combined to form an array. The
declaration

int datal3] = {1, 2, 3};

declares data to be an array of three integers and initialises it with values 1, 2 and 3.
Array subscripts start at zero, so the elements of this array are data[0], data[1] and
data[2]. A subscript can be any integer expression that evaluates to a valid element
of the array.

Arrays may be constructed from one another to form multi-dimensional arrays.
The declaration

int matrix[2]1[3] = {{1, 2, 3}, {4, 5, 6}};

declares matrix to be a two-dimensional array. The first dimension specifies a row,
the second a column, producing the matrix below.

1 2 3
4 5 6

1.2 Variables, Constants and Expressions

The subscripts are ordered by the largest dimension first so that, for example, the
value of matrix[0] [1] is 2.

1.2.1 Constants

A constant is a textual representation of a value, and has a data type. Entries in the
table below are all examples of constants.

Text Type Value

123 int 123

123u unsigned int 123

0b10000 int 16

020 int 16

0x10 int 16

0xFu unsigned int 10

'x! char 120

0" char 48

"\n' char 10 (newline)

"\ char 92 (backslash)
"\O"' char 0 (null terminator)
"str" array of char 's', 't', 'r', '\0’

A sequence of digits is by default an int. An unsigned constant is specified with
the suffix u. An integer constant is specified in binary by using the prefix Ob, in octal
by using the prefix 0 and in hexadecimal by using the prefix 0x.

A character constant is usually written as a character in single quotes. Its value is
the numeric value of the character. Some characters that are not representable as
characters are escaped using the backslash character.

A string literal is a sequence of zero or more characters enclosed in double
quotes. The internal representation of a string literal includes a null character suffix
\0, which allows programs to find the end of a string. This suffix also increases the
string’s storage requirements by a single byte. String literals are used to initialise
arrays of characters, as in:

char msg[] = "Hello, world!\n";
This example declares msg to be an array of 15 characters, including the null termi-

nator. If the size of the array is specified in the declaration, it must be at least as
large as the string.

Computation

1.2.2 Expressions

An expression combines variables and constants with operators, producing a value.
Entries in the table below are all examples of expressions.

Algebraic Expression XC Expression

axb-c a*xb-c
(a+b)(c+d) (a +Db) * (¢ +4d)
alb +c (a/p) + ¢

An expression without parenthesis is usually evaluated from left to right using the
rules of precedence of operators. These rules state that the * operator has a higher
precedence than the + operator, which means that the second expression in the table
requires parenthesis around the two additions to force the required grouping.

Table I summarises the expression operators supported in XC. Operators higher
in the table have a higher precedence, and operators in the same section have the
same precedence. The operators are defined to have the same meaning as in C; full
details are given in §A.6.

An expression becomes a statement when followed by a semicolon. Most state-
ments are either assignments, as in:

X = a * b;
or function calls, as in:
printf ("Hello, world!\n");

The value of an expression must be unambiguous. An ambiguity arises if the
value of an expression depends on the order of evaluation of its operands, as in:

i = i++; /* invalid x*/

In this example, the value of i depends on the order in which the assignment and
increment operators are performed.

In general, if one subexpression contains a modification of variable V, none of the
other subexpressions are allowed to use V. This rule applies recursively to functions
called in expressions that read or write global variables.

1.2.3 Type Conversions

If an operator has operands of different types, the operands are converted to a
common type. In general, the “lower” type is promoted to the “higher” type before the
operation proceeds; the result is of the higher type. For example, in the expression

'e' + 1

the binary operator + takes a char and an int operand. The char operand is promoted
to an int, and the result of the expression is an int.

1.2 Variables, Constants and Expressions

TABLE I
XC EXPRESSION OPERATORS

Operator Description Type Associativity
=+ - Postfix increment/decrement Unary left-to-right
++ - Prefix increment/decrement Unary right-to-left
+ - Unary plus/minus

! Logical negation
Bitwise complement

(type) Explicit cast

sizeof Determine size in bytes

sizeof Determine whether null reference

x /% Multiplication/division/modulus Binary left-to-right

+ - Addition/subtraction Binary left-to-right

<< >> Bitwise shift left/right Binary left-to-right

< Relational less than Binary left-to-right

<= Relational less than or equal to

> Relational greater than

>= Relational greater than or equal to

== I= Relational equal to, not equal to Binary left-to-right

& Bitwise AND Binary left-to-right

- Bitwise exclusive OR Binary left-to-right

| Bitwise inclusive OR Binary left-to-right

&& Logical AND Binary left-to-right

[Logical OR Binary left-to-right

c?t:f Ternary conditional Ternary right-to-left

= Assignment Binary right-to-left
Arithmetic assignment

+
I
|

I
*
Il

—

I

= Arithmetic assignment
<<= >>= Arithmetic assignment

Computation

The general rules of promotion and arithmetic conversion are stated in §A.1.1,
and for XS1 devices can be summarised as follows:

e Convert char and short to int, if an int can represent all the values of the
original type, otherwise convert to unsigned int.

o If either operand is unsigned int, convert the other to unsigned int.

Explicit type conversions can be forced in an expression using the unary cast operator,
as in:

(char)('a' + i); // cast 32-bit integer to an 8-bit char

Casts are often used with output statements to specify the amount of data to be
communicated (see §3.3). The meaning of the cast is as if the expression were
assigned to a variable of the specified type. A cast must not specify an array; neither
must the expression.

1.3 Control Flow

Control-flow statements express decisions that determine the order in which state-
ments are performed. A list of statements is executed in sequence by grouping them
into a block using braces { }, as in:

main(void) {
int x = 2, y = 3;
int z = x * y;
Z++;

}

In a block, all declarations must come at the top before the statements. A block is
syntactically equivalent to a single statement and can be used wherever a statement
is required.

1.3.1 If-Else
An if-else construct choses at most one statement to execute, as in:

if (n > 0)
printf ("Positive");
else if (n < 0) {
printf ("Negative");
x = 0;
}
else
printf ("Zero");

1.3 Control Flow

Each parenthesised expression guards a statement or block that may be executed;
the else-if and else statements are optional. The expressions are evaluated in
the order they appear in the source code, and the first expression that produces a
non-zero value causes the statement it guards to be executed. The entire construct
then terminates.

An else statement is always associated with the previous else-less if, which is
important to remember if multiple if statements are nested. Braces can be used to
force a different association.

1.3.2 Switch

A switch statement tests whether an expression matches one of a number of constant
integer values and branches to the body of code for the corresponding case, as in:

switch(state) {
case READY
state = SET;
if (x < 0)
state = FAIL;
break;
case SET
state = GO;
if(y > 0)
state = FAIL;
break;
case GO:
printf ("Go!\n");
break;
case FAIL
default
/* error x/

}

If a default label is present and none of the case constants equal the value of the
expression, the code following default is executed instead.

The body of each case must be terminated by either break or return, preventing
control from flowing from one body to the next.

1.3.3 Loops

A while loop repeats a statement as long as the value of an expression remains
non-zero, as in:
int i = 0;
while (i<mn) A
alil = b[i] * c[il;
i++;

}

NEW

Computation

This example is typical of many programs that iterate over the first n elements of
an array. An alternative form is to use a for loop, which provides a way to combine
the initialisation, conditional test and increment together at the top of the loop. The
example above may be alternatively written as:

for (int i=0; i<m; i++)
alil = b[i] * c[il;

The first and third expressions are usually assignments, and the second a relational
expression. The first assignment may form part of a variable declaration whose
scope is local to the body of the loop. Any of these three parts may be omitted, but
the semicolons must remain.

A do-while loop performs the test after executing its body, guaranteeing that its
body is executed at least once. Its form is shown below.

do {
body
} while (exp);

1.3.4 Break and Continue
A break statement exits from a loop immediately, as in:

while (1) {
//...input and process data...

if (error)

break;

}

In this example, the break statement exits from the while loop upon encountering
an error. In general, break causes the innermost enclosing loop or switch statement
to exit.

A continue statement is similar to break, except that it causes the next iteration
of the enclosing loop to begin, as in:

for (int i=0; i<n; i++) {

if (alil == 0)
continue;
//...process non-zero elements...

}

In a for loop, the statement executed immediately after continue is the loop in-
crement. In while and do loops, the next statement executed is the conditional
test.

A continue statement is often used where the code that follows it is complicated,
so that reversing the test and indenting another level would nest the program too
deeply to be easily understood.

1.4 Functions

1.4 Functions

A function names a block of statements, providing a way to encapsulate and parame-
terise a computation. The program below defines and uses a function fact, which
computes a factorial.

int fact(int);

/* test fact function x*/
int main(void) {
for (int i=0; i<10; i++) {
int £ = fact(i);
// ... print f
}
}

int fact(int n) {
for (int i=n-1; i>1; i--)
n =n * i;
return n;

}
The declaration of fact after main
int fact(int n)

declares fact to be a function that takes an int parameter named n and returns an
int value. When main calls fact, the value of i is copied into a new variable n. The
variable n is private to fact, and other functions can use this name without conflict.
The block of statements grouped in braces { } following the declaration of fact
makes it a definition. At most one definition of each function is permitted.
The return statement in the body of fact returns the computed factorial value to
main. A function that does not return a value is specified with the return type void.
The first declaration of fact before main

int fact(int);

is a prototype that declares the type of fact without giving it a definition. Either
a function prototype or its definition must appear in the source code before the
function is used. The protototpe must agree with its definition and all of its uses;
the parameter names in the prototype are optional.

1.4.1 Function Arguments

Arguments to functions are usually passed by value, in which case the value is copied
into a new variable that is private to the function.

An argument may also be passed by reference so that any change made to the
local variable also modifies the argument in the calling function. The program below
swaps the values of two variables passed by reference.

NEW

10

Computation

void swap(int &x, int &y) {
int tmp = Xx;
X = y;
y = %3

}

int main(void) {
int a = 1;
int b = 2;
swap (a, b);

}

The declaration
void swap(int &x, int &y)

declares swap to be a function that accepts two variables by reference. A reference
parameter is specified by prefixing its name with &.

The creation of more than one reference to the same object is invalid. In the
above example, calling the function swap using the same variable twice would be
invalid.

Arrays are implicitly passed by reference. This means that an array cannot be
passed to two parameters of a function but, for example, passing two different rows
of a two-dimensional array to a function is permitted.

The largest dimension of an array parameter may be omitted from the function
declaration, allowing the function to operate on arbitrary sized arrays, as in:

int strcount (char str[], int 1len);

If the size of an array parameter is specificed, passing an array of larger size is
permitted but the highest elements are not accessible; passing a smaller array is
invalid.

1.4.2 Optional Arguments

A pass-by-reference parameter can be specified nullable, meaning that it can contain
either a valid reference or a special null reference. The program below determines
how many corresponding elements of two arrays have the same value, assigning the
value O or 1 to the element of a third array only if provided by the caller.

int compare(int x[], int y[], int ?matches[], unsigned size) {

int n = 0;
for (int i=0; i<size; i++) {
int match = (x[i] == y[i]);

n += match;
if (!'isnull (matches))
matches[i] = match;
}
return n;

}

1.4 Functions 11

int main(void) {
int x[5] = {0, 1, 2, 3, 4};
int y[5] = {1, 1, 1, 3, 3};
int z[5] = {1, 1, 1, 1, 1};
int m[5] = {0};
int n;

(void) compare(x, y, m, 5);
n = compare(y, z, null, 5);

return O;

The declaration
int compare(int x[], int y[], int ?m[], unsigned size)

declares compare to be a function that accept three arrays and a size variable. The
third parameter m is specified as nullable by prefixing its name with 7.

The operator isnull produces a value 1 if its argument is a valid reference and 0
otherwise. Attempting to dereference or use a null object is invalid.

On the first call by main to compare, the array matches is passed as the third
argument; compare assigns the elements of this array. On the second call, null is
passed as the third argument; compare does not attempt to assign to the array.

1.4.3 Multiple-Return Functions

A function may be declared as returning more than one value, as in:

{int, int} swap(int a, int b) {
return {b, al};

}
void main(void) {
int a = 1;
int b = 2;
{a, b} = swap(b, a);

}

The list of return types, the list of values following return, and the list of variables
assigned are enclosed in braces. The number of elements in the assignment list must
match the number of values returned by the function, but any of the returned values
may be ignored using void, as in:

{a, void} = £Q);

12

Computation

1.5 Reinterpretation

A reinterpretation causes a variable to be treated as having a different type, but it
undergoes no conversion. The function below uses a reinterpretation to transmit an
array of bytes as 32-bit integers.
void transmitMsg(char msg[], int nwords) {
for (int i=0; i<nwords; i++)
transmitInt ((msg, int[]1)[i]);
}

The construction
(msg, int[])

reinterprets the array msg as an array of integers, which is then indexed, as in:
(msg, int[])[i]

In this example, the size of the integer array is determined at run-time. If the
function is called, for example, with an array of 10 bytes, the reinterpreted integer
array has an upper bound of 2 and the topmost 2 characters are inaccessible in
the reinterpretation. If size of the reinterpretation is given, it must not exceed the
size of the original type. Attempting to reinterpret one object to another whose
type requires greater storage alignment (as specified in §C.5) is invalid. The original
declaration should specify the largest storage alignment required for all possible
reinterpretations.

1.6 Comparison with C

XC provides many of the same capabilities as C, the main omission being support for
pointers. Consequently, many programming errors that are undefined in C are known
to be invalid in XC and can be caught either by the compiler or raised as run-time
exceptions. All of XC’s data types and operators have the same meaning as in C, and
user-defined types including structures, unions, enumerations and typedefs are also
supported. The extensions for pass-by-reference parameters and multiple-return
functions provide support for operations usually performed using pointers in C.
XC’s scope and linkage rules are the same as with C, and both languages use the
same preprocessor.

XC does not support floating point, long long arithmetic, structure bit-fields or
volatile data types, and no goto statement is provided. These restrictions may be
relaxed in future releases to improve compatibility between languages.

CHAPTER

Input and Output

A port connects a processor to one or more physical pins and as such defines the
interface between a processor and its environment. The port logic can drive its pins
high or low, or it can sample the value on its pins, optionally waiting for a particular
condition. Ports are not memory mapped; instead they are accessed using dedicated
instructions. XC provides integrated input and output statements that make it easy
to express operations on ports. The diagram below illustrates these operations.

Sample Input,
L4

A 4

Drive Output
ya ya

< < <:

PORT PROCESSOR

Data rates can be controlled using hardware timers that delay the execution of the
input and output instructions for a defined period. The processor can also be made

to wait for an input from more than one port, enabling multiple I/O devices to be
interfaced concurrently.

14

Input and Output

2.1 Outputting Data

A simple program that toggles a pin high and low is shown below.

#include <xsl1.h>
out port p = XS1_PORT_14;

int main(void) {
p <: 1;
p <: 0;

}

The declaration
out port p = XS1_PORT_14;

declares an output port named p, which refers to the 1-bit port identifier 1A.!
The statement

p <: 1;

outputs the value 1 to the port p, causing the port to drive its corresponding pin
high. The port continues to drive its pin high until execution of the next statement

p <: 0;

which outputs the value 0 to the port, causing the port to drive its pin low. The
diagram below shows the output generated by this program.

1 0

p (TA) / \

The pin is initially not driven; after the first output is executed it is driven high; and
after the second output is executed it is driven low. In general, when outputting to
an n-bit port, the least significant n bits of the output value are driven on the pins
and the rest are ignored.

All ports must be declared as global variables, and no two ports may be initialised
with the same port identifier. After initialisation, a port may not be assigned to.
Passing a port to a function is allowed as long as the port does not appear in more
than one of a function’s arguments, which would create an illegal alias.

LThe value XS1_PORT_14 is defined in the header file <xs1.h>. Most development boards are sup-
plied with an XN file from which the header file <platform.h> is generated, and which defines more
intuitive names for ports such as PORT_UART_TX and PORT_LED_A. These names are documented in the
corresponding hardware manual.

2.2 Inputting Data

15

2.2 Inputting Data

The program below continuously samples the 4 pins of an input port, driving an
output port high whenever the sampled value exceeds 9.

#include <xs1.h>

in port imP
out port outP

XS1_PORT_4A;
XS1_PORT_1A;

int main(void) {
int x;
while (1) {
inP :> x;
if (x > 9)
outP <: 1;
else
outP <: 0;
}
}

The declaration
in port inP = XS1_PORT_44;

declares an input port named inP, which refers to the 4-bit port identifier 4A.
The statement

inP :> x;

inputs the value sampled by the port inP into the variable x. The diagram below
shows example input stimuli and expected output for this program.

inp (4A) _ { 0x8 Yoxaf ox2)(3&
outP (1A) | [\ [

The program continuously inputs from the port inP: when 0x8 is sampled the output
is driven low, when OxA is sampled the output is driven high and when 0x2 is
sampled the output is again driven low. Each input value may be sampled many
times.

2.3 Waiting for a Condition on an Input Pin

An input operation can be made to wait for one of two conditions on a pin: equal to
or not equal to some value. The program on the next page uses a conditional input
to count the number of transitions on its input pin.

16

Input and Output

#include <xsl1.h>

in port omneBit
out port counter

XS1_PORT_1A4;
XS1_PORT_44;

int main(void) {
int x;
int i = 0;

oneBit :> x;
while (1) {
oneBit when pinsneq(x) :> x;
counter <: ++i;
}
}

The statement
oneBit when pinsneq(x) :> x;

instructs the port oneBit to wait until the value on its pins is not equal to x before
sampling and providing it to the processor to store in x.

The waveform diagram below shows example input stimuli and expected output
for this program.

oneBit (1A) _\ [\ /—w&
counter (4A) :X 0x1 X 0X2X 0x3 X 0x4 B&

As another example, the only operation required to wait for an Ethernet preamble
on a 4-bit port is

ethData when pinseq(0xD) :> void;

The processor must complete an input operation from the port once a condition is
met, even if the input value is not required. This is expressed in XC as an input to
void.

Using a conditional input is more power efficient than polling the port in software,
because it allows the processor to idle, consuming less power, while the port remains
active monitoring its pins.

2.4 Controlling I/0 Data Rates with Timers

A timer is a special type of port used for measuring and controlling the time between
events. A timer has a 32-bit counter that is continually incremented at a rate of

2.4 Controlling 1/0 Data Rates with Timers

17

100MHz and whose value can be input at any time. An input on a timer can also be
delayed until a time in the future. The program below uses a timer to control the
rate at which a 1-bit port is toggled.

#include <xsl1l.h>
#define DELAY 50000000

out port p = XS1_PORT_14;

int main(void) {
unsigned state = 1, time;
timer t;
t :> time;
while (1) {
p <: state;
time += DELAY;
t when timerafter (time) :> void;
state = !state;
¥
}

The declaration
timer t;

declares a timer named t, obtaining a timer resource from the XCore’s pool of
available timers.
The statement

t :> time;

inputs the value of t’s counter into the variable time. This variable is then incre-

mented by the value DELAY, which specifies a number of counter increments. The

timer has a period of 10ns, giving a time in the future of 50,000,000 % 10ns = 0.5s.
The conditional input statement

t when timerafter (time) :> void;

waits until this time is reached, completing the input just afterwards.
The waveform diagram below shows the data driven for this program.

t (counter) 4195m 4245m O 50m 100m 150m ZOOmSS

p (1A) j—_/ \ / \ / _SS

0.5s 0.5s 0.5s 0.5s 0.5s 0.5s

18

Input and Output

The function timerafter treats the timer’s counter as having two separate ranges,
as illustrated below.

1 1

after 1 before I after
1 1
1 1

T T

time - 23! time

All values in the range (time — 231..time — 1) are considered to come before time,
with values in the range (time + 1..time + 23271 0..time — 23!) considered to come
afterwards. If the delay between the two input values fits in 31 bits, timerafter is
guaranteed to behave correctly, otherwise it may behave incorrectly due to overlow
or underflow. This means that a timer can be used to measure up to a total of
231/100,000,000 = 21s.

A programming error may be introduced by inputting the new time instead of
ignoring it with a cast to void, as in

t when timerafter (time) :> time;

Because the processor completes the input shortly after the time specified is reached,
this operation actually increments the value of time by a small additional amount.
This amount may be compounded over multiple loop iterations, leading to signal
drift and ultimately a loss of synchronisation with a receiver.

2.5 Case Study: UART (Part 1)

A universal asynchronous receiver/transmitter (UART) translates data between par-
allel and serial forms for communication over two 1-bit wires at fixed data rates.
Each bit of data is driven for the time defined by the data rate, and the receiver must
sample the data during this time. The diagram below shows the transmission of a
single byte of data at a rate of 115200 bits/s.

8.68us 8.68us 8.68us 8.68us 8.68pys 8.68pys 8.68pys 8.68pus 8.68pus 8.68ps

0 | [so) s) B2)B3)Ba) B5) B6 | B7)

start stop
bit bit

The quiescent state of the wire is high. A byte is sent by first driving a start bit (0),
followed by the eight data bits and finally a stop bit (1). A rate of 115200 bits/s
means that each bit is driven for HSIW = 8.68ps.

UARTSs are often implemented with microcontrollers, using interrupts to schedule
memory-mapped input and output operations. Implementing a UART with an XMOS

2.5 Case Study: UART (Part 1)

19

device is easy due to its dedicated I/O instructions. The program below defines a
UART transmitter.

#include <xsl1.h>

#define BIT_RATE 115200
#define BIT_TIME 100000000 / BIT_RATE

out port TXD = XS1_PORT_14;
out port RXD XS1_PORT_1B;

void transmitter (out port TXD) {
unsigned byte, time;
timer t;

while (1) {
/* get next byte to transmit */
byte = getByte();
t :> time;

/* output start bit x*/

TXD <: 0;

time += BIT_TIME;

t when timerafter (time) :> void;

/* output data bits */
for (int i=0; i<8; i++) {
TXD <: >> byte;
time += BIT_TIME;
t when timerafter(time) :> void;

}

/* output stop bit */
TXD <: 1;
time += BIT_TIME;
t when timerafter (time) :> void;
}
}

The transmitter outputs a byte by first outputting a start bit, followed by a conditional
input on a timer that waits for the bit time to elapse; the data bits and stop bit are
output in the same way.

The output statement in the for loop

TXD <: >> byte;

includes the modifier >>, which right-shifts the value of byte by the port width (1 bit)
after outputting the least significant port-width bits. This operation is performed
in the same instruction as the output, making it more efficient than performing the
shift as a separate operation afterwards.

Input and Output

The function below receives a stream of bytes over a 1-bit wire.

void receiver (in port RXD) {
unsigned byte, time;
timer t;

while (1) {
/* wait for start bit x*/
RXD when pinseq(0) :> void;
t :> time;
time += BIT_TIME/2;

/* input data bits */

for (int i=0; i<8; i++) {
time += BIT_TIME;
t when timerafter (time) :> void;
RXD :> >> byte;

}

/* input stop bit */

time += BIT_TIME;

t when timerafter (time) :> void;
RXD :> void;

putByte (byte >> 24);
}
}

The receiver samples the incoming signal, waiting for a start bit. After receiving this
bit, it waits for 1% times the bit time and then samples the wire at the midpoint
of the the first byte transmission, with subsequent bits being sampled at 8.68us
increments. The input statement in the for loop

RXD :> >> byte;

includes the modifier >>, which first right-shifts the value of byte by the port width
(1 bit) and then inputs the next sample into its most significant port-width bits. The
expression in the final statement

putByte (byte >> 24);

right-shifts the bits in the integer byte by 24 bits so that the input value ends up in
its least significant bits.

2.6 Responding to Multiple Inputs

The program below inputs two streams of data from two separate ports using only
a single thread. The availability of data on one of these ports is signalled by the
toggling of a pin, with data on another other port being received at a fixed rate.

2.7 Case Study: UART (Part 2)

21

#include <xsl1.h>

#define DELAY_Q 10000000

in port toggleP
in port dataP
in port dataQ

XS1_PORT_14;
XS1_PORT_44A;
XS1_PORT_4B;

int main(void) {
timer t;
unsigned time, x = 0;

t :> time;
time += DELAY_Q;
while (1)
select {
case toggleP when pinsneq(x) :> x
readData (dataP);
break;
case t when timerafter(time) :> void
readData (dataQ);
time += DELAY_Q;
break;

}

The select statement performs an input on either the port toggleP or the timer t,
depending on which of these resources becomes ready to input first. If both inputs
become ready at the same time, only one is selected, the other remaining ready on
the next iteration of the loop. After performing an input, the body of code below it
is executed. Each body must be terminated by either a break or return statement.

Case statements are not permitted to contain output operations as the XMOS
architecture requires an output operation to complete but allows an input operation
to wait until it sees a matching output before committing to its completion.

Each port and timer may appear in only one of the case statements. This is
because the XMOS architecture restricts each port and timer resource to waiting for
just one condition at a time.

In this example, the processor effectively multi-tasks the running of two indepen-
dent tasks, and it must be fast enough to process both streams of data in real-time.
If this is not possible, two separate threads may be used to process the data instead
(see Chapter 3).

2.7 Case Study: UART (Part 2)

The program on the following page uses a select statement to implement both the
transmit and receive sides of a UART in a single thread.

®

22

Input and Output

void UART(port RX, int rxPeriod, port TX, int
int txByte, rxByte;
int txI, rxI;
int rxTime, txTime;
int isTX 0;
int isRX = 0;
timer tmrTX, tmrRX;

while (1) {
if ('isTX && isData()) {

txPeriod) {

isTX = 1;
txI = 0;
txByte = getByte ();
TX <: 0; // transmit start bit
tmrTX :> txTime; // set timeout for data bit
txTime += txPeriod;
¥
select {
case !isRX => RX when pinseq(0) :> void
isRX = 1;
tmrRX :> rxTime;
rxI = 0;
rxTime += rxPeriod;
break;
case isRX => tmrRX when timerafter(rxTime) :> void
if (rxI < 8)
RX :> >> rxByte;
else { // receive stop bit
RX :> void;
putByte (rxByte >> 24);
isRX = 0;
¥
rxI++;
rxTime += rxPeriod;
break;
case isTX => tmrTX when timerafter (txTime) :> void
if (txI < 8)
TX <: >> txByte;
else if (txI == 8)
TX <: 1; // stop bit
else
isTX = 0;
txI++;
txTime += txPeriod;
break;
}r o}

The variables isTX, txI, isRX and rxI determine which parts of the UART are active
and how many bits of data have been transmitted and received.

2.8 Parameterised Selection

23

The while loop first checks whether the transmitter is inactive with data available
to transmit, in which case it outputs a start bit and sets the timeout for outputting
the first data bit.

In the select statement, the guard

case !isRX => RX when pinseq(0) :> void

checks whether isRX equals zero, indicating that the receiver is inactive, and if so it
enables an input on the port RX when the value on its pins equals 0. The expression
on the left of the operator => is said to enable the input. The body of this case sets a
timeout for inputting the first data bit.

The second guard

case isRX => tmrRX when timerafter (rxTime) :> void

checks whether isRX is non-zero, indicating that the receiver is active, and if so
enables an input on the timer tmrRX. The body of this case inputs the next bit of data
and, once all bits are input, it stores the data and sets isRX back to zero.

The third guard

case isTX => tmrTX when timerafter(txTime) :> void

checks whether isTX is non-zero, indicating that the transmitter is active, and if so
enables an input on the timer tmrTX. The body of this case outputs the next bit of
data and, once all bits are output, it sets isTX to zero.

If this UART controller is to be used in noisy environments, its reliability may

be improved by sampling each input bit multiple times and averaging the result.

A more robust implementation would also check that the stop bit received has an
expected value of 1.

2.8 Parameterised Selection

Select statements can be implemented as functions, allowing their reuse in different
contexts. One such example use is to parameterise the code used to sample data on
a two-bit encoded line. As shown below, a quiet state on the line is represented by
the value (0, 0), the value O is signified by a transition to (0, 1) and the value 1 is
signified by a transition to (1, 0). Either of these transitions is followed by another
transition back to (0, 0).

®

24 Input and Output

The program below makes use of a select function to input a single byte of data
from two pins using this scheme.

#include <xsl1.h>

in port rO = XS1_PORT_14;
in port ri XS1_PORT_1B;

select inBit(in port r0, in port ril,
int &x0, int &x1, char &byte) {
case r0 when pinsneq(x0) :> xO

if (x0 == 1) /* transition to (1, 0) */
byte = (byte << 1) | 1;
break;
case rl when pinsneq(xl) :> x1
if (x1 == 1) /* transition to (0, 1) x*/
byte = (byte << 1) | 0;
break;

}

int main(void) {
int x0 = 0, x1 = 0;
char byte;
for (int i=0; i<8; i++)
inBit (r0, rl, x0, x1, byte);
}

The declaration

select inBit(in port r0O, in port rl, int &x0, int &x1, char &byte)
declares inBit to be a select function that takes five arguments and has an implicit
return type of void; its body contains two case statements.

The waveform diagram below shows example input stimuli for this program. The
bit values received are 0, 1, 0, 0, 0, 0, 0 and 1 (‘A’).

r0 (1A) [[
XU I Y I B R O I I

Q¢ 01550520200 0-5cq 20 150~

In contrast to a UART, which transmits data at a fixed rate, this scheme allows for
the fastest possible transmission supported by an XMOS device and the component
to which it is connected.

2.8 Parameterised Selection 25

A benefit of defining inBit as a select function is that its individual cases can
be used to form part of a larger select statement, as in the program below which
decodes a two-byte value sampled on four pins.

#include <xsl1.h>
#define NBYTES 2

in port r [NBYTES*2] = { XS1_PORT_1A, XS1_PORT_1B,
XS1_PORT_1C, XS1_PORT_1D };
int main(void) {
int state[NBYTES*2] = {0, 0, 0, 0};
char byte [NBYTES];
for (int i=0; i<8*NBYTES; i++)
select {
case inBit(r[0], r[1], state[0], state[1], byte[0]);
case inBit(r[2], r[3], statel[2], state[3], bytel[1]);

}

The select statement calls the function inBit in two of its case statements, causing
the processor to enable events on the ports passed to it as arguments.

A more concise way to specify the top-level select statement is to use a replicator,
as in:

select {
case (int i=0; i<NBYTES; i++)
inBit (r[i*2], r[ix*2+1], state[ix*2], state[i*2+1], bytel[il);
}

The replicator
(int i=0; i<2; i++)

iterates twice, each time calling the select function inBit, which enables the ports
indexed by different values of i. The number of iterations need not be constant, but
the iterator must not be modified outside of the replicator.

CHAPTER

Concurrency

Many designs require of a collection of tasks to be performed at the same time. Some
of these tasks may perform independent activities, while others engage with one
another to complete shared objectives. XC provides simple mechanisms for creating
concurrent threads that can run independently and interact with one another on
demand. Data is communicated between threads using channels, which provide
point-to-point connections between pairs of threads. Channels can be used to
communicate data either synchronously or asynchronously.

3.1 Creating Concurrent Threads

The program below creates four concurrent threads, all of which run separate tasks
independently of one another. Two of these threads are executed on XCore 0, one on
XCore 1 and one on XCore 2.

#include <platform.h>

on stdcore[0] : out port tx = XS1_PORT_1A;
on stdcore[0] : in port rx = XS1_PORT_1B;
on stdcore[1] : out port lcdData = XS1_PORT_324;

on stdcore[2] : in port keys XS1_PORT_8B;

int main(void) {

par {
on stdcore[0] : uartTX(tx);
on stdcore[0] : uartRX(rx);

on stdcore[1] : 1lcdDrive(lcdData);
on stdcore[2] : kbListen(keys);

28

Concurrency

The header file platform.h provides a declaration of the global variable stdcore,
which is used to specify the locations of ports and threads.!
The declaration

on stdcore[0] : out port p = XS1_PORT_14;

declares a 1-bit output port named p that refers to the port identifier 1A on standard
core number 0.

The four statements inside the braces of the par are run concurrently as four
separate threads using fork-join parallelism: at the opening brace { the parent creates
three more threads; each of these threads then executes a function; and at the closing
brace } the parent waits for all functions to return before continuing.

par statements may be used anywhere in a program. Each XS1 device has a limit
of eight threads available on each of its processors, and a program that attempts to
exceed this limit is invalid.

The on statement is used to specify the physical location of components con-
nected to ports and to partition a collection of threads between the available XCores.

For single-core programs, none of the port declarations need be prefixed with on,
in which case all ports and threads are placed on XCore 0. For multicore programs,
all ports and threads must be explicitly prefixed with on.

A multicore main function may contain only channel declarations, a single par
statement and an optional return statement. The on statement may be used to
specify the location of threads only within this function.

3.2 Thread Disjointness Rules

All variables are subject to usage rules that prevent them from being shared by
threads in potentially dangerous ways. In general, each thread has full access to
its own private variables, but limited access to variables that are shared with other
threads. The rules for disjointness on a set of threads Ty ... T; and a set of variables
Vo ...Vj are as follows:

o If thread Ty contains any modification to variable V,, then none of the other
threads (T, t # x) are allowed to use V.

o If thread T contains a reference to variable V,, then none of the other threads
(Ty, t # x) are allowed to modify V.

o If thread T contains a reference to port V,, then none of the other threads are
allowed to use V.

LThe target platform is described using the XMOS network specfication language XN. Most board
support packages provide a corresponding XN file, which describes the available devices and their
connectivity. This data is used during the mapping stage of compilation to product a multi-node
executable file that can boot and configure the entire system.

3.2 Thread Disjointness Rules 29

In other words, a group of threads can have shared read-only access to a variable,
but only a single thread can have exclusive read-write access to a variable. These
rules guarantee that each thread has a well-defined meaning that is independent of
the order in which instructions in other threads are scheduled. Interaction between
threads takes place explicitly using inputs and outputs on channels (see §3.3).

3.2.1 Examples

The example program below is legal, since k is shared read-only in threads X and Y,
i is modified in X and not used in Y, and j is modified in Y and not used in X.

int main(void) {
int i =1, j =2, k = 3;
par

I~

k + 1; // Thread X
k - 1; // Thread Y

.
I

If either i or j is also read in another thread, the example becomes illegal, as shown
in the program below.

int main(void) {
int 1 = 1, j = 2, k;
par

o~

j + 1; // Thread X: illegal sharing of i
k =i - 1; // Thread Y: illegal sharing of i

This program is ambiguous since the value of i read in thread Y depends upon
whether the assignment to i in thread X has already happened or not.

The program below is legal, since a[0] is modified in thread X and not used in
thread Y, and a[1] is modified in Y and not used in X.

int main(void) {
int al[2];
par {
alo0] £(0); // Thread X
al1] = £(1); // Thread Y
}
}

30 Concurrency

The program below is illegal since a[1] is modified in thread X and an unknown
element of a is modified in thread Y.

int x;
int main(void) {
int al[10];
par {
al1] = £(1); // Thread X: illegal sharing of x[1]
alx] = £(x); // Thread Y: illegal sharing of x[1]
}
}

In general, indexing an array by anything other than a constant value is treated as if
all elements in the array are accessed.

The program below is illegal since the array a is passed by reference to the
function f in both threads X and Y, which may possibly modify its value.

void f(int[]);

int main(void) {
int al[10];
par {
f(a); // Thread X: illegal sharing of a
f(a); // Thread Y: illegal sharing of a
}
}

If £ does not modify the array then its parameter should be declared with const,
which would make the above program legal.

The disjointness rules apply individually to parallel statements in sequence, and
recursively to nested parallel statements. The example program below is legal.

int main(void) {
int i =1, j =2, k = 3;

par {
i =k + 1; // Thread X
j =k - 1; // Thread Y
}
i=1i+ 1;
par {
j=1i-1; // Thread U
k =i+ 1; // Thread V
}

In this example, i is first declared and initialised in the main thread; it is then used
exclusively in thread X (thread Y is not allowed access). Once X and Y have joined,
i it is used again by the main thread; finally it is shared bewteen threads U and V.

3.3 Channel Communication

31

3.3 Channel Communication

A channel provides a synchronous, point-to-point connection between two threads
over which data may be communicated. The program below uses a channel to
communicate data from a producer thread on one processor to a consumer thread
on another.

#include <platform.h>

XS1_PORT_14A;
XS1_PORT_8B;

on stdcore[0] : out port tx
on stdcore[1] : in port keys

void uartTX(chanend dataln, port tx) {
char data;
while (1) {
datalIn :> data;
transmitByte (tx, data);
}
}

void kbListen(chanend c, port keys) {
char data;
while (1) {
data = waitForKeyStroke (keys);
c <: data;
}
}

int main(void) {
chan c;
par {
on stdcore[0] : uartTX(c, tx); // Thread X
on stdcore[1] : kbListen(c, keys); // Thread Y

}
The declaration

void uartTX(chanend dataln, port tx)

declares uartTX to be a function that takes a channel end and a port as its arguments.

The declaration
void kbListen(chanend c, port keys);

declares kbListen to be a function that takes a channel end and a port as its
argument.

32

Concurrency

In the function main, the declaration
chan c;

declares a channel. The channel is used in two threads of a par and each use
implicitly refers to one of its two channel ends. This usage establishes a link between
thread X on XCore 0 and thread Y on XCore 1.

Thread X calls the function uartTX, which receives data over a channel and
outputs it to a port. Thread Y calls kbListen, which waits for keyboard strokes from
a port and outputs the data on a channel to the UART transmitter on thread X. As
the channel is synchronous, when kbListen outputs data, it waits until vartTX is
ready to receive the data before continuing.

Channels are lossless, which means that data output in one thread is guaranteed
to be delivered for input by another thread. Each output in one thread must therefore
be matched by an input in another, and the amount of data output must equal the
amount input or else the program is invalid.

3.3.1 Channel Disjointness Rules

The rules for disjointness on a set of threads Tj ... T; and a set of channels Cy ...Cj
are as follows:

o If threads Ty and T, (where x # y) contain a use of channel C,, then none of
the other threads (T, t # x,y) are allowed use C,,.

o If thread T contains a use of channel end C, then none of the other threads
(Ty, t # x) are allowed to use C,.

In other words, each channel can be used in at most two threads. If a channel is
used in only one thread then attempting to input or output on the channel will block
forever.

The disjointness rules for variables and channels together guarantee that any two
threads can be run concurrently on any two processors, subject to a physical route
existing between the processors. As a general rule, threads that interact with one
another frequently should usually be located close together.

3.4 Transactions

Input and output statements on channels usually synchronise the communication of
data. This is not always desirable, however, as it disrupts the flow of the program,
causing threads to block. The time taken to synchronise, including the time spent
idle while blocking, can reduce overall performance.

In XC it is possible for two threads to engage in a transaction, in which a sequence
of matching outputs and inputs are communicated over a channel asynchronously,
with the entire transaction being synchronised at its beginning and end. As with

3.4 Transactions 33

individual channel communications, the total amount of data output must equal the
total amount input.

The program below uses a transaction to communicate a packet of data between
two threads efficiently.

#include <platform.h>
int snd[3], rcvl[3];

int main(void) {
chan c;
par {
on stdcore[0] : master { // Thread X
for (int i=0; i<10; i++)
c <: sndl[i];
}
on stdcore[1] : slave { // Thread Y
for (int i=0; i<10; i++)
c :> rcvl[il;

} X}

A transaction consists of a master thread and a slave thread running concurrently.
The threads first synchronise upon entry to the master and slave blocks. Ten integer
values are then communicated asynchronously: thread X blocks only if data can no
longer be dispatched (due to the channel buffering being full), and thread Y blocks
only if there is no data available. Finally, the threads synchronise upon exiting the
master and slave blocks.

Each transaction is permitted to communicate on precisely one channel. This
ensures that deadlocks do not arise due to an output on one channel blocking as a
result of a switch being full with incoming data that is not yet ready to be received.

The program below defines the body of a transaction as a function, which is
called as the master component of a communication.

transaction inArray(chanend c, int datal], int size) {
for (int i=0; i<size; i++)
¢ :> datalil;

}
int main(void) {
chan c;
int snd[3], rcv[3];
par {
master inArray(c, rcv, 3);
slave {

for (int i=0; i<10; i++)
c :> rcvl[il;

}r}

34

Concurrency

The declaration
transaction inArray(chanend c, char datal], int size)

declares inArray to be a transaction function that takes one end of a channel, an
array of integers and the size of the array. A transaction function must declare
precisely one channel end parameter.

In main, the call to inArray is prefixed with master, which specifies that the
function is called as a master that communicates with a slave.

A slave statement may be used in the guard of a select statement, as in:

select {
case slave { inArray(cl, packet, P_SIZE); }
process (packet) ;
break;
case slave { inArray(c2, packet, P_SIZE); }
process (packet);
break;

}

A master operation by definition commits to completing and is therefore disallowed
from appearing in a guard.

3.5 Streams

A streaming channel establishes a permanent route between two threads over which
data can be efficiently communicated without synchronisation. The program below
consists of three threads that together input a stream of data from a port, filter the
data and output it to another port.

#include <platform.h>

on stdcore[0] : port lineIn = XS1_PORT_84;
on stdcore[1] : port spkOut XS1_PORT_8A;

int main(void) {
streaming chan s1, s2;
par {
on stdcore[0] : audioRcv(linelIn, s1);
on stdcore[0] : BiQuadFilter(si1,s2);
on stdcore[1] : audioSnd(spkOut, s2);
}}

The declaration
streaming chan s1, s2;

declares s1 and s2 as channels that transport data without performing any synchro-
nisation. A route is established for the stream at its declaration and is closed down
when the declaration goes out of scope.

3.6 Parallel Replication

35

Streaming channels provide the fastest possible data rates. An output statement
takes just a single instruction to complete and is dispatched immediately as long as
there is space in the channel’s buffer. An input statement takes a single instruction to
complete and blocks only if the channel buffer’s is empty. In contrast to transactions,
multiple streams can be processed concurrently, but there is a limit to how many
streaming channels can be declared together as streams established between XCores
require capacity to be reserved in switches. This limit does not apply to channels
and transactions.

3.6 Parallel Replication

A replicator provides a concise and simple way to implement concurrent programs
in which a collection of nodes perform the same operation on different datasets. The
program below constructs a communications network between four nodes running
on four different threads.

#include <platform.h>

port p[4] = {
on stdcore[0] : XS1_PORT_1A,
on stdcore([1] : XS1_PORT_1A,
on stdcore[2] : XS1_PORT_1A,
on stdcore[3] : XS1_PORT_1A
};

void node(chanend, chanend, port, int n);

int main(void) {
chan c[4];
par (int i=0; i<4; i++)
on stdcorel[i] : mnode(cl[il], c[(i+1)%4], plil, 1i);
return O;

}
The replicator
(int i=0; i<4; i++)

executes four bodies of code, each containing an instance of the function node on a
different thread. The number of iterations must be constant, and the iterator must
not be modified outside of the replicator. The communication network established
by this program is illustrated on the next page.

36

Concurrency

XCore O

XCore 1

XCore 3

XCore 2

The structure of this program is similar to a token ring network, in which each thread
inputs a token from one of its neighbours, performs an action and then outputs the

token to its other neighbour.

3.7 Services

An XMOS network can interface with any device that implements the XMOS Link
protocol. The program below communicates with an FPGA service connected to the

network.

#include <platform.h>
port p = XS1_PORT_14;

void inData(chanend c, port p) {

// ... input data from p and
}

service fpgalF (chanend);

int main(void) {
chan c;
par {
inData(c, p);
fpgalF(c);
)

The declaration

service fpgalF(chanend);

output to c¢

declares fpgalF to be a service available on the XMOS network. A function declared
as a service may contain only channel-end parameters and must not be given a

3.8 Thread Performance

37

definition. The characteristics of the links used to implement the channel ends are
defined in the XN file.

Another use of services is for interfacing with functions pre-programmed into
the non-volatile memory of an XCore by a third-party manufacturer. Typically, the
manufacturer provides an XN file that contains all service declarations, which are
available in the file <platform.h>.

3.8 Thread Performance

The XMOS architecture is designed to perform multiple real-time tasks concurrently,
each of which is guaranteed predictable thread performance. Each processor uses a
round-robin thread scheduler, which guarantees that if up to four threads are active,
each thread is allocated a quarter of the processing cycles. If more than four threads
are active, each thread is allocated at least % cycles (for n threads). The minimum
performance of a thread can therefore be calculated by counting the number of
concurrent threads at a specific point in the program.

The graph below shows the guaranteed performance obtainable from each thread
on a 400MHz XCore, depending on the total number of threads in use.

100 W = = \
90

80

70

60 \-\

50 \-\-

40

30

Guaranteed MIPS per thread

20

1 2 3 4 5 6 7 8
Number of threads in use

Because individual threads may be delayed on I/0, their unused processor cycles
can be taken by other threads. Thus, for more than four threads, the performance of
each thread is often higher than the minimum shown above.

CHAPTER

Clocked Input and Output

Many protocols require data to be sampled and driven on specific edges of a clock.
Ports can be configured to use either an internally generated clock or an externally
sourced clock, and the processor can record and control on which edges each input
and output operation occurs. In XC, these operations can be directly expressed in
the input and output statements using the timestamped and timed operators.

4.1 Generating a Clock Signal

The program below configures a port to be clocked at a rate of 12.5MHz, outputting
the corresponding clock signal with its output data.

#include <xsl1.h>

out port outP
out port outClock
clock clk

XS1_PORT_8A;
XS1_PORT_14;
XS1_CLKBLK_1;

int main(void) {
configure_clock_rate(clk, 100, 8);
configure_out_port (outP, clk, 0);
configure_port_clock_output (outClock, clk);
start_clock (clk);

for (int i=0; i<5; i++)
outP <: i;

40

Clocked Input and Output

The program configures the ports outP and outClock as illustrated below.

. outClock 9 clk
0 | 12.5 MHz
(]
outP 4
Data signal <€ (8A) € <:

PINS PORTS CLOCK BLOCK PROCESSOR

The declaration
clock clk = XS1_CLKBLK_1;

declares a clock named c1k, which refers to the clock block identifier XS1_CLKBLK_1.
Clocks are declared as global variables, with each declaration initialised with a unique
resource identifier.

The statement

configure_clock_rate(clk, 100, 8);

configures the clock clk to have a rate of 12.5MHz. The rate is specified as a fraction
(100/8) because XC only supports integer arithmetic types.
The statement

configure_out_port (outP, clk, 0);

configures the output port outP to be clocked by the clock c1k, with an initial value
of 0 driven on its pins.
The statement

configure_port_clock_output (outClock, clk)

causes the clock signal c1k to be driven on the pin connected to the port outClock,
which a receiver can use to sample the data driven by the port outP.

4.2 Using an External Clock

41

The statement
start_clock (clk);

causes the clock block to start producing edges.

A port has an internal 16-bit counter, which is incremented on each falling edge
of its clock. The waveform diagram below shows the port counter, clock signal and
data driven by the port.

Port counter 11 12 13 14 15 16
outClock (1B) 1

Clock signal m [_l_l_u_
outP (1A)

Data signe] 0x0f 0x0 X Ox1 f 0x2 k 0x3 | Ox4) Ox4

An output by the processor causes the port to drive output data on the next falling
edge of its clock; the data is held by the port until another output is performed.

4.2 Using an External Clock

The following program configures a port to synchronise the sampling of data to an
external clock.

#include <xsl1l.h>

in port inP = XS1_PORT_84;
in port inClock XS1_PORT_14A;
clock clk XS1_CLKBLK_1;

int main(void) {
configure_clock_src(clk, inClock);
configure_in_port (inP, clk);

start_clock (clk);
for (int i=0; i<5; i++)
inP :> int x;

Clocked Input and Output

The program configures the ports inP and inClock as illustrated below.

Clock signal 9| inClock o > clk
(TA))
2]
inP <
Data signal > (8A) > >
PINS PORTS CLOCK BLOCK PROCESSOR

© The statement
configure_clock_src(clk, inClock);

configures the 1-bit input port inClock to provide edges for the clock clk. An edge
occurs every time the value sampled by the port changes.
(2] The statement

configure_in_port (inP, clk);

configures the input port inP to be clocked by the clock clk.
The waveform diagram below shows the port counter, clock signal, and example
input stimuli.

Port counter 11 12 13 14 15 16
e O LML L L
Clock signal

inP (8A)

Data signal :X OX7X 0x5 X OX3X 0x1 X OXOX

An input by the processor causes the port to sample data on the next rising edge of
its clock. The values input are 0x7, 0x5, 0x3, 0x1 and 0xO.

4.3 Performing I/0 on Specific Clock Edges

It is often necessary to perform an I/0O operation on a port at a specific time with
respect to its clock. The program on the facing page drives a pin high on the third
clock period and low on the fifth.

4.4 Case Study: LCD Screen Driver

43

void doToggle (out port toggle) {
int count;
toggle <: 0 @ count; // timestamped output
while (1) {
count += 3;
toggle @ count <: 1; // timed output
count += 2;
toggle @ count <: 0; // timed output
¥
}

The statement
toggle <: 0 @ count;

performs a timestamped output, outputting the value O to the port toggle and
reading into the variable count the value of the port counter when the output data is
driven on the pins. The program then increments count by a value of 3 and performs
a timed output statement

toggle @ count <: 1;

This statement causes the port to wait until its counter equals the value count+3
(advancing three clock periods) and to then drive its pin high. The last two statements
delay the next output by two clock periods. The waveform diagram below shows the
port counter, clock signal and data driven by the port.

Port counter 12 13 14 15 16 17 18 19 20 21 (S
)

Clock | SS
toggle \ ! \
Datgagsignal J)S

The port counter is incremented on the falling edge of the clock. On intermediate
edges for which no value is provided, the port continues to drive its pins with the
data previously output.

4.4 Case Study: LCD Screen Driver

LCD screens are found in many embedded systems. The principal method of driving
most screens is the same, although the specific details vary from screen to screen.
The diagram on the following page illustrates the operation of a Hitachi TX14 series
screen, including the waveform requirements for transmitting a single frame of
video [4].

44

Clocked Input and Output

oo IGUSLASULENGUUSIASL.. LSS
R O

t HFP HBP HFP VFP

240 plxels
column 0 column 1 column 319

320 pixels

P ! Clock cycles
tr 2310
L 1925
! o 30

s|axid Q¢

X oo oo
L
[

The screen has a resolution of 320x240 pixels. It requires pixel data to be provided
in column order with each value driven on a specific edge of a clock. The signals are
as follows:

e DCIK is a clock signal generated by the driver, which must be configured within
the range of 4.85MHz to 7.00MHz. The value chosen determines the screen
refresh rate.

e DTMG is a data valid signal which must be driven high whenever data is
transmitted.

e DATA carries 18-bit RGB pixel data to the screen.

The specification requires that pixel values for each column are driven on consecutive
cycles with a 55 cycle delay between each column and a 4235 cycle delay between
each frame (see Table 1).

LCD screens are usually driven by dedicated hardware components due to their
clocking requirements. Implementing an LCD screen driver in XC is easy due to
the clock synchronisation supported by the XMOS architecture. The required port
configuration is illustrated on the next page.

4.4 Case Study: LCD Screen Driver

45

Cbckl
DCLK 1A < cx
(M
Strobel
DTMG 1B <
¢ <
Daal
32A <
DATA (Illgz 4 //32 <:
PINS PORTS CLOCK BLOCK PROCESSOR

The ports DATA and DTMG are both clocked by an internally generated clock, which is
made visible on the port DCLK. The program below defines a function that configures
the ports in this way.

#include <xsl1.h>

out port DCLK = XS1_PORT_1A;
out port DTMG XS1_PORT_1B;
out port DATA XS1_PORT_324A;
clock clk XS1_CLKBLK_1;

void lcdInit(void) A{
configure_clock_rate(clk, 100, 17); // 100/17 = 5.9Mhz
configure_out_port (DATA, clk, 0);
configure_out_port (DTMG, clk, 0);
configure_port_clock_output (DCLK, clk);
start_clock (clk);

}

The clock rate specified is 5.9Mhz. The time required to transmit a frame is 320 *
240 + 240 x 55 + 4235 = 94235 clock ticks, giving a frame rate of 9jé%5 = 62Hz. The
function on the following page outputs a sequence of pixel values to the LCD screen

on the clock edges required by the specification.

46

Clocked Input and Output

void lcdDrive(streaming chanend c, out port DATA,
out port DTMG) {
unsigned x, time;
DTMG <:0 @ time;
while (1) {
time += 4235;
for (int cols=0; co0ls<320; cols++) {
time +=30;

c > X;
DTMG @ time <: 1; // strobe high
DATA @ time <: x; // pixel O
for (int rows=1; rows<240; rows++) {

c > x;

DATA <: x; // pixels 1..239
}

DTMG @ time+240 <: 0; // strobe low
time += 25;

}r}

A stream of data is input from a channel end. The body of the while loop transmits
a single frame and the body of the outer for transmits each column. The program
instructs the port DTMG to start driving its pin high when it starts outputting a column
of data and to stop driving afterwards.

An alternate solution is to configure the port DATA to generate a ready-out strobe
signal on DTMG (see §6.4) and to remove the two outputs to DTMG by the processor in
the source code.

4.5 Summary of Clocking Behaviour

The semantics for inputs and outputs on clocked (unbuffered) ports are summarised
as follows.
Output Statements

e An output causes data to be driven on the next falling edge of the clock. The
output blocks until the subsequent rising edge.

e A timed output causes data to be driven by the port when its counter equals
the specified time. The output blocks until the next rising edge after this time.

e The data driven on one edge continues to be driven on subsequent edges for
which no new output data is provided.
Input Statements

e An input causes data to be sampled by the port on the next rising edge of its
clock. The input blocks until this time.

4.5 Summary of Clocking Behaviour

47

e A timed input causes data to be sampled by the port when its counter equals
the specified time. The input blocks until this time.

e A conditional input causes data to be sampled by the port on each rising edge
until the sampled data satisfies the condition. The input blocks until this time,
taking the most recent data sampled.

Select Statements

A select statement waits for any one of the ports in its cases to become ready and
completes the corresponding input operation, where:

e For an input, the port is ready at most once per period of its clock.

e For a timed input, the port is ready only when its counter equals the specified
time.

e For a conditional input, the port is ready only when the data sampled satisfies
the condition.

e For a timed conditional input, the port is ready only when its counter is equal or
greater than the specified time and the value sampled satisfies the condition.

For a timestamped operation that records the value t, the next possible time that the
thread can input or output is t + 1.

On XS1 devices, all ports are buffered (see §C.1). The resulting semantics, which
extend those given above, are discussed in the next chapter.

CHAPTER

Port Buffering

The XMOS architecture provides buffers that can improve the performance of pro-
grams that perform I/0 on clocked ports. A buffer can hold data output by the
processor until the next falling edge of the port’s clock, allowing the processor to
execute other instructions during this time. It can also store data sampled by a port
until the processor is ready to input it. Using buffers, a single thread can perform
I/0 on multiple ports in parallel.

5.1 Using a Buffered Port

The following program uses a buffered port to decouple the sampling and driving of
data on ports from a computation.

#include <xsl1.h>

in buffered port:8 inP = XS1_PORT_8A;
out buffered port:8 outP = XS1_PORT_8B;
in port inClock = XS1_PORT_1A4;

clock clk XS1_CLKBLK_1;
int main(void) {
configure_clock_src(clk, inClock);
configure_in_port (inP, clk);
configure_out_port (outP, clk, 0);
start_clock (clk);
while (1) {

int x;

inP > X
outP <: x + 1;
£0O;

Y}

50

Port Buffering

The program configures the ports inP, outP and inClock as illustrated below.

Clock signal

h 4

. o
inClock clk
(1A) > (1)

inP (2]
8a) <

outP e
88) <

Data signal € € <:

Data signal

A 4
h 4

PINS PORTS CLOCK BLOCK PROCESSOR

The declaration
in buffered port:8 inP = XS1_PORT_8A;

declares a buffered input port named inP, which refers to the 8-bit port identifier 8A.
The statement

configure_clock_src(clk, inClock);

configures the 1-bit input port inClock to provide edges for the clock clk.
The statement

configure_in_port (inP, clk);

configures the input port inP to be clocked by the clock clk.
The statement

configure_out_port (outP, clk, 0);

configures the output port outP to be clocked by the clock clk, with an initial value
of 0 driven on its pins.

5.1 Using a Buffered Port

51

The waveform diagram below shows example input stimuli and expected output
for this program. It also shows the relative waveform of the statements executed in
the while loop by the processor.

G LT LML L1
e & 0x1 i(0x2)l(0x4)1(0x7 Sg
Software — 5 < oo o < o o i< f();ég

outP (8B)

Data signal

~—~
0x0 X ox2 X ox3 Y ox5 X:SS

N

The first three values input are 0x1, 0x2 and 0x4, and in response the values output
are 0x2, 0x3 and 0x5.
The diagram below illustrates the buffering operation in the hardware.

' I mEgigEgky

while(1) drive
. o H
data output peeed L5091
to port data driven on pins
kPROCESSOR PORT J PINS

The diagram shows the processor executing the while loop that outputs data to
the port. The port buffers this data so that the processor can continue executing
subsequent instructions while the port drives the data previously output for a
complete period. On each falling edge of the clock, the port takes the next byte of
data from its buffer and drives it on its pins. As long as the instructions in the loop
execute in less time than the port’s clock period, a new value is driven on the pins
on every clock period.

The fact that the first input statement is executed before a rising edge means that
the input buffer is not used. The processor is always ready to input the next data
before it is sampled, which causes the processor to block, effectively slowing itself
down to the rate of the port. If the first input occurs after the first value is sampled,
however, the input buffer holds the data until the processor is ready to accept it and
each output blocks until the previously output value is driven.

52

Port Buffering

®

Timed operations represent time in the future. The waveform and comparitor
logic allows timed outputs to be buffered, but for timed and conditional inputs the
buffer is emptied before the input is performed.

5.2 Synchronising Clocked 1I/0 on Multiple Ports

By configuring more than one buffered port to be clocked from the same source, a
single thread can cause data to be sampled and driven in parallel on these ports. The
program below first synchronises itself to the start of a clock period, ensuring the
maximum amount of time before the next falling edge, and then outputs a sequence
of 8-bit character values to two 4-bit ports that are driven in parallel.

#include <xsl1l.h>

out buffered port p:4 = XS1_PORT_44A;
out buffered port q:4 = XS1_PORT_4B;
in port inClock = XS1_PORT_14;

clock clk = XS1_CLKBLK_1;
int main(void) {

configure_clock_src(clk, inClock);
configure_out_port(p, clk, 0);
configure_out_port(q, clk, 0);
start_clock (clk);

p <: 0; // start an output
sync(p); // synchronise to falling edge

for (char c='A'; c<='2"; c++) {
p <: (c & 0xFO0) >> 4;
q <: (c & 0x%0F);
}
}

The statement
sync (p);

causes the processor to wait until the next falling edge on which the last data in
the buffer has been driven for a full period, ensuring that the next instruction is
executed just after a falling edge. This ensures that the subsequent two output
statements in the loop are both executed in the same clock period.

The diagram on the next page shows the data output by the processor and driven
by the two ports.

5.3 Summary of Buffered Behaviour

53

ook 0 I B I Y Y Y
Software sync < i
ga(tips\i)gnal 0x0 X 0\<0 X 664 X }\X\4 X Sc)
%a(ths)ignal 0x0 \X OX]\X OXZ\X S,S)
Eflfel_gtive 8-bit signal 0x0 X A X B X SS)

The recommended way to synchronise to a rising edge is to clear the buffer using
the standard library function clearbuf and then perform an input.

5.3 Summary of Buffered Behaviour

The semantics for I/0 on clocked buffered ports are summarised as follows.

Output Statements

e An output inserts data into the port’s FIFO. The processor waits only if the
FIFO is full.

e At most one data value is removed from the FIFO and driven by the port per
period of its clock.

e A timed output inserts data into the port’s FIFO for driving when the port
counter equals the specified time. The processor waits only if the FIFO is full.

e A timestamped output causes the processor to wait until the output is driven
(required to determine the timestamp value).

e The data driven on one edge continues to be driven on subsequent edges.

Input Statements

e At most one value is sampled by the port and inserted into its FIFO per period
of its clock. If the FIFO is full, its oldest value is dropped to make room for the
most recently sampled value.

¢ An input removes data from a port’s FIFO. The processor waits only if the FIFO
is empty.

e Timed and conditional inputs cause any data in the FIFO to be discarded and
then behave as in the unbuffered case.

CHAPTER

Serialisation and Strobing

The XMOS architecture provides hardware support for operations that frequently
arise in communication protocols. A port can be configured to perform serialisation,
useful if data must be communicated over ports that are only a few bits wide (such
as in §2.5), and strobing, useful if data is accompanied by a separate data valid signal
(such as in §4.4). Offloading these tasks to the ports frees up more processor time
for executing computations.

6.1 Serialising Output Data using a Port

A clocked port can serialise data, reducing the number of instructions required to
perform an output. The program below outputs a 32-bit value onto 8 pins, using a
clock to determine for how long each 8-bit value is driven.

#include <xsl1.h>

out buffered port:32 outP XS1_PORT_8A;
in port inClock = XS1_PORT_1A4;
clock clk XS1_CLKBLK_1;

int main(void) {
int x = OxFFFFOOAA;
configure_clock_src(clk, inClock);
configure_out_port (outP, clk, 0);
start_clock (clk);

while (1) {
outP <: x;
x = f(x);

56

Serialisation and Strobing

The declaration
out buffered port:32 outP = XS1_PORT_84;

declares the port outP to drive 8 pins from a 32-bit shift register. The type port:32
specifies the number of bits that are transferred in each output operation (the
transfer width). The initialisation XS1_PORT_8A specifies the number of physical pins
connected to the port (the port width). The waveform diagram below shows the data
driven by this program.

Port counter 30 31 32 33 34 35 36 (S
/)

inClock (1A)

Clock signa

Software

g‘;fjggﬁa)l (oxo XOxFFXOxFFXOxOOXOxAAXjS

By offloading the serialisation to the port, the processor has only to output once
every 4 clock periods. On each falling edge of the clock, the least significant 8 bits of
the shift register are driven on the pins; the shift register is then right-shifted by 8
bits.

On XS1 devices, ports used for serialisation must be qualified with the keyword
buffered; see §C.1 for further explanation.

6.2 Deserialising Input Data using a Port

A port can deserialise data, reducing the number of instructions required to in-
put data. The program below performs a 4-to-8 bit conversion on an input port,
controlled by a 25MHz clock.

#include <xsl1l.h>

in buffered port:8 inP = XS1_PORT_44;
out port outClock XS1_PORT_1A;
clock clk25 XS1_CLKBLK_1;

int main(void) {
configure_clock_rate(clk25, 100, 4);
configure_in_port (inP, clk25);
configure_port_clock_output (outClock, clk25);
start_clock(clk25);
while (1) {
int x;
inP :> x;
f(x);
3

6.3 Inputting Data Accompanied by a Data Valid Signal

57

The program declares inP to be a 4-bit wide port with an 8-bit transfer width,
meaning that two 4-bit values can be sampled by the port before they must be input
by the processor. As with output, the deserialiser reduces the number of instructions
required to obtain the data. The waveform diagram below shows example input
stimuli and the period during which the data is available in the port’s buffer for
input.

Port counter 30 31 32 33 34 35 36

g™ LML

Clock signal

Software L_ZH £(x); £(x); I—gs—
/

inP (4A)

Data in buffer X0X28 X0X7A X Sg

inP (4A

Data(sigr?al X ox8)X 0x2 X oxA K ox7X .. X .-)(3;

Data is sampled on the rising edges of the clock and, when shifting, the least
significant nibble is read first. The sampled data is available in the port’s buffer for
input for two clock periods. The first two values input are 0x28 and 0Ox7A.

6.3 Inputting Data Accompanied by a Data Valid Signal

A clocked port can interpret a ready-in strobe signal that determines the validity of
the accompanying data. The program below inputs data from a clocked port only
when a ready-in signal is high.

#include <xsl1.h>

in buffered port:8 inP = XS1_PORT_4A;
in port inReady = XS1_PORT_1A;
in port inClock = XS1_PORT_1B;
clock clk = XS1_CLKBLK_1;

int main(void) {
configure_clock_src(clk, inClock);
configure_in_port_strobed_slave (inP, inReady, clk);
start_clock (clk);

inP :> void;

58

Serialisation and Strobing

The statement
configure_in_port_strobed_slave(inP, inReady, clk);

configures the input port inP to be sampled only when the value sampled on the
port inReady equals 1. The ready-in port must be 1-bit wide. The waveform diagram
below shows example input stimuli and the data input by this program.

Port counter 12 13 14 15

oI I 0 N By B B
Clock signal —
a1 LT Ll
Bate o o XN o YN

SR LA _oxes gs X

Data is sampled on the rising edge of the clock whenever the ready-in signal is high.
The port samples two 4-bit values and combines them to produce a single 8-bit value
for input by the processor; the data input is 0x28. XS1 devices have a single-entry
buffer, which means that data is available for input until the ready-in signal is high
for the next two rising edges of the clock. Note that the port counter is incremented
on every clock period, regardless of whether the strobe signal is high.

6.4 Outputting Data and a Data Valid Signal

A clocked port can generate a ready-out strobe signal whenever data is output. The
program below causes an output port to drive a data valid signal whenever data is
driven on a 4-bit port.

#include <xsl1.h>

out buffered port:8 outP XS1_PORT_4B;
out port outR = XS1_PORT_1A;
in port inClock XS1_PORT_1B;
clock clk = XS1_CLKBLK_1;

int main(void) {
configure_clock_src(clk, inClock);
configure_out_port_strobed_master(outP, outR, clk, 0);
start_clock (clk);

outP <: 0x85;

6.5 Case Study: Ethernet MII

The statement
configure_out_port_strobed_master (outP, outR, clk, 0);

configures the output port outP to drive the port outR high whenever data is output.
The ready-out port must be 1-bit wide. The waveform diagram below shows the data
and strobe signals driven by this program.

Port counter 12 13 14
inClock (1B)

Clock signal - I I I I I I I
outP (4A)

Data signal X 0x5 X 0x8 X

outR (1A)
Ready-out signal Q l—

The port drives two 4-bit values over two clock periods, raising the ready-out signal
during this time.

It is also possible to implement control flow algorithms that output data using a
ready-in strobe signal and that input data using a ready-out strobe signal; when both
signals are configured, the port implements a symmetric strobe protocol that uses a
clock to handshake the communication of the data (see §C.2.2 and §B.2).

On XS1 devices, ports used for strobing must be qualified with the keyword
buffered; see §C.1 for further explanation.

6.5 Case Study: Ethernet Mil

A single thread on an XS1 device can be used to implement a full duplex 100Mbps
Ethernet Media Independent Interface (MII) protocol [5]. This protocol implements
the data transfer signals between the link layer and physical device (PHY). The signals
are shown below.

RXCLK
RXDV
RXD

Ml < RXER

PHY
(Hardware) TXCLK >
€« TXEN
XD

TXER 4

VVY

Ports

60

Serialisation and Strobing

6.5.1 MIl Transmit

The waveform diagram below shows the transmission of a single frame of data to
the PHY. The error signal TXER is omitted for simplicitly.

((((

TXEN J)))) _
A

TXD >< pr@jmﬁgmx CRC x CRC XCRC XCRC x

A&
7?¢

64 - 1500 bytes 4 bytes

S
r 4

The signals are as follows:
e TXCIK is a free running 25MHz clock generated by the PHY.

o TXEN is a data valid signal driven high by the transmitter during frame trans-
mission.

e TXD carries a nibble of data per clock period from the transmitter to the PHY.
The transmitter starts by sending a preamble of nibbles of value 0x5, followed
by two nibbles of values 0x5 and 0xD. The data, which must be in the range
of 64 to 1500 bytes, is then transmitted, least significant bit first, followed by
four bytes containing a CRC.

The diagram below illustrates the port configuration required to serialise the output
data and produce a data valid signal.

Clock|
TXCLK 1 > C(}l)‘

Strobel
TXEN K <

Data |

g <

no ¢ —
PINS | PORTS CLOCK BLOCK ~ PROCESSOR |

6.5 Cas

e Study: Ethernet MII

61

The port

TXD performs a 32-to-4 bit serialisation of data onto its pins. It is synchro-

nised to the 1-bit port TXCLK and uses the 1-bit port TXEN as a ready-out strobe signal
that is driven high whenever data is driven. In this configuration, the processor has
only to output data once every eight clock periods and does not need to explicitly
output the data valid signal. The program below defines and configures the ports in

this way.
#i

out buffered port:32 TXD

ou
in
cl

vo

}

nclude <xsl1l.h>

XS1_PORT_4B;

t port TXEN = XS1_PORT_1K;
port TXCLK = XS1_PORT_1J;
ock clk = XS1_CLKBLK_1;

id miiConfigTransmit(clock clk,
buffered out port:32 TXD, out port TXEN) {

configure_clock_src(clk, TXCLK);
configure_out_port (TXD, clk);
configure_out_port (TXEN, clk);
configure_out_port_strobed_master (TXD, TXEN, clk, 0);
start_clock (clk);

The function below inputs frame data from another thread and outputs it to the MII
ports. For simplicity, the error signals and CRC are ignored.

vo

id miiTransmitFrame (out buffered port:32 TXD,
streaming chanend c) {
int numBytes, tailBytes, tailBits, data;

/* Input size of next packet */
c :> numBytes;

tailBytes = numBytes / 4;
tailBits = tailBytes * 8;

/* Output row of Oxbs followed by O0xD x*/
TXD <: 0xD5555555;

/* Output 32-bit words for serialisation */
for (int i=0; i<numBytes-tailBytes; i+=4) {
[:> data;
TXD <: data;
}

/* Output remaining bits of data for serialisation */
if (tailBits != 0) {

c :> data;

partout (TXD, tailBits, data);
}

62

Serialisation and Strobing

The program first inputs from the channel c the size of the frame in bytes. It then
outputs a 32-bit preamble to TXD, which is driven on the pins as nibbles over eight
clock periods. On each iteration of the for loop, the next 32 bits of data are then
output to TXD for serialising onto the pins. This gives the processor enough time to
get around the loop before the next block of data must be driven. The final statement

partout (TXD, tailBits, data);

performs a partial output of the remaining bits of data that represent valid frame
data.

6.5.2 MIl Receive

The waveform diagram below shows the reception of a single frame from the PHY.
The error signal RXER is omitted for simplicitly.

RXCLK |||||§S|||||||||||§S||||||||||||||||||||||
{ {

RXDV J >> >> _
RXD X pr%}@g@mx ke X e X cke X cre X

Ne S
¢ ?

64 - 1500 bytes 4 bytes

The signals are as follows:

e RXCILK is a free running clock generated by the PHY.
e RXDV is a data valid signal driven high by the PHY during frame transmission.

e RXD carries a nibble of data per clock period from the PHY to the receiver.
The receiver waits for a preamble of nibbles of values 0x5, followed by two
nibbles with values 0x5 and OxD. The actual data is then received, which is in
the range of 64 to 1500 bytes, least significant nibble first, followed by four
bytes containing a CRC.

The diagram on the next page illustrates the port configuration required to deserialise
the input data when a data valid signal is present.

6.5 Case Study: Ethernet MII 63

Cbckl
1k
RXCLK 1H > ?1)
VNMI
RXDV n < N .
Data I4A <
v —Ht> RN
PINS | PORTS CLOCK BLOCK PROCESSOR |

The port RXD performs a 4-to-32-bit deserialisation of data from its pins. It is
synchronised to the 1-bit port RXCLK and uses the 1-bit port RXDV as a ready-in
strobe signal that causes data to be sampled only when the strobe is high. In this
configuration, the port can sample eight values before the data must be input by
the processor, and the processor does not need to explicitly wait for the data valid
signal. The program below defines and configures the ports in this way.

#include <xsl1.h>

in buffered port:32 RXD XS1_PORT_44;
in port RXDV = XS1_PORT_1TI;
in port RXCLK XS1_PORT_1H;
clock clk XS1_CLKBLK_1;

void miiConfigReceive (clock clk, in port RXCLK,
buffered in port:32 RXD, in port RXDV, in port RXER) {

configure_clock_src(clk, RXCLK);
configure_in_port (RXD, clk);
configure_in_port (RXDV, clk);
configure_in_port_strobed_slave (RXD, RXDV, clk);
start_clock (clk);

}

The function on the following page receives a single error-free frame and outputs it
to another thread. For simplicity, the error signal and CRC are ignored.

64

Serialisation and Strobing

#define MORE O
#define DONE 1

void miiReceiveFrame (in buffered port:32 RXD, in port RXDV,
streaming chanend c) {
int notDone = 1;
int data, tail;

/* Wait for start of frame */
RXD when pinseq(0xD) :> void;

/* Receive frame data/crc */
do {
select {
case RXD :> data
/* input next 32 bits of data */

c <: MORE;
c <: data;
break;

case RXDV when pinseq(0) :> notDone
/* Input any bits remaining in port */
tail = endin (RXD);
for (int byte=tail>>3; byte > 0; byte-=4) {
RXD :> data;
c <: MORE;
c <: data;

}

c <: DONE;

c <: tail >> 3;
break;

}
} while (notDone);
}

The processor waits for the last nibble of the preamble (0xD) to be sampled by the
port RXD. Then on each iteration of the loop, it waits for either next eight nibbles of
data to be sampled for input by RXD or for the data valid signal RXDV to go low.

An effect of using a port’s serialisation and strobing capabilities together is that
the ready-in signal may go low before a full transfer width’s worth of data is received.
The statement

tail = endin (RXD);

causes the port RXD to respond with the remaining number of bits not yet input. It
also causes the port to provide this data on the subsequent inputs, even though the
data valid signal is low and the shift register is not yet full.

6.6 Summary

65

XS1 devices provide a single-entry buffer up to 32-bits wide and a 32-bit shift
register, requiring up to 64 bits of data being input over two input statements once
the data valid signal goes low.

6.6 Summary

The semantics for I/O on a serialised port are as follows (where p refers to the port
width and w refers to the transfer width of a port):

e An output of a w-bit value is driven over % consecutive clock periods, least
significant bits first. The ready-out signal is driven high on each of these
periods.

e For a timed output, the port waits until its counter equals the specified time
before starting to serialise the data. The ready-out signal is not driven while
waiting to serialise.

e An input of a w-bit value is sampled over % clock periods, with earlier bits
received ending up in the least significant bits of w. (If a ready-in signal is used,
the clock periods may not be consecutive.)

e For a timed input, the port provides the last p bits of data sampled when its
counter equals the specified time.

If a port is configured with a ready-in signal:

e Data is sampled only on rising edges of the port’s clock when the ready-in
signal is high.

If a port is configured with a ready-out signal:

e The ready-out signal is driven high along with the data and is held for a single
period of the clock.

A full description of the semantics for strobing and serialisation is given in Ap-
pendix B.

APPENDIX

XC Language Specification

The specification given in this appendix describes version 9.9 of XC; the behaviour of 1I/0
operations on ports is given separately in Appendix B.

The layout of this manual and portions of its text are based upon the K&R definition of
C [6]. Commentary material highlighting differences between XC and C is indented and
written in smaller type.

A.1 Lexical Conventions

A program consists of one or more translation units stored in files. It is translated in
several phases, which are described in §A.13. The first phases perform low-level lexical
transformations, carry out directives introduced by lines beginning with the # character, and
perform macro definition and expansion. When the preprocessing of §A.13 is complete, the
program has been reduced to a sequence of tokens.

A.1.1 Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals, operators,
and other separators. Blank spaces, horizontal tabs, newlines, formfeeds, and comments as
described below, collectively referred to as white space, are ignored except as they separate
tokens. Some white space is required to separate otherwise adjacent identifiers, keywords
and constants.

A.1.2 Comments

Two styles of commenting are supported: the characters /* introduce a comment, which
terminates with the characters */, and the characters // introduce a comment, which termi-
nates with a newline. Comments may not be nested, and they may not occur within string or
character literals.

68

XC Language Specification

A.1.3 Identifiers

An identifier is a sequence of letters, digits and underscore (_) characters of any length; the
first character must not be a digit. Upper and lower case letters are different.

A.1.4 Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto else return union
break enum short unsigned
case extern signed void
char for sizeof volatile
const if static while
continue int struct
default long switch
do register typedef

The following identifiers are also reserved for use as keywords and may not be used otherwise:
buffered inline out slave
chan isnull par streaming
chanend master port timer
core null select transaction
in on service when

The construction port:n where n is a sequence of digits is also a valid identifier. The
sequence of digits is taken to be decimal and is interpreted as an integer constant. The
following identifiers are reserved for compatibility issues and for future use:

accept claim float restrict

asm double module

A.1.5 Constants

There are several kinds of constants. Each has a data type; §A.3.2 discusses the basic types.
constant ::= integer-constant
| character-constant
| enumeration-constant
| null
Floating-point constants are unsupported.

A.1.5.1 Integer Constants

A sequence of digits is taken to be binary if preceded by Ob or 0B, octal if preceded by 0,
hexadecimal if preceded by 0x or 0X, and decimal otherwise. integer constant may be suffixed
by the letter u or U (unsigned), the letter 1 or L (long), or both (unsigned long).

The type of an integer constant depends on its form, value and suffix. (See §A.3 for a
discussion of types.) An unsuffixed decimal constant has the first of the following types in
which its value can be represented: int, long int, unsigned long int; an unsuffixed octal or
hexadecimal constant has the first possible of types: int, unsigned int, long int, unsigned
long int. Anunsigned constant has the first possible of types: unsigned int, unsigned long
int; a long constant has the first possible of types: long int, unsigned long int.

A.2 Syntax Notation

69

A.1.5.2 Character Constants

A character constant is a sequence of one or more characters (excluding the single-quote and
newline characters) enclosed in single quotes. The value of a character constant with a single
character is the numeric value of the character in the machine’s character set at execution
time. The value of a multi-character constant is implementation-defined.

Wide character constants are unsupported.

The following escape sequences are supported.

newline NL \n Dbackslash \ \\
horizontal tab HT \t question mark 7 \7
vertical tab VT \v single quote ’ \?
backspace BS \b double quote " \"
carriagereturn CR \r octal number 000 \ooo
formfeed FF \f hex number hh \xhh

audible alert BEL \a

The escape sequence \ooo requires one, two or three octal digits. The sequence \xhh requires
one or more hexadecimal digits; its behaviour is undefined if the resulting character value
exceeds that of the largest character. For either octal or hexadecimal escape characters, if
the implementation treats the char type as signed, the value is sign-extended as if cast to
char type. If any other character follows the \ then the behaviour is undefined.

A.1.5.3 Enumeration Constants

Identifiers declared as enumerators (see §A.7.5) are constants of type int.

A.1.5.4 Null Constants

The null constant has type null.

A.1.6 String Literals

A string literal is a sequence of zero or more characters (excluding the double-quote and
newline characters) enclosed in double quotes. It has type “array of characters” and storage
class static (see §A.3.1) initialised with the given characters. Whether identical string literals
are distinct is implementation-defined, and the behaviour of a program that attempts to alter
a string literal is undefined.

Adjacent string literals are concatenated into a single string. After any concatenation, a
null byte \0 is appended to the string. All of the character escape sequences are supported.

A.2 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated by serif type,
and literal words and characters by typewriter style. An optional terminal or nonterminal
symbol carries the subscripted suffix “opt,” so that, for example,

{ expressiongy; }
means an optional expression, enclosed in braces. The terms “zero or more” and “one or
more” are represented using angled brackets along with the star (¥) and plus (+) symbols

70

XC Language Specification

respectively, so that, for example,
(declaration)*

means a sequence of zero or more declarations, and
(declaration)™*

means a sequence of one or more declarations.

A.3 Meaning of Identifiers

Identifiers (or names) refer collectively to functions, tags of structures and unions, members
of structures or unions, and objects. An object (or variable) is a location in storage, and its
interpretation depends on its storage class and its type. The storage class determines the
lifetime of the storage associated with the identifier; the type determines the meaning of
the values found in the identified object. A name also has scope, which is the region of the
program in which it is known, and a linkage, which determines whether the same name in
another scope refers to the same object or function. Scope and linkage are discussed in
§A.10.

A.3.1 Storage Class

An object has either automatic or static storage. Automatic objects are local to a block (§A.8.4)
and are discarded on exit from the block. Declarations within a block create automatic objects
if no storage class is mentioned, or if the auto or register specifier is used.

Static objects may be local to a block or external to all blocks, but in either case retain
their values across exit from and reentry to functions and blocks. Within a block, static
objects are declared with the keyword static. The objects declared outside all blocks, at the
same level as function definitions, are always static. They may be made local to a particular
translation unit by use of the static keyword; this gives them file-scope (or internal linkage).
They become global to an entire program by omitting an explicit storage class, or by using
the keyword extern; this gives them program-scope (or external linkage).

A function may be declared with the keyword service. This specifier has no effect on the
behaviour of the function; the extent to which suggestions made by using this specifier are
effective is implementation-defined.

A.3.2 Basic Types

Objects declared as char are large enough to store any member of the execution character
set. If a genuine character from that set is stored in a char object, its value is equivalent to
the integer code for the character, and is non-negative. Other quantities may be stored into
char variables, but the available range of values, and especially whether the value is signed,
is implementation-defined.

Objects declared unsigned char consume the same amount of space as plain characters,
but always appear non-negative; explicitly signed characters declared signed char likewise
take the same space as plain characters.

In addition to the char type, up to three sizes of integer are available, declared short
int, int and long int. Plain int objects have the natural size suggested by the host machine
architecture. Longer integers provide at least as much storage as shorter ones, but the

A.3 Meaning of Identifiers

71

implementation may make plain integers equivalent to either short or long integers. The int
types all represent signed values unless specified otherwise.

Unsigned integers obey the laws of arithmetic modulo 2" where n is the number of bits
in the representation. The set of non-negative values that can be stored in a signed object
is a subset of the values that can be stored in the corresponding unsigned object, and the
representation for the overlapping values is the same.

All of the above types are collectively referred to as arithmetic types, because they can be
interpreted as numbers, and as integral types, because they represent integer values.

The void type specifies an empty set of values; it is used as the type returned by functions
that generate no value.

The C types long long int, float and double are unsupported.

The chan type specifies a logical communication channel over which values can be
communicated between parallel statements (§A.8.8). The chanend type specifies one end of a
communication channel.

The locations of at most two implied ends of chan (themselves chanends) are defined
through the use of the channel in at most two parallel statements (§A.8.8).

Channel ends are used as operands of input and output statements (§A.8.3). Channels
are bidirectional and synchronised: an outputter waits for a matching inputter to become
ready before data is communicated. Whether a streaming channel is synchronised or unsyn-
chronised is implementation-defined.

The port type specifies a p-bit register, which interfaces to a collection of p pins used for
communicating with the environment where p is implementation-defined. The port:n type
specifies an n-bit register, which interfaces to a collection of p pins used for communicating
with the environment (where p need not equal n). A void port is a special type of port that
may not be used for input or output. A port also has a notional transfer type and counter
type (see §A.8.3); these types are implementation-defined.

Ports are used as operands of input and output statements (§A.8.3, Appendix B).

The timer type is a special type of input port that returns the current time when input
from. A void timer is a timer that may not used for input. A timer also has a notional
counter type (see §A.8.3); this type is implementation-defined.

The core type specifies a processor core on which ports and parallel statements may be
placed. Objects of core type do not reserve storage.

Channel ends, ports, timers and cores are collectively referred to as having resource types.
Except for cores, which do not reserve storage, an object of resource type refers to a location
in storage in which an identifier for the resource is recorded.

chan, chanend, port, timer, core and buffered and streaming are new.

A.3.3 Derived Types

In addition to the basic types, the following derived types may be constructed in the following
ways:

e Arrays of objects of a given type.

e Functions returning objects of a given type.

e References to objects of a given type.

e Structures containing a sequence of objects of various types.

72

XC Language Specification

e Unions capable of containing any one of several objects of various types.
o Lists of objects containing a sequence of objects of various types.

In general these methods of constructing objects can be applied recursively.

Lists of types are used in multiple assignment statements (§A.8.2); pointers are replaced
by references (see §A.6.1; §A.6.3.2; §A.7.7.2).

A.3.4 Type Qualifiers

An object’s type may be qualified const, which announces that its value will not be changed;
its range of values and arithmetic properties is unaffected.

A port may be qualified in or out, which announces that it will only be used for input or
output operators (§A.8.3).

Quualifiers are discussed in §A.6.3.2 and §A.7.2.

in and out are new.

A.4 Objects and Lvalues

An object is a named region of storage; an Ivalue is a reference to an object. For example, if
str is an identifier of type “1-dimensional array of char” then str[0] is an Ivalue referring to
the character object indexed by the first element of the array str.

A modifiable value is an lvalue which is modifiable: it must not be an array, and must not
have a resource or incomplete type, or be a function. Also, its type must not be qualified with
const; if it is a structure or union, it must not have any member or, recursively, submember
qualified with const.

A.5 Conversions

Some operators, depending on their operands, cause conversion of the value of an operand
from one type to another. This section explains the results to be expected from such
conversions. §A.5 details the conversions demanded by most operators.

A.5.1 Integral Promotion

A character or a short integer, both either signed or not, may be used in an expression
wherever an integer may be used. If an int can represent all the values of the original type
then the value is converted to int, otherwise the value is converted to unsigned int.

A.5.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non-negative
value that is congruent to that integer, modulo one more than the largest value that can be
represented in the unsigned type.

When any integer is converted to a signed type, its value is unchanged if it can be
represented in the new type, and implementation-defined otherwise.

A.6 Expressions

73

A.5.3 Arithmetic Conversions

Many operators cause conversions which bring their operands into a common type, which is
also the type of the result. The rules for performing these usual arithmetic conversions are as
follows:

e First, integral promotions are performed on both operands.

o If either operand is unsigned long int then the other is converted to unsigned long
int.

¢ Otherwise, if one operand is long int and the other is unsigned int then: if a long
int can represent all values of an unsigned int then the unsigned int operand is
converted to long int, otherwise both operands are converted to unsigned long int.

o Otherwise, if one operand is long int then the other is converted to long int.

o Otherwise, if either operand is unsigned int then the other is converted to unsigned
int.

¢ Otherwise both operands have type int.

A.5.4 Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit
nor implicit conversion to any non-void type may be applied. An object of type void port or
void timer may not be used for input or output.

A.6 Expressions

The precedence of expression operators is the same as the order of the major subsections
of this section, highest precedence first. Within each section, the operators have the same
precedence. Left- or right-associativity is specified in each subsection for the operators
discussed therein.

The precedence and associativity of operators is fully specified. The order of evaluation
of expressions does not, with certain exceptions, affect the behaviour of the program, even if
the subexpressions involve side effects. In particular, a variable which is changed in one part

of an expression may not unless otherwise stated appear in any other part of the expression.

This rule applies recursively to all variables which are changed in functions called in the
expression.

The handling of overflow, divide check, and other exceptions in expression evaluation is
implementation-defined.

A.6.1 Reference Generation

If the type of an expression is “array of T,” for some type T, then the value of the expression
is a reference to the array, and the type of the expression is altered to “reference to T.”

74

XC Language Specification

A.6.2 Primary Expressions

Primary expressions are variable references, function calls, constants, strings, or expressions
in parentheses:

primary-expression ::= variable-reference
| function-call
| constant

| string

| (expression)

A variable reference is a primary expression, providing the identifier named (§A.6.3) has been
suitably declared as discussed below; the type of the identifier is specified by its declaration;
the type of the expression is that of the identifier.

A function call is a primary expression; the type the expression depends on the return
type of the function (§A.6.3.2).

A constant is a primary expression; the type of the expression is that of the constant
(which depends on its form discussed in §A.1.5).

A string literal is a primary expression; the type of the expression is “array of char.”

A parenthesised expression is a primary expression whose type and value are identical to
those of the unadorned expression.

A.6.3 Postfix Expressions

The operators in postfix expressions group left to right.

postfix-expression ::= primary-expression
| variable-reference ++
| variable-reference --

variable-reference ::= identifier
| variable-reference [expression]
| variable-reference . identifier
| (variable-reference , type-name)

function-call == identifier (expression-list,p:)

expression-list 1= expression
| expression , expression-list

A.6.3.1 Array References

A variable reference followed by an expression in square brackets is a subscripted array
reference. The variable reference must either have type “n-array of T” or “reference to an
n-array of T,” where n is the number of dimensions and T is some type, and the expression
must have integral type; the type of the subscripted variable reference is T. If the value of
the expression is less than zero or greater than or equal to n then the expression is invalid.
See §A.7.7.1 for further discussion.

A.6 Expressions

75

A.6.3.2 Function Calls

A function call is an identifier followed by parentheses containing an optional list of comma-
separated expressions, which constitute the arguments to the function. If the identifier
has type “transaction function returning void” then the call must be within the scope of a
transaction statement (§A.8.9). Otherwise, the identifier must have type “function returning
T,” or “select function returning T,” for some type T, in which case the value of the function
call has type T.

Function declarations are limited to file-scope only (§A.9). Implicit function declarations
(see K&R §A7.3.2) are unsupported.

The term argument refers to an expression passed by a function call, and the term
parameter refers to an input object (or its identifier) received by a function definition, or
described in a function declaration.

If the type of a parameter is “reference to T,” for some T, then its argument is passed by
reference, otherwise the argument is passed by value. In preparing for the call to a function,
a copy is made of each argument that is passed by value. A function may change the values
of these parameter objects, which are copies of the argument expressions, but these changes
cannot affect the values of the arguments. For objects that are passed by reference, a function
may change the values that these objects dereference, thereby affecting the values of the
arguments. For the purpose of disjointness checking, passing an object by reference counts
as a write to that object unless the type of the parameter is qualified as const or an array of
objects qualified as const.

For arguments passed by value, the argument and parameter are deemed to agree in type
if the promoted type of the argument is that of the parameter itself, without promotion. For
arguments passed by reference, the argument and parameter agree in type only if the types
are equivalent (see A.7.11) ignoring all qualifiers and array sizes, and obey the following
rules:

e An object or an array of objects declared with the qualifier const may only be used as
an argument to a function with parameter qualified const.

e An object declared with the qualifier in may only be used as an argument to a function
with parameter qualified in or void.

e An object declared with the qualifier out may only be used as an argument to a function
with parameter qualified out or void.

e An object declared with the specifier void may only be used as an argument to a
function with parameter specified void. An object not qualified in, out or void may be
used as an argument to a function with parameter qualified either in, out or void.

e An object declared with the qualifier buffered may only be used as an argument to
a function parameter qualified buffered. An object not declared with the qualifier
buffered may only be used as an argument to a function parameter not qualified
buffered.

e An object declared with the qualifier streaming may only be used as an argument to
a function parameter qualified streaming. An object not declared with the qualifier
streaming may only be used as an argument to a function parameter not qualified
streaming.

76

XC Language Specification

e An object declared with an array size of n may only be used as an argument to a
function parameter that is an array of unknown size or of size m where m <= n.

e An object passed to a parameter declared without the qualifier const must be an lvalue.

A variable which is changed in one argument may not appear in any other argument. This
rule applies recursively to all variables appearing in functions called by the arguments.

The arguments passed by value are converted, as if by assignment, to the types of
the corresponding parameters of the function’s declaration (or prototype). The number of
arguments must be the same as the number of parameters, unless the declaration’s parameter
list ends with the ellipsis notation (, ...). In that case, the number of arguments must equal
or exceed the number of parameters; trailing integral arguments beyond the explicitly typed
parameters undergo integral promotion (§A.5.1).

The order of evaluation of arguments is unspecified, but the arguments are completely
evaluated, including all side effects, before the function is entered. Recursive calls to any
function are permitted.

The creation of more than one reference to the same object of basic type, a structure, a
union or an array is invalid. The creation of a reference to a structure, union or array, and to
a member or element recursively contained within is invalid. The creation of more than one
reference to objects contained within distinct members of a union is invalid.

A.6.3.3 Structure References

A variable reference followed by a dot followed by an identifier is a member reference. The
variable reference must be a structure or union, and the identifier must name a member of
the structure or union. The value is the named member of the structure or union, and its
type is the type of the member.

Structures and unions are discussed in §A.7.4.

A.6.3.4 Reinterpretation

A left parenthesis followed by a variable reference followed by a comma followed by a type
name (§A.7.9) followed by a right parenthesis is a reinterpretation cast.

The variable reference must not specify a resource type; its type must be complete or it
must be an incomplete array with the first dimension missing which, if provided, completes
the type. The variable type name must not be a resource type; it must be complete.

If the size of the type of the variable reference is unknown because it references an array
parameter with unknown size then the following two rules apply. First, if the size of the type
name is a compile-time constant T then at run-time if the size of the variable reference is less
than T then the reinterpret operation is invalid. Second, if the size of the type name is not
known at compile-time because it is an array in which the largest dimension is unspecified
then at run-time the reinterpret operation provides a value for the dimension d such that the
size of the resulting type is not larger than the size of the type of the variable reference, but
with a value of d+1 it would be.

If the size of the type of the variable reference is a compile-time constant V then the
following two rules apply. First, if the size of the type name is a compile-time constant T
then T must not be greater than V. Second, if the size of the type name is unknown because
it references an array in which the largest dimension is unspecified then a value for this

A.6 Expressions

77

dimension d is completed at compile-time such that the size of the resulting type is not
larger than V, but with a value of d+1 it would be.

No arithmetic conversions are performed: the effect of the reinterpretation is to treat the
variable as if it had the specified type. An array of size zero is a valid reinterpretation; any
attempted index into the array is invalid.

The use of a reinterpreted object may be invalid if it is not suitably aligned in storage. It
is guaranteed only that an object may be reinterpreted to an object whose type requires less
or equally strict storage alignment; the notion of “alignment” is implementation-defined, but
objects of the char types have least strict alignment requirements.

A.6.4 Unary Operators

Expressions with unary operators group right-to-left.

unary-expression ::= postfix-expression

++ variable-reference

-- variable-reference
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

isnull (unary-expression)

unary-operator ::= one of
+ -

A.6.4.1 Prefix Incrementation Operators

A unary expression preceded by a ++ or -- operator is a unary expression. The operand is
incremented (++) or decremented (--) by 1. The value of the expression is the value after
the incrementation (decrementation). The operand must be a modifiable lvalue; see the

discussion of additive operators (§A.6.7) and assignment (§A.6.17) for details of the operation.

The result is not an lvalue.

A.6.4.2 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result is the value of
its operand. An integral operand undergoes integral promotion; the type of the result is the
type of the promoted operand.

A.6.4.3 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result is the negative
of its operand. An integral operand undergoes integral promotion. The negative of an
unsigned quantity is computed by subtracting the promoted value from the largest value of
the promoted type and adding one; but negative zero is zero. The type of the result is the
type of the promoted operand.

78

XC Language Specification

A.6.4.4 One’s (Bitwise) Complement Operator

The operand of the unary ~ operator must have integral type, and the result is the one’s
complement of its operand. The integral promotions are performed. If the operand is
unsigned, the result is computed by subtracting the value from the largest value of the
promoted type. If the operand is signed, the result is computed by converting the promoted
operand to the corresponding unsigned type, applying ~, and converting back to the signed
type. The type of the result is the type of the promoted operand.

A.6.4.5 Logical Negation Operator

The operand of the ! operator must have arithmetic type, and the result is 1 if the value of
its operand compares equal to 0, and O otherwise. The type of the result is int.

A.6.4.6 Sizeof Operator

The sizeof operator yields the number of bytes required to store an object of the type of its
operand. The operand is either an expression, which is not evaluated, or a parenthesised type
name. When sizeof is applied to a char, the result is 1; when applied to an array, the result
is the total number of bytes in the array. When applied to a structure or union, the result is
the number of bytes in the object, including any padding required to make the object tile an
array: the size of an array of n elements is n times the size of one element. When applied to
a reference, the result is the number of bytes in the object referred to. The operator may not
be applied to an operand of function type, of resource type or of an incomplete type. The
operator may not be applied to an operand of reference type where the reference is to an
array of unknown size. The value of the result is implementation-defined. The result is an
unsigned integral constant; the particular type is implementation-defined.

A.6.4.7 Isnull Operator

The operand of the isnull operator must be an Ivalue. The result is 1 if its operand has value
null, and O otherwise. The type of the result is int.

A.6.5 Casts

A unary expression preceded by the parenthesised name of a type causes conversion of the
value of the expression to the named type.

cast-expression ::= undary-expression
| (type-name) cast-expression

This construction is called a cast. The cast must not specify a structure, a union, an array, or
aresource type; neither must the expression. Type names are described in §A.7.9. The effects
of arithmetic conversions are described in §A.5.3. An expression with a cast is not an lvalue.

A.6 Expressions

79

A.6.6 Multiplicative Operators

The multiplicative operators *, / and % group left-to-right.

multiplicative-expression ::= cast-expression
| multiplicative-expression * cast-expression
| multiplicative-expression / cast-expression
| multiplicative-expression ¥, cast-expression

The operands of * and / must have arithmetic type; the operands of % must have integral
type. The usual arithmetic conversions are performed on the operands, and determine the
type of the result.

The binary * operator denotes multiplication.

The binary / operator produces the quotient, and the % operator the remainder, of the
division of the first operand by the second; if the second operand is O then the result is
implementation-defined. Otherwise, it is always true that (a/b)*b + aJb is equal to a. If
both operands are non-negative, then the remainder is non-negative and smaller than the
divisor; if not, it is guaranteed only that the absolute value of the remainder is smaller than
the absolute value of the divisor.

A.6.7 Additive Operators

The additive operators + and - group left-to-right.

additive-expression ::= multiplicative-expression
| additive-expression + multiplicative-expression
| additive-expression - multiplicative-expression

For both operators, each operand must have arithmetic type. The usual arithmetic conver-
sions are performed on the operands, and determine the type of the result.

The result of the + operator is the sum of the operands, and the result of the - operator
is the difference of the operands.

A.6.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand must be
integral, and is subject to integral promotions. The type of the result is that of the promoted
left operand. The result is undefined if the right operand is negative, or greater than or equal
to the number of bits in the left expression’s type.

shift-expression ::= additive-expression
| shift-expression << additive-expression
| shift-expression >> additive-expression

The result of the << operator is the left operand left-shifted by the number of bits specified
by the right operand. The value of the >> operator is the left operand right-shifted by the
number of bits specified by the right operand.

80

XC Language Specification

A.6.9 Relational Operators

The relational operators < (less), > (greater), <= (less or equal) and >= (greater or equal) group
left-to-right (but this fact is not useful).

relational-expression ::= shift-expression
| relational-expression < shift-expression
| relational-expression > shift-expression
| relational-expression <= shift-expression
| relational-expression >= shift-expression
For all of these operators, each operand must have arithmetic type. The usual arithmetic
conversions are performed; the type of the result is int.
All of these operators produce a result of 0 if the specified relation is false and 1 if it is
true.

A.6.10 Equality Operators

equality-expression ::= relational-expression
| equality-expression == relational-expression
| equality-expression '= relational-expression

The equality operators == (equal to) and != (not equal to) are analogous to the relational
operators except for their lower precedence.

A.6.11 Bitwise AND Operator
AND-expression ::= equality-expression
| AND-expression & equality-expression

The operands of the bitwise AND operator & must have integral type. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands.

A.6.12 Bitwise Exclusive OR Operator

exclusive-OR-expression ::= AND-expression
| exclusive-OR-expression ~ AND-expression

The operands of the bitwise exclusive OR operator ~ must have integral type. The usual
arithmetic conversions are performed; the result is the bitwise exclusive OR function of its
operands.

A.6.13 Bitwise Inclusive OR Operator

inclusive-OR-expression ::= exclusive-OR-expression
| inclusive-OR-expression | exclusive-OR-expression
The operands of the bitwise inclusive OR operator | must have integral type. The usual

arithmetic conversions are performed; the result is the bitwise inclusive OR function of its
operands.

A.6 Expressions

81

A.6.14 Logical AND Operator

logical-AND-expression ::= inclusive-OR-expression
| logical-AND-expression && inclusive-OR-expression

The logical AND operator && groups left-to-right. It returns 1 if both its operands compare
unequal to zero, 0 otherwise. It guarantees left-to-right short-circuit evaluation: the right
operand is evaluated only if the left operand evaluates to 1. The operands must have
arithmetic type, but need not be the same type; the type of the result is int. A variable which
is changed by one operand may appear in the other operand.

A.6.15 Logical OR Operator

logical-OR-expression ::= logical-AND-expression
| logical-OR-expression | | logical-AND-expression
The logical OR operator | | groups left-to-right. It returns 1 if either of its operands compares
unequal to zero, 0 otherwise. It guarantees left-to-right short-circuit: the right operand is
evaluated only if the left operand evaluates to 0. The operands must have arithmetic type,
but need not be the same type; the type of the result is int. A variable which is changed by
one operand may appear in the other operand.

A.6.16 Conditional Operator

conditional-expression ::= logical-OR-expression
| logical-OR-expression ?
expression : conditional-expression

If the neither the second and third operands have null type they must have equivalent
types (see A.7.11) ignoring all qualifiers except for buffered and streaming, and any array
sizes, or they must both have arithmetic type.

The first expression is evaluated including all side effects; if it compares unequal to O,
the result is the value of the second expression, otherwise the result is the value of the
third expression. If either the second or third operand has type null, the result has the type
of the other operand. Otherwise, if the second and third operands have equivalent types
ignoring qualifiers and any array sizes, the result type has the common type with qualifiers
determined by the following rules:

o If either operand is qualified const, the result is qualified const.
o If either operand is specified with void, the result is specified with void.

o If one operand is qualified in and the other operand is qualified out, the result is
specified with void. Otherwise, if either operand is qualified in or out, the result is
also qualified in or out respectively. If the operands are arrays of different sizes, the
result has type “array of unknown size.”

If the second and third operands have arithmetic type but are not equivalent, the usual
arithmetic conversions are performed, and determine the type of the result.

The expression is a lvalue if no arithmetic conversions are performed and the second and
third operands both have type null or are lvalues.

82

XC Language Specification

A.6.17 Assignment Expressions

There are several assignment operators; all group right-to-left.
assignment-expression ::= conditional-expression
| variable-reference assignment-operator
assignment-expression

assignment-operator ::= one of
= %= /== 4= —=<LK=>>= §= "= |=
All require a modifiable lvalue as the left operand. The identifier named by the variable-
reference may appear in any other parts of the assignment, including recursively any functions
called, as long as the variables named by the identifiers in these parts are not changed. The
type of an assignment expression is that of its left operand, and the value is the value stored
in the left operand after the assignment has taken place.

In the simple assignment with =, the value of the expression replaces that of the object
referred to by the Ivalue. One of the following must be true: both operands have arithmetic
type, in which case the right operand is converted to the type of the left by the assignment;
or both operands are structures or unions of the same type.

An expression of the form V op=E is equivalent to V = V op (E) except that V is evaluated
only once.

A.6.18 Comma Operator

A restricted form of the comma operator is supported in for loops (see §A.8.6).

A.6.19 Constant Expressions

Syntactically, a constant expression is an expression restricted to a subset of operators.
constant-expression ::= conditional-expression

Expressions that evaluate to a constant are required in several contexts: after case in labelled

statements, as array bounds, and in certain preprocessor expressions.

Constant expressions may not contain assignments, increment or decrement operators or
function calls, except in an operand of sizeof. If the constant expression is required to be
integral, its operands must consist of integer, enumeration and character constants; casts
must specify an integral type.

A.7 Declarations

Declarations specify the interpretation given to each identifier. Declarations that reserve
storage are called definitions. The syntax of declarations is:

declaration on-statement,,; actual-declaration

actual-declaration ::= var-declaration
| fnc-declaration ;
| trn-declaration ;
| sel-declaration ;

A.7 Declarations

83

on-statement ::= on variable-reference :
var-declaration = (dec-specifier)* init-var-declarator-list,p; ;
fnc-declaration ::= (dec-specifier)* fnc-declarator

| { dec-specifier-list } fnc-declarator

trn-declaration ::= (dec-specifier)* transaction fnc-declarator
sel-declaration ::= (dec-specifier)* select fnc-declarator
dec-specifier-list ::= (dec-specifier)*

| dec-specifier-list , {dec-specifier)*
A variable declaration prefixed with on must declare an object of type port or port:n. The
variable following on must refer to an object of type core.
on does not change the meaning of the declaration it prefixes.
The var-declarators in the init-var-declarator-list and the fnc-declarator (see §A.7.6)
contain the identifiers being declared.
dec-specifier 1= storage-class-specifier
| type-specifier
| type-qualifier

| inline

init-var-declarator
| init-var-declarator , init-var-declarator-list

init-var-declarator-list

init-var-declarator u= var-declarator (= initialiser),pt
Declarators are discussed later (§A.7.6); they contain the names being declared. A declaration
must have at least one declarator, or its type specifier must declare a structure tag or a union
tag; empty declarations are not permitted.

A.7.1 Storage Class Specifiers

The storage class specifiers are:
storage-class-specifier ::= auto
| register
| static
| extern
| typedef
| service
The meanings of the storage classes were discussed in §A.3.

The auto and register specifiers give the declared objects automatic storage class, and
may be used only within functions. Such declarations also serve as definitions and cause
storage to be reserved.

The static specifier gives the declared objects static storage class, and may be used
either inside or outside functions. Inside a function, this specifier causes storage to be
allocated, and serves as a definition; for its effect outside a function, see §A.10.2.

84

XC Language Specification

The extern specifier, used inside a function, specifies that the storage for the declared
objects is defined elsewhere; for its its effects outside a function see §A.10.2.

The typedef specifier does not reserve storage and is called a storage class specifier for
syntactic convenience; it is discussed in §A.7.10.

At most one of each of the storage class specifiers may be given in a declaration. If none
is given, these rules are used: objects declared inside a function are taken to be auto; objects
and functions declared outside a function, at file-scope, are taken to be static, with external
linkage. The specifier service may only be given with external function declarations.

The use of extern inside a function is unsupported.

A.7.2 Type Specifiers

The type specifiers are:
type-specifier ::= void
| char
| short
| int
| long
| signed
| unsigned
| chan
| chanend
| port
| port:m
| timer
| core
| struct-or-union-specifier
| enum-specifier
| typedef-name
At most one of long or short may be specified together with int; the meaning is the same if
int is not specified. At most one of signed or unsigned may be specified together with int,
short, long Or char; either may appear alone, in which case int is understood. The signed
specifier is useful for forcing char objects to carry a sign; it is permissible but redundant
with other integral types. void may be specified together with port or port:n to declare a
void port; it may be specified together with timer to specify a void timer.
Otherwise, at most one type specifier may be given in a declaration; if omitted then it is
taken to be int.
Types may also be qualified, to indicate special properties of the objects being declared.
type-qualifier ::= const
| volatile
| in
| out
| buffered
| streaming
const may appear with any type specifier. A const object may be initialised, but not thereafter
assigned or input to. No object may be qualified volatile. A compiler is required to recognise
this qualifier and issue an appropriate error message.

A.7 Declarations

85

in and out may appear with the port and port:n type specifiers but not with void. An
object qualified in may appear in input operations only, and an object qualified out may
appear in output operations only (§A.8.3). buffered may appear with the port and port:n
type specifiers. streaming may appear with the chan and chanend type specifiers.

Automatic variables may not be declared with type port, port:n, chanend or core. Static
variables may not be declared with types chan or chanend. Ports specified with void may not
be used in input or output operations.

A.7.3 inline specifier

Types may be specified inline, to suggest that calls to the function be as fast as possible.

A definition is an inline definition if all the file-scope declarations for a function in the
translation unit include the inline specifier without extern. An inline definition of a function
with external linkage must not contain a definition of a modifiable object with static storage,
and must not contain a reference to an identifier with external linkage.

The extent to which suggestions are effective is implementation-defined.

A.7.4 Structure and Union Declarations

A structure is an object consisting of a sequence of named members of various types. A
union is an object that contains, at different times, any one of several members of various
types. Structures and unions have the same form.
struct-or-union-specifier ::= struct-or-union identifier,,: { {member)* }
| struct-or-union identifier

struct-or-union 1= struct
| union

A member is a declaration for a member of the structure or union.
member ::= (specifier-or-qualifier)* struct-var-declarator-list ;

specifier-or-qualifier 1= type-specifier
| type-qualifier

struct-var-declarator-list ::= var-declarator
| var-declarator , struct-var-declarator-list

A type specifier of the form

struct-or-union identifier { (member)™ }
declares the identifier to be the tag of the structure or union specified by the member list. A
subsequent declaration may refer to the same type by using the tag in a specifier without the
member list:

struct-or-union identifier

If a specifier with a tag but without a list appears when the tag is not declared, an

incomplete type is specified. Objects with an incomplete structure or union type may be used
in contexts where their size is not needed. The type becomes complete on occurrence of a
subsequent specifier with that tag, and containing a declaration list. Even in specifiers with a
list, the structure or union type being declared is incomplete within the list, and becomes
complete only at the } terminating the specifier.

86

XC Language Specification

A structure or union may not contain a member of incomplete or resource type, except
that a structure may contain a member of type port or timer. If a structure is declared to
have a member with one of these types then variables of the structure may be declared only
as external declarations (see §A.9).

A structure or union specifier with a list but no tag creates a unique type; it can be
referred to directly only in the declaration of which it is a part.

The names of members and tags do not conflict with each other or with ordinary variables.
A member name may not appear twice in the same structure or union, but the same member
name may be used in different structures or unions.

The members of a structure have addresses increasing in the order of their declarations.
A member of a structure is aligned at an addressing boundary depending on its type.

A union may be thought of as a structure all of whose members begin at offset 0 and
whose size is sufficient to contain any of its members. At most one of the members can be
stored in a union at any time.

If a union contains several structures that share a common initial sequence, and if the
union currently contains one of these structures, it is permitted to refer to the common
initial part of any of the contained structures.

Bit-fields are unsupported.

A.7.5 Enumerations

Enumerations are unique types with values ranging over a set of named constants called
enumerators. The form of an enumeration specifier borrows from that of structures and
unions.

enum-specifier ::= enum identifier,,: { enumerator-list }
| enum identifier,,; { enumerator-list , }
| enum identifier

enumerator-list ::= enumerator
| enumerator-list , enumerator

enumerator ::= identifier
| identifier = constant-expression

The enumerator type is compatible with int; identifiers in an enumerator list are declared as
constants of type int, and may appear wherever constants are required. If no enumerators
with = appear, then the values of the corresponding constants begin at 0 and increase by 1 as
the declaration is read from left to right. An enumerator with = gives the associated identifier
the value specified; subsequent identifiers continue the progression from the assigned value.

Enumerator names in the same scope must all be distinct from each other and from
ordinary variable names, but the values need not be distinct.

The identifier in the enum-specifier names a particular enumeration. The rules for
enum specifiers with and without tags and lists are the same as those for structure or union
specifiers, except that incomplete enumeration types do not exist; the tag of an enum-specifier
without an enumerator-list must refer to an in-scope specifier with a list.

A.7 Declarations

87

A.7.6 Declarators

Declarators have the syntax:

var-declarator ::= identifier (dimension-size)*
| & identifier
| 7 indentifier {dimension-size)*
| & ? identifier

fnc-declarator ::= identifier (parameter-type-listyp;)

dimension-size ::= [constant-expression,p; 1

The structure of declarators resembles that of function and array expressions; the grouping
is the same.

A.7.7 Meaning of Declarators

One or more declarators appear after a sequence of storage class and type specifiers. The
declarators may be prefixed by either select or transaction, in which case only storage class
specifiers are permitted as the declaration specifiers; the return type is implicitly void. Each
declarator declares a unique main identifier. The storage class specifiers apply directly to
this identifier, but its type depends on its form.

Considering only the type parts of the declaration specifiers (§ A.7.2), the optional
transaction and select, and a particular declarator, a declaration has the form “opt-trans-
action-or-select T D” where T is a type and D is a declarator. The type attributed to the
identifier in the various forms of declarator is described using this notation.

In a declaration T D where D is an unadorned identifier, the type of the identifier is T.

A port may be declared as an external declaration (see §A.9) or as a parameter only. A
channel may be declared as a local variable only and a channel end may be declared as a
parameter only. A structure containing a member or, recursively, any submember of resource
type may be declared as an external declaration only.

A.7.7.1 Array Declarators

In a non-parameter declaration T D where D has the form

identifier [constant-ezpression]
and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “type-modifier n-array of T,” where n is the result of evaluating the constant
expression and specifies the number of elements in the array. The constant expression must
have integral type, and value greater than 0.

In a parameter declaration T D where D has the form

identifier [constant-ezpression]
and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of the
identifier of D is “reference to type-modifier n-array of T,” where n is the result of evaluating
the constant expression and specifies the number of elements in the array. The constant
expression must have integral type, and value greater than 0.

88

XC Language Specification

In a declaration T D where D has the form
identifier []
and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of
the identifier of D is “type-modifier incomplete-array of T.”

An array may be constructed from an arithmetic type, from a structure or union, from a
port, timer, channel or channel end, or from another array (to generate a multi-dimensional
array). Any type from which an array is constructed must be complete; it must not be an array
or structure of incomplete type. This implies that for a multi-dimensional array, only the
first dimension may be missing. The type of an object of incomplete array type is completed
either by another, complete, declaration for the object (§A.9.2), or by initialising it (§A.7.8) or,
for a function parameter in which the first dimension is missing, at run-time on entry to the
function by the caller.

If E1 is an array and E2 an integer, then E1[E2] refers to the E2th member of E1. Arrays
are stored by rows (last subscript varies faster) so that the first subscript in the declaration
helps determine the amount of storage consumed by an array, but plays no other part in
subscript calculations.

A.7.7.2 Reference Declarators

In a declaration T D where D has the form
& identifier
and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of
the identifier of D is “reference to type-modifier T.”
A reference declared with & may have an arithmetic, structure or union type, and may
only be declared as a function parameter.

A.7.7.3 Nullable Declarators

In a declaration T D where D has the form
? identifier

and the type of the identifier in the declaration T identifier is “type-modifier T,” the type of
the identifier of D is “nullable type-modifier T.”

A nullable object declared with ? may have a resource type or a reference type, and may
only be declared as a function parameter.

If an object contains a reference to null, it is invalid to reference the object except as the
argument to a function taking a nullable parameter, as the operand of the isnull operator,
or as the operand of the sizeof operator.

A.7.7.4 Function Declarators

In a function declaration T D where D has the form

D1(parameter-type-list)
and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the
identifier of D is “type modifier function with arguments parameter-type-list returning T.” If T
has the form {Ty,...,T,} then the return type is modified to read “list of types Ty,...,T,.” In
a function declaration transaction void D where D has the form

Di(parameter-type-list)
and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the

A.7 Declarations

89

identifier of D is “type modifier transaction function with arguments parameter-type-list
returning void.” In a function declaration select void D where D has the form
D1i(parameter-type-list)
and the type of the identifier in the declaration T D1 is “type-modifier T,” the type of the
identifier of D is “type-modifier select function with arguments parameter-type-list returning
void.”
The syntax of the parameters is:

parameter-type-list 1= parameter-list
| parameter-list , parameter-declaration

parameter-list 1= parameter-declaration
| parameter-list , parameter-declaration

parameter-declaration ::= (dec-specifier)* abstract-or-void-dec

abstract-or-void-dec ::= var-declarator
| abstract-var-declarator

The parameter list specifies the types of the parameters. As a special case, the declarator for
a function with no parameters has a parameter list consisting solely of the keyword void.
This is also signified by an empty parameter list. If the parameter type list ends with an
ellipsis “, ...”, then the function may accept more than the number of parameters explicitly
described; see §A.6.3.2.

The only storage class specifier permitted in a parameter’s declaration specifier is
register, and this specifier is ignored unless the function declarator heads a function
definition. This specifier has no effect on the behaviour of the function; the extent to which
suggestions made by using this specifier are effective is implementation-defined.

Similarly, if the declarators contain identifiers and the function declarator does not prefix
a function definition, the identifiers go out of scope immediately. Abstract declarators, which
do not mention the identifiers, are discussed in §A.7.9.

A function declared with the storage class specifier service may declare only variables of
type chanend.

Old-style C function declarations (see K&R §A8.6.3) are unsupported.

A.7.8 Initialisation

When an object is declared, its init-var-declarator may specify an initial value for the identifier
being declared. The initialiser is preceded by =, and is either an expression, or a list of
initialisers nested in braces.
initialiser 1= on-statement,,; expression
| { initialiser-list }
| { initialiser-list , }

initialiser-list ::= initialiser
| initialiser-list
On statements are discussed in §A.8.8. If more than one on-statement is used with the same
variable declaration, then all of these statements must refer to the same core.

90

XC Language Specification

All the expressions in the initialiser for a static object or array must be constant expres-
sions as described in §A.6.19. The expressions in the initialiser for an auto or register object
must likewise be constant expressions if the initialiser is a brace-enclosed list. However,
if the initialiser for an automatic object is a single expression, it need not be a constant
expression, but must have appropriate type for assignment to the object.

Timers, channels and cores must not be explicitly initialised. Timers not declared extern
are initialised, at run-time, to refer to an unaliased hardware timer. Channels not declared
extern are initialised, at run-time, to refer to two unaliased hardware channel ends that are
connected together to create a point-to-point communication link. Ports not declared extern,
and not explicitly initialised, are initialised with an implementation-defined value.

A static object that is not a timer, channel or port, and is not explicitly initialised, is
initialised as if its expression (or its members) were assigned the constant 0. The initial value
of an automatic object with arithmetic type not explicitly initialised is undefined.

The initialiser for an object of arithmetic type is a single expression, possibly in braces.
The expression is assigned to the object. The initialiser for a port is a single constant
expression, possibly in braces. The expression is assigned to the object; its interpretation
and validity is implementation-defined.

The initialiser for a structure is either an expression of the same type, or a brace-enclosed
list of initialisers for its members in order. If there are fewer initialisers in the list than
members of the structure, the trailing members are initialised with 0. There may not be more
initialisers than members.

The initialiser for an array is a brace-enclosed list of initialisers for its members. If the
array has unknown size, the number of initialisers determines the size of the array, and its
type becomes complete. If the array has fixed size, the number of initialisers may not exceed
the number of members of the array; if there are fewer, the trailing members are initialised
with 0.

As a special case, a character array may be initialised by a string literal (braces are
optional); successive characters of the string initialise successive members of the array. If the
array has unknown size, the number of characters in the string, including the terminating
null character, determines its size; if its size is fixed, the number of characters in the string,
not counting the terminating null character, must not exceed the size of the array.

The initialiser for a union is either a single expression of the same type, or a brace-
enclosed initialiser for the first member of the union.

An aggregate is a structure or array. If an aggregate contains members of aggregate
type, the initialisation rules apply recursively. Braces may be elided in the initialisation as
follows: if the initialiser for an aggregate’s member that is itself an aggregate begins with a
left brace, then the succeeding comma-separated list of initialisers initialises the members of
the subaggregate; it is erroneous for there to be more initialisers than members. If, however,
the initialiser for a subaggregate does not begin with a left brace, then only enough elements
from the list are taken to account for the members of the subaggregate; any remaining
members are left to initialise the next member of the aggregate of which the subaggregate is
a part.

A.7.9 Type Names

In several contexts (to specify type conversions explicitly with a cast, in a reinterpretation,
and to declare parameter types in function declarators) it is necessary to supply the name of

A.8 Statements

91

a data type. This is accomplished using a type name, which is syntactically a declaration for
an object of that type omitting the name of the object.

type-name 1= (Sspecifier-or-qualifier)* abstract-var-declarator

abstract-var-declarator ::= (dimension-size)*

A.7.10 Typedef

Declarations whose storage class specifier is typedef do not declare objects; instead they
define identifiers that name types (called typedef names).
typedef-name ::= identifier

A typedef declaration attributes a type to each name among its declarators in the usual way
(see §A.7.7). Thereafter, each such typedef name is syntactically equivalent to a type specifier
keyword for the associated type. typedef does not introduce new types, only synonyms for
types that could be specified in another way. Typedef names may be redeclared in an inner
scope, but a non-empty set of type specifiers must be given.

A.7.11 Type Equivalence

Two type specifier lists are equivalent if they contain the same set of type specifiers, taking
into account that some specifiers can be implied by others (for example, long alone implies
long int, register in formals is ignored). Structures and unions with different tags are
distinct, and a tagless structure or union specifies a unique type.

Two types are the same if their abstract declarators (§A.7.9), after deleting any function
parameter identifiers, are the same up to equivalence of type specifier lists. Array sizes
(including the size of array parameters) are significant. For each parameter qualified const

that is not a reference type, its type for this comparison is the unqualified version of its type.

A.8 Statements

Except as described, statements are executed in sequence. Statements are executed for their
effect, and do not have values. They fall into several groups.

statement = simple-statement,p; ;
compound-statement
selection-statement
iteration-statement
Jjump-statement
parallel-statement
transaction-statement

simple-statement ::= expression-statement
| multiple-assignment
| input
| output
A semicolon by itself is called a null statement; it is often used to supply an empty body to
an iteration statement.

92

XC Language Specification

A.8.1 Expression Statement

The syntax of an expression statement is:
expression-statement ::= expression

Most expression statements are assignments or function calls. An expression statement must
not have resource type. All side effects from the expression are completed before the next
statement is executed.

A.8.2 Multiple Assignment Statement

The syntax of a multiple assignment statement is:
multiple-assignment ::= { return-list } arithmetic-operator function-call

return-list ::= optional-variable
| optional-variable , return-list

optional-variable ::= variable-reference
| void
The function must have return type “list of types Ty,...,T,,” where nis the same as the number
of optional variables in the return list.

The rules for assignment (see §A.6.17) apply to each of the variables in the return list: the
ith value returned by the function replaces that of the object referred to by the ith optional
variable reference. If the optional variable reference is void then the value is discarded.

A variable which is changed in the subscript of an optional variable may not appear in
any other optional variable or in the function call, including the arguments to the function.
A variable which is changed in the function call, including arguments to function may not
appear in any optional variable. These rules apply recursively to variables which are changed
or appear in functions called in the optional variables or the function call.

A variable which is changed by the assignment may not appear in any other optional
variable or recursively appear in functions called in any other optional variable.

If any of the objects assigned to are the same as one another then the assignment is
invalid.

A.8.3 Input and Output Statements

An input statement receives a value from a channel end, port or timer, and assigns the
received value to an object.
input 1= resource time,y; predicate,,;: input-operator
dest input-timestampop

resource ::= variable-reference
time = @ expression
input-operator = >

| >>>

dest
input-timestamp

declared-var-reference
@ declared-var-reference

A.8 Statements

93

declared-var-reference ::= {(declaration-specifier)* identifiet,p;
| variable-reference

predicate ::= when function-call

The resource must name either a channel end, port or timer. If the resource names a channel
end or timer then neither a time nor an input-timestamp is allowed. If the resource names a
channel end then a predicate is not allowed. If the resource names a port then the port must
not be qualified out and the destination variable must have arithmetic type.

If a time is provided then the time expression must have arithmetic type. The input is
said to be timed.

If an input-timestamp is provided then the declared-var-reference must name a modifiable
Ivalue with arithmetic type. The input is said to be timestamped.

If a predicate is provided then the named function must have been declared to return
void and from its parameter list there must be precisely one port or timer declaration, which
must be qualified void. The input is said to be predicated. The supported predicates are
implementation-defined. The function call is shortcutted: the resource variable must not be
passed as an argument; it is passed implicitly as the port or timer argument.

A declared-var-reference must be a modifiable Ivalue if an identifier is named. It must not
define a new type. If the resource names a port or timer then the Ivalue must not reference
a structure or union; if no identifier is given then the type must not specify a structure or
union, but it may specify void. If no declaration specifiers are provided then the type of the
variable must not be qualified with const; if it is a structure or union, it must not have any
member or, recursively, submember qualified with const. If any declaration specifiers are
provided then the variable reference is also a declaration; the specifiers must not contain
typedef but may contain const.

A variable which is changed by any part of the input may not, except as described below,
appear in any other part of the input. If the declared-var-reference is a variable-reference
then the identifier named may appear in any other parts of the input, as long as the variables
named by the identifiers in these parts are not changed. Additionally, the variable which
is written by the input-timestamp may not appear in the dest, and the variable which is
written by the dest may not appear in the input-timstamp. These rules apply recursively to all
variables which are changed in functions called by the input.

The first variable declared in an input begins an inner scope which is understood to begin
immediately preceding the declaration and which persists to the end of the input. If the
input appears in the case of a select then this scope continues to persist to the end of the
statement list after the colon.

If the resource names a channel end or timer, or the destination identifier is omitted,
then the :> >> operator is not allowed.

An output statement transmits the value of an expression to a channel end or port.

output u= resource timeop: output-operator
expression output-timestamp,
resource ::= variable-reference
time 1:= @ expression
output-operator n= <
| <>

output-timestamp ::= @ variable-reference

94

XC Language Specification

The resource must name a channel end or port. If the resource names a channel end then
neither a time nor a output-timestamp is allowed. If the resource names a port then the port
must not be qualified in and the output expression must have arithmetic type; otherwise the
output expression must either have arithmetic type, or must be a structure or union.

If the resource names a channel end then the <: >> operator is not allowed. If the <: >> is
specified then the output expression must be a modifiable lvalue.

If a time is provided then an output-timestamp is not allowed. The time expression must
have arithmetic type. The output is said to be timed.

If an output-timestamp is provided then the variable reference must be a modifiable lvalue
with arithmetic type. The output is said to be timestamped.

A variable which is changed by any part of the output may not, except as described below,
appear in any other part of the output. The identifier named by the output-timestamp may
appear in any other parts of the output as long as the variables named by the identifiers in
these parts are not changed. These rules apply recursively to all variables which are changed
in functions called by the output.

Input and output statements are new; I/O operations are conventially performed using
interrupts and system calls (via library routines in C).

A.8.3.1 Channel Input and Output

An input on a channel end causes the processor to wait until a matching outputter is ready
in a parallel statement (see §A.8.8) before receiving a value. If the type of an input variable is
specified but the identifier is missing then the received value is ignored. See §A.11 for the
meaning of an input in a channel communication.

An output on a channel causes the processor to wait until a matching inputter is ready in
a parallel statement before sending the value. See §A.11 for the meaning of an output in a
channel communication.

A.8.3.2 Port Input and Output

An input from a port causes the specified port to provide the processor a value. If the port
transfer width is w bits, these w bits are assigned to the least significant bits of a variable
with the port’s notional transfer type (see §A.3.2) with any remaining bits being set to zero.
If the type of an input variable is specified but an identifier is missing, or if a void type is
specified, then this input variable is ignored. If the input is used with the :> >> operator, the
destination variable is right-shifted by w bits and the bitwise inclusive-or of this value and
the input variable is then assigned to the destination variable; otherwise the input variable is
assigned to the destination variable.

If a when condition is provided, the function and its arguments are provided to the port
before performing the input.

An output to a port causes the output expression to be first cast to the port’s notional
transfer type and then provided to the port. If the output is used with the <: >> operator, the
output variable is then right shifted by w bits.

If the input or output is timed, the value specified by time is cast to the port’s notional
counter type prior and provided to the port before performing the input or output.

If the input or output is timestamped, t bits are assigned to the least significant bits of a
variable with the port’s notional counter type (see §A.3.2) with any remaining bits being set
to zero; this variable is then assigned to the timestamp variable.

A.8 Statements

95

See Appendix B for the meaning of inputs and outputs on ports with respect the com-
munication performed between the port and procecssor, and the corresponding operation
performed by the port on its pins.

A.8.3.3 Timer Input

An input from a timer causes the timer to provide the current value of its counter. This
value is assigned to the least significant bits of a variable with the timer’s notional counter
type (see §A.3.2) with any remaining bits being set to zero. If the type of an input variable is
specified but an identifier is missing, or if a void type is specified, then this input variable is
ignored; otherwise the input variable is assigned to the destination variable.

A.8.4 Compound Statement

So that several statements can be used where one is expected, the compound statement (or
“block”) is provided. The body of a function definition is a compound statement.

compound-statement ::= { (var-declaration)* (statement)* }

If an identifier in the var-declaration-list was in scope outside the block, the outer declaration
is suspended within the block (see §A.10.1). An identifier may be declared only once in the
same block. These rules apply to identifiers in the same name space (§A.10); identifiers in
different name spaces are treated as distinct.

Initialisation of automatic objects is performed each time the block is entered at the top,
and proceeds in the order of the declarators. Initialisation of static objects is performed
only once, before the program begins execution.

A.8.5 Selection Statements

Selection statements choose one of several flows of control.
selection-statement ::= if (expression) statement
| if (expression) statement else Sstatement
| switch (expression) { (labelled-statement)* }
| select { (guarded-statement)* }

labelled-statement ::= case constant-expression : (statement)*
| default : (statement)*

guarded-statement ::= case replicator,,; enable-exp,,; input : {statement)*
| case replicator,,; enable-exp,,: function-call :
(statement)*
| case replicator,,; enable-exp,p: slave-statement :
(statement) *
| default : (statement)*
| case function-call ;

replicator ::= (int variable = expression ; expression ; experssion)

enable-exp 1= expression =>

96

XC Language Specification

In both forms of the if statement, the expression, which must have arithmetic type, is
evaluated, including all side effects, and if it compares unequal to 0, the first substatement is
executed. In the second form, the second substatement is executed if the expression is 0.
The else ambiguity is resolved by connecting an else with the last encountered else-less if
at the same block nesting level.

The switch statement causes control to be transferred to one of several case statements
depending on the value of the expression, which must have integral type. The controlling
expression undergoes integral promotion (§A.5.1), and the case constants are converted to
the promoted type. No two of the case constants in the same switch may have the same value
after conversion. There may also be at most one default label associated with a switch.

When the switch statement is executed, its expression is evaluated, including all side
effects, and compared with each case constant. If one of these case constants is equal to
the value of the expression, control passes to the statement of the matched case label. If no
case constant matches the expression, and if there is a default label, control passes to the
default-labelled statement. If no case matches, and if there is no default, then none of the
substatements of the switch is executed.

The select statement causes control to be transferred to one of several guarded case
statements. A guarded statement may consist of an optional replicator and an optional
expression followed by an input (§A.8.3), a slave transaction statement (§A.8.9) or a function
call, followed by a colon and a list of zero or more statements.

In a replicator, the third expression must either add or subtract a constant expression to
the variable declared by the replicator. A replicator is short-hand for multiple cases, and has
the same meaning as if the code was expanded as with a for loop. In addition, if the initialiser
is a constant expression and the second expression is a relational expression that compares
the variable declared by the replicator to a constant expression, the variable declared by the
replicator is treated as a constant expression in the replicator body. The declared variable
may not be modified outside of the replicator.

If the statement before the colon is a call to a transaction function (§A.9.1.1) then this is
considered shorthand for a slave transaction statement that performs the call. The enable
expression must have arithmetic type, and it must not modify a local variable, static variable
or reference parameter; any functions called within the expression, recursively, must not
modify a static variable, reference parameter, or perform an input or output. The modification
rules that apply to the enable expression also apply to the arguments of a call to a select
function; the rules also apply to an input statement that appears before the colon, except
that the input lvalue is (by definition) modified. An input guard that causes any observable
behaviour on a port prior to being selected is invalid. There may be at most one default
label associated with a select.

A guarded statement may also consist of a call to a select function (see §A.9.1.2) followed
by a semicolon. The rules that apply to the enable expression also apply to the arguments of
a call to a select function. The ports, timers and channel ends named before each colon, and
as arguments to a select function, must be distinct.

When the select statement is executed, each guard that contains no enable expression is
enabled. For each guard containing an enable expression, the expression is evaluated and, if
it compares unequal to 0, the case is enabled. The behaviour of a call to a select function is
the same as if the cases of the select function were included inline in the select.

Following the enabling sequence, if no cases are enabled then either the default case is
executed, if provided, or none of the substatements of the select is executed and the select

A.8 Statements

97

never completes (it deadlocks). Otherwise, the select waits until an input or transaction in
one of the enabled cases is ready and performs the corresponding input or transaction. If
more than one of these inputs or transactions is ready then the choice of which is executed
is made nondeterministically.

After performing an input or transaction, the statements following the colon of the
selected case are executed.

The statements after the colon in each select case statement must terminate with a
break or return, so that control never flows from one case statement to the next.

A.8.6 Iteration Statements

Iteration statements specify looping.

iteration-statement ::= while (expression) statement
| do statement while (expression) ;
| for (for-inityp: ; expressionyy; ; simple-listyp;)
statement

for-init ::= var-declaration
| simple-list

simple-list 1= simple-statement
| simple-statement , simple-list
In the while and do statements, the substatement is executed repeatedly so long as the value
of the expression remains unequal to 0; the expression must have arithmetic type. With
while, the test, including all side effects from the expression, occurs before each execution
of the statement; with do, the test follows each iteration.

A for statement may declare a variable (see A.3), whose scope begins immediately after
the declaration and persists to the end of the statement; if present, the variable initialiser is
evaluated once. Alternatively, if a list of simple statements is provided, the statements are
executed once. The expression must have arithmetic type; it is evaluated before each iteration,
and if it is equal to 0, the for is terminated. The optional list of simple statements following
the second semicolon is evaluated after each iteration. Any of these three components may
be dropped; a missing test expression makes the implied test equivalent to testing a non-zero
constant.

A.8.7 Jump Statements

Jump statements transfer control unconditionally.

Jump-statement ::= continue ;
| break ;
| return expressionyp: ;
| return { expression-list } ;

A continue statement may appear only within an iteration statement, and may not appear in
a parallel, master or slave statement, unless that statement contains an iteration statement in
which it is enclosed. It causes control to pass to the loop-continuation portion of the smallest
enclosing such statement.

98

XC Language Specification

A break statement may appear only in an iteration statement, a switch statement or
a select statement, and may not appear in a parallel, master or slave statement, unless
that statement contains an iteration, switch or select statement in which it is enclosed.
It terminates execution of the smallest enclosing such statement; control passes to the
statement following the terminated statement.

A function returns to its caller by the return statement. A return statement may not
appear in a parallel, master or slave statement. When return is followed by an expression,
the value is returned to the caller of the function. The expression is converted, as if by
assignment, to the type returned by the function in which it appears.

When return is followed by an list of expressions in braces, the list of values is returned
to the caller of the function. For a return with n expressions, the return type of the function
must be “list of types Ty,...,T,.” For all expressions (i=1..n), the ith expression is converted,
as if by assignment, to the ith type returned by the function in which it appears.

Flowing off the end of a function is equivalent to a return with no expression. In either
case, the returned value is undefined.

goto is unsupported.

A.8.8 Concurrency Statement

So that several statements can be executed concurrently, the parallel statement is provided.

parallel-statement ::= par replicatoryy: { (thread)* }

replicator ::= (int variable = expression ; expression ; experssion)
thread 1= on-statement,,; statement

on-statement ::= on variable-reference :

Replicators are discussed in §A.8.5. In addition, the initialiser must assign a constant
expression, and the second expression must be a relational expression that compares the
variable declared by the replicator to a constant expression. The relation operator may not
be equality or inequality and the condition must be satisfiable for some value of the declared
variable (for example, x > MAX_INT is disallowed).

An on-statement is only permitted if it appears in a parallel-statement that is either the
only statement in the enclosing function, or if it is one of two statements of a function
compound-statement, the second being a return statement that returns a constant expression
that evaluates to 0.

on does not change the behaviour of the statement it prefixes.

Values may be passed between concurrent statements by communication on channels
(§8A.3.2) using input and output statements (§A.8.3).

Variables and channels used in parallel statements are subject to usage rules which
prevent them from being accidentally shared between statements in potentially dangerous
ways, as described below.

A variable which is changed by assignment or input in one of the statements of a par may
not appear in any other statement of the par. This rule applies recursively to all variables
which are changed by assignment or input in a function that is called by a statement of a par.
(By implication, a variable may appear in expressions in any number of statements of a par
so long as it is not assigned or input in any of these statements.)

A.9 External Declarations

99

A channel may not be used in more than two statements of a par. Channel ends, ports
and timers may not be used in more than one statement of a par.

If a statement contains of a number of sub-statements, such as a compound-statement
(§A.8.4), then all of the sub-statements are considered together as a single statement for the
purpose of this rule.

A.8.9 Transaction Statement

So that several communications over a channel can be logically grouped together, the
transaction statement is provided.
transaction-statement ::= slave-statement
| master-statement

slave-statement

slave Statement

master-statement ;1= master Statement
All inputs and outputs within master or slave are logically part of the same transaction;
the extent to which the underlying communication protocols are optimised for transaction
communications is implementation-defined.

The statements must reference precisely one channel end, which is said to be the transac-
tor. If the variable reference designating the transactor contains any array indices then the
indices must be constant expressions. The transactor must not name a streaming channel.

Within a transaction statement, inputs and outputs on any channel end other than the
transactor is prohibited; using a channel end other than the transactor as an argument to
a function is prohibited; using the transactor as an argument to a function that is not a
transaction function is prohibited; introducing a nested transaction statement is prohibited;
and declaring a channel (in the statement or, recursively, in any function called within the
transaction) is prohibited.

A.9 External Declarations

The unit of input provided to the XC compiler is called a translation unit; it consists of a
sequence of external declarations, which are either declarations or function definitions.
translation-unit ::= (external-declaration)*
external-declaration ::= declaration
| function-definition
The scope of external declarations persists to the end of the translation unit in which they
are declared.

A.9.1 Function Definitions

Function definitions have the form:
function-definition ::= fnc-declaration compound-statement
| trn-declaration compound-statement
| sel-declaration { (guarded-statement)* }

100

XC Language Specification

The only storage-class specifiers allowed among the declaration specifiers are extern, static
or inline; see §A.10.2 for the effect. The ellipses “, ...” operator is not allowed in function
definitions.

A function may return an arithmetic type, a structure, a union or void, but not a resource
type, a function or an array. Alternatively it may return a list of any combination of arithmetic
types, structures and unions. A function may not return a structure containing a member or,
recursively, any submember of resource type.

Unless the parameters consist solely of void, indicating that the function takes no param-
eters, each declarator in the parameter list must contain an identifier. The parameters are
understood to be declared just after the beginning of the compound statement constituting
the function’s body, and thus the same identifiers must not be redeclared there (although
they may be redeclared in inner blocks). During the call to a function, the arguments are
converted as necessary and assigned to the parameters; see §A.6.3.2.

A.9.1.1 Transaction Functions

A function declaration modified by the keyword transaction is a transaction function (see
§A.7.7.4). The function body consists of a list of statements, which is by definition a
transaction statement (see §A.8.9). The function must declare precisely one channel end in
its parameter list, which is by definition the transactor.

A.9.1.2 Select Functions

A function declaration modified by the keyword select is a select function (see §A.7.7.4).
The function body consists of a list of guarded statements, which is by definition a select
statement (see §A.8.5). The guards of a select function may not contain replicators or
transactors.

A.9.2 External Declarations

External declarations specify the characteristics of objects, functions and other identifiers.
The term “external” refers to their location outside functions, and is not directly connected
with the extern keyword; the storage class for an externally-declared object may be left
empty, or it may be specified as extern or static.

Several external declarations for the same identifier may exist within the same translation
unit if they agree in type and linkage, and if there is at most one definition for the identifier.

Two declarations for an object or function are deemed to agree in type under the rules
discussed in §A.7.11. In addition, if the declarations differ because one type is an incomplete
structure or union and the other is the corresponding completed type with the same tag, the
types are taken to agree. If one type is an incomplete array type (§A.7.7.1) and the other is a
completed array type, the types, if otherwise identical, are also taken to agree.

If the first external declaration for a function or object includes the static specifier, the
identifier has file-scope (internal linkage); otherwise it has program-scope (external linkage).
Linkage is discussed in §A.10.2.

An external declaration for an object is a definition if it has an initialiser. An external
object declaration that does not have an initialiser, and does not contain the extern specifier,
is a tentative definition. If a definition for an object appears in a translation unit, any tentative

A.10 Scope and Linkage

101

definitions are treated as redundant declarations. If no definition for the object appears in
the translation unit, all its tentative definitions become a single definition with initialiser O.

Each object must have exactly one definition. For objects with internal linkage, the rules
apply separately to each translation unit. For objects with external linkage, it applies to the
entire program.

A.10 Scope and Linkage

There are two kinds of scope to consider: first, the lexical scope of an identifier, which is
the region of the program text within which the identifier’s characteristics are understood;
and second, the scope associated with objects with external linkage, which determines the
connections between identifiers in separately compiled translation units.

A.10.1 Lexical Scope

Identifiers fall into several name spaces that do not interfere with one another; the same
identifier may be used for different purposes, even in the same scope, if the uses are in
different name spaces. These classes are: objects and functions; tags of structures and
unions; and members of each structure or union individually.

The lexical scope of an object or function identifier in an external declaration begins at

the end of its declarator and persists to the end of the translation unit in which it appears.

The scope of a parameter of a function definition begins at the start of the block defining
the function, and persists through the function; the scope of a parameter in a function
declaration ends at the end of the declarator. The scope of an identifier declared at the head
of a block begins at the end of its declarator, and persists to the end of the block. The scope
of a structure or union begins at its appearance in a type specifier, and persists to the end
of the translation unit (for declarations at the external level) or to the end of the block (for
declarations within a function).

If an identifier is explicitly declared at the head of a block, including the block constituting
a function, any declaration of the identifier outside the block is suspended until the end of
the block.

A.10.2 Linkage

Within a translation unit, all declarations of the same object or function identifier with internal

linkage refer to the same thing, and the object or function is unique to that translation unit.

All declarations for the same object or function identifier with external linkage refer to the
same thing, and the object or function is shared by the entire program.

The first external declaration for an identifier gives the identifier internal linkage if the
static specifier is used, external linkage otherwise.

An inline definition (§A.7.3) does not provide an external definition for the function and
does not forbid an external definition. An inline definition provides an alternative to an
external definition which may be used it implement any call to the function in the same
translation unit. It is unspecified whether a call to the function uses the inline definition or
the external definition.

102

XC Language Specification

A.11 Channel Communication

A channel communication occurs when, on the same channel,

e an output is executed in parallel with an input, or

e a master transaction is executed in parallel with a slave transaction.

An output executed in parallel with a slave transaction is invalid; a master transaction
executed in parallel with an input is invalid.

Outside a transaction, an output-input communication in which the number of bytes
output is unequal to the number of bytes input is invalid. Inside a transaction, if all
communications are valid individually then the transaction is also valid. Additionally, if a
communication occurs in which the number of bytes output is unequal to the number of
bytes input then whether or not the transaction is invalid, and the value communicated is
implementation-defined.

An invalid communication within a transaction need not cause the transaction to become
invalid until slave transaction statement goes out of scope.

The meaning of an output-input communication in which the type of the output expres-
sion e is the same as the type of the input variable v is the same as the assignment v = e.
If the types are different and the communication is not invalid then the meaning is the
assignment v = (e, type(v)) (see §A.6.3.4).

A.12 Invalid Operations

An operation that is syntactically legal but for some reason or under some circumstances is
semantically invalid may be treated in one of three ways:

e It may be reported as a compiler error.

e It may have implementation-defined behaviour, for example the processor could issue
a trap, and a trap handler could terminate the program.

o It may result in undefined behaviour.

If at time t a program is guaranteed to execute some sequence of events that cause it to
become invalid at some time in the future t+n then it is permitted to become invalid any time
during [t..t+n]. This allows an implementation to improve code efficiency, for example by
relocating safety checks outside of loops.

A.13 Preprocessing

The preprocessor specification is defined to be the same as with C99 [7, §6.10], with the
following exceptions:

e The macro __XC__ is defined as 1.

e The macros __STDC__, __STDC_HOSTED__ and __STD_VERSION__ are not defined.

——

A.14 Grammar

103

A.14 Grammar

Below is a summary of the grammar given throughout this appendix. The grammar has unde-
fined terminal symbols integer-constant, character-constant, identifier, string and enumeration-
constant; words and symbols wrtten in typewriter are terminals given literally.

translation-unit

external-declaration

function-definition

declaration

actual-declaration

var-declaration

fnc-declaration

trn-declaration
sel-declaration

dec-specifier-list

dec-specifier

storage-class-specifier

(external-declaration)™*

declaration
function-definition

fnc-declaration compound-statement
trn-declaration compound-statement
sel-declaration { {(guarded-statement)* }

on-statement, ,; actual-declaration

var-declaration
fnc-declaration ;
trn-declaration ;
sel-declaration ;

(dec-specifier)* init-var-declarator-list,p; ;

(dec-specifier)* fnc-declarator
{ dec-specifier-list } fnc-declarator

(dec-specifier)* transaction fnc-declarator
(dec-specifier)* select fnc-declarator

(dec-specifier)*
dec-specifier-list , (dec-specifier)*

storage-class-specifier
type-specifier
type-qualifier

inline

auto
register
static
extern
typedef
service

104 XC Language Specification

type-specifier 1= void
| char
| short
| int
| long
| signed
| unsigned
| chan
| chanend
| port
| port:m
| timer
| core
| struct-or-union-specifier
| enum-specifier
| typedef-name

type-qualifier 1= const
| volatile

| in

| out

| buffered

| streaming

struct-or-union-specifier ::= struct-or-union identifier,,: { {member)” }
| struct-or-union identifier

struct-or-union ;:= struct
| union
init-var-declarator-list ::= [Init-var-declarator

| init-var-declarator-list , init-var-declarator

init-var-declarator = var-declarator (= initialiser) o p¢
member ::= (Specifier-or-qualifier)* struct-var-declarator-list ;
specifier-or-qualifier 1= type-specifier

| type-qualifier

struct-var-declarator-list ::= struct-var-declarator
| struct-var-declarator-list , struct-var-declarator

struct-var-declarator ::= var-declarator
| var-declarator,,; : constant-expression

enum-specifier ::= enun identifier,, { enumerator-list }
| enum identifier,,: { enumerator-list , }
| enum identifier

A.14 Grammar

105

enumerator-list

enumerator

var-declarator

fnc-declarator

dimension-size

parameter-type-list

parameter-list

parameter-declaration

abstract-or-void-dec

initialiser

initialiser-list

type-name

abstract-var-declarator

typedef-name

Statement

simple-statement

enumerator
enumerator-list , enumerator

identifier
identifier = constant-expression

identifier {dimension-size)*

& identifier

? indentifier (dimension-size)*
& 7 identifier

identifier (parameter-type-list,p;)
[constant-expressionyp; 1

parameter-list
parameter-list , parameter-declaration

parameter-declaration
parameter-list , parameter-declaration

(dec-specifier)* abstract-or-void-dec

var-declarator
abstract-var-declarator

on-statement,,; expression
{ initialiser-list }
{ initialiser-list , }

initialiser
initialiser-list , initialiser

(specifier-or-qualifier)* abstract-var-declarator
(dimension-size)*
identifier

simple-statement, p; ;
compound-statement
selection-statement
iteration-statement
Jump-statement
parallel-statement
transaction-statement

expression-statement
multiple-assignment
input

output

106 XC Language Specification

compound-statement ::= { (var-declaration)* {statement)* }

selection-statement 1= if (expression) statement
| if (expression) statement else statement
| switch (expression) { (labelled-statement)* }
| select { (guarded-statement)* }

labelled-statement 1= case constant-expression : (statement)*
| default : (statement)*

guarded-statement ::= case replicator,,; enable-exp,,: input : (statement)*
| case replicator,y; enable-exp,,; function-call :
(statement)*
| case replicator,,: enable-exp,pt slave-statement :
(statement)*
| default : (statement)*
| case function-call ;

replicator ::= (int variable = expression ; expression ; experssion)
enable-exp 1= expression =>
iteration-statement ::= while (expression) statement

| do statement while (expression) ;
| for (for-inityp: ; expressionyy: ; simple-list,p)
Statement

Jump-statement ::= continue ;
| break ;
| return expressiongp; ;
| return { expression-list } ;

parallel-statement ::= par replicator,,; { (thread)* }
thread 1= on-statement,,; statement
on-statement ::= on variable-reference :
transaction-statement ::= slave-statement

| master-statement
slave-statement ::= slave Statement
master-statement ::= master Statement
for-init ::= var-declaration

| simple-list

simple-list 1= simple-statement
| simple-list , simple-statement

expression-statement 1= expression

A.14 Grammar

107

expression

assignment-expression

assignment-operator

conditional-expression

constant-expression

logical-OR-expression

logical-AND-expression

inclusive-OR-expression

exclusive-OR-expression

AND-expression

equality-expression

relational-expression

shift-expression

additive-expression

multiplicative-expression

assignment-expression

conditional-expression
variable-reference assignment-operator
assignment-expression

one of
=%x= /== += -=<<=>>= &= "= |=

logical-OR-expression
logical-OR-expression ?
expression : conditional-expression

conditional-expression

logical-AND-expression
logical-OR-expression | | logical- AND-expression

inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

AND-expression
exclusive-OR-expression ~ AND-expression

equality-expression
AND-expression & equality-expression

relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

shift-expression

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

cast-expression

multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression ¥, cast-expression

108 XC Language Specification

cast-expression 1= unary-expression
| (type-name) cast-expression

unary-expression ::= postfix-expression
| ++ variable-reference
| -- variable-reference
| unary-operator cast-expression
| sizeof unary-expression
| sizeof (type-name)
| isnull (unary-expression)

unary-operator 2= one of
+ - 7
postfix-expression ::= primary-expression

| variable-reference ++
| variable-reference --

primary-expression ::= variable-reference
function-call
constant

string

(expression)

multiple-assignment := { return-list } assignment-operator function-call

return-list ::= optional-variable
| return-list , optional-variable

optional-variable ::= variable-reference
| void
input = resource time,p; predicate,,; input-operator

dest timestampop¢

resource ::= variable-reference
time 1= @ expression
input-operator n= >

| >>>
dest ::= declared-var-reference
input-timestamp ::= @ declared-var-reference
output-timestamp ::= @ variable-reference
declared-var-reference ::= (declaration-specifier)” identifier,p;

| variable-reference

predicate ::= when function-call

A.14 Grammar

109

output

output-operator

function-call

variable-reference

expression-list

constant

resource time,,; output-operator
expression timestamp p;

<:
< >>

identifier (expression-list,p;)

identifier

variable-reference [expression]
variable-reference . identifier

(variable-reference , type-name)

expression
expression-list , expression

integer-constant
character-constant
enumeration-constant
null

APPENDIX

XC 1/0 Specification

The specification given in this appendix describes the functional behaviour of I/0 operations

on ports.

For the purpose of describing semantics, a port can be defined as a collection of concur-
rent threads that perform a number of functions on data as it flows between the processor
and the pins. The compositional model of an XMOS port is shown in the diagram below.

rin rout clk
| A |

(v | ¥
Clocking, < ‘EI —
pins «1> Timing and |~ "| Serialisation |, e Buffering |
Strobing c1r[1] Component | | Component
Component clr[2]
\ clr[0]

»isa

Logically, a port comprises three components that extend a “raw port” with functionality
such as clocking, timing, strobing, serialisation and buffering. The XC program below defines

a model for these components and their connectivity.

port pins, clk, rin, rout;
int w, p;
int direction;

void main(void) {
chan ¢, d, e, isa, clr[3];
par {
clkTimeStrobe (pins, rin, rout, clk, c, clr[0],
serialiser(w, p, ¢, d, e, clr[1], clr[2]);
buffer(n, direction, d, e, isa, !isnull(rout),
processor (isa);

} o}

clr [1]1);

clr[2], clr[0]);

112

XC 1/0 Specification

By defining the functionality of ports in this way, the task of programming ports can be
considered analogous to interfacing with other components in a concurrent system.

B.1 The Functional Model of Clocked 1/0O

The behaviour of inputting and outputting on a clocked, unbuffered port that uses no ready-in
or ready-out signals is defined as follows:

¢ An output edge occurs on the next falling edge of the port’s clock.

e An output causes data to be driven on the next output edge; the processor blocks until
the subsequent rising edge.

¢ An input edge occurs on the next rising edge of the port’s clock.

e An input causes data to be sampled by the port on the next input edge; the processor
blocks until this time.

The function below implements these semantics. It operates on two raw ports that interface
with clock and data signals. The clock is modelled as a pin that when toggled, for example by
an XCore clock block, signifies a clock edge. (Note that the function does not implement any
timing or strobing operations, and that it interfaces directly with the processor.)

void clkTimeStrobe(port pins, port clk, chanend isa) {

pwidth_t data = 0;
int clkVal = 0;
int state = QUIET;

while (1) {

select {
case clk when pinsneq(clkVal) :> clkVal
if (!clkVal && state == O0UTPUT) {

pins <: data;
state = PENDQUIET;
}
else if (clkVal && state == INPUT) {
pins :> data;
isa <: data;
state = QUIET;
}
else if (clkVal && state == PENDQUIET) {
isa <: 0;
state = QUIET;
}
break;
case (state == QUIET) => isa :> state
switch(state) {
case O0UTPUT
isa :> data;
break;
case INPUT
break;
}
break;

} 13

B.1 The Functional Model of Clocked 1/0

113

The declaration
void clkTimeStrobe(port pins, port clk, chanend isa)

declares c1kTimeStrobe to be a function that takes a raw data port on which to sample and
drive data, a raw port on which to sample clock edges and a channel end for interfacing with
a processor. The type pwidth_t is the same size as the port width.

The function performs the following I/0 operations on raw ports:

e pins <:data;

The data in variable data is driven on the pins immediately.

e pins :>data;

The value on the pins is read immediately and assigned to the variable data.

e clk when pinsneq(clkVal) :> clkVal;

The value on the clock pin is input when it becomes unequal to its present value.

The clocking component waits for both clock edges and for requests from the processor.
After receiving an output request, on the next falling edge of the clock, the data is driven and
an acknowledgement is communicated to the processor. After receiving an input request, on
the next sampling edge of the clock, data is sampled and communicated to the processor.

The program below shows the use of the clocked port by a thread, assumed to be executed
on a processor, that performs the same sequence of outputs as the example given in §4.1.
(Note that on XCore devices, the ports are interfaced directly by the ISA, rather than using a
channel interface, so this program is not in practice generated.)

port p, c;

int main(void) {
chan isa;
par {
clkTimeStrobe(p, ¢, isa); // implemented in hardware
for (int i=0; i<5; i++) { // implemented in software
isa <: OUTPUT;
isa <: ij;
isa :> int;
}
}
}

The for loop outputs data to the function c1kTimeStrobe, which then drives this data on the
next falling edge of its clock. On XS1 devices, all ports used for data are buffered (see §C.1),
which means that the acknowledgement happens almost immediately.

Note that XC’s I/0 semantics do not require a clock to provide edges at regular intervals,
or even to provide edges at all. Neither do the semantics specify the state in which a port
is initialised. The I/0O semantics are therefore captured entirely within the for loop, with
implementation-defined initialisation appearing outside of the loop (see §C.2). I/O timing
characteristics are implementation-defined.

114

XC 1/0 Specification

B.2 Clocking, Timing and Strobing Component

The behaviour of timed operations are defined as follows:

e A timed output causes the port to wait until its counter equals the specified time and
then behaves as a clocked output.

e A timestamped output causes the processor to wait until the output is driven and to
then record the value of the port counter at this time.

o A timed input causes the processor to wait until the port counter equals the specified
time in the future and then behaves as a clocked input.

If a ready-in strobe signal is used:

e The ready-in signal is sampled on the rising edge of the port’s clock.
e Input edges occur on rising edges of the port’s clock when the ready-in signal is high.
e Output edges occur on falling edges of the port’s clock when the ready-in signal was
sampled high on the previous rising edge.
If a ready-out strobe signal is used:

e The ready-out signal is usually driven low.

e Qutput data is driven for at least a single period of the port’s clock, and the ready-out
signal is driven for the first period only; whether or not the output data continues to
be driven is implementation-defined.

¢ The ready-out signal is driven high on the falling edge of the port’s clock prior to the
next rising edge on which data is sampled.

The functions below define the clocking/timing/strobing component, which can be configured
to use a ready-in and ready-out signal and is capable of performing timed and timestamped
operations.

void getInReq(chanend c, int &isTimed, counter_t &time, int &isTS) {
/* protocol for inputting an ~input request' from a channel */

c :> isTimed; // get time (control)
if (isTimed)

c :> time; // get time (data)
c :> isTS; // get timestamp (control)

}

void getOutReq(chanend c, pwidth_t &data, int &isTimed,
counter_t &time, int &isTS) {
/* protocol for inputting an ~output request' from a channel */

c :> data; // get output (data)
c :> isTimed; // get time (control)
if (isTimed)
c :> time; // get time (data)
c :> isTS; // get timestamp (control)

B.2 Clocking, Timing and Strobing Component

115

void clkTimeStrobe(port pins, int isReadyIn, port rin, int isReadyOut,
port rout, port clk,
chanend ser, chanend clrIn, chanend clrOut) {

pwidth_t data = 0;
int state = QUIET;
int clkVal = 0;
int rinVal = 0;
int isTimed = 0;
counter_t counter = 0;
counter_t time = 0;
int isTS = 0;
while (1) {

select {

case (state == QUIET) => ser :> state

switch(state) {
case OUTPUT
getOutReq(ser, data, isTimed, time, isTS);
break;
case INPUT
getInReq(ser, isTimed, time, isTS);
break;
}
break;
case clk when pinsneq(clkVal) :> clkVal
if (!clkVal) { /* falling edge */
counter++;
if (state == QUTPUT && (!isTimed || counter == time))
state = R_0UT;
else if (state =
state = R_IN;
if (state == R_OUT && (!isReadyIn || rinVal)) {
pins <: data;
if (isReadyOut) rout <: 1;
state = PENDQUIET;
}
else if (state == R_IN && isReadyOut)
rout <: 1;
else if (isReadyOut)
rout <: 0;

= INPUT && (!'isTimed || counter == time))

}
else { /* rising edge */
if (isReadyln)
rin :> rinVal;
if (state == PENDQUIET) {
ser <: 0; if (isTS) ser <: counter;
state = QUIET;
}
else if (state == R_IN && (!isReadyIn || rinVal)) {
pins :> data;
ser <: data; if (isTS) ser <: counter;
state = QUIET;
}
}
break;
case clrIn :> int x : clrOut <: x; state = QUIET; break;

} 1}

116 XC 1/0 Specification

B.3 Serialisation Component

The behaviour of inputting and outputting on a serialised port is defined as follows:

e An output of a w-bit value on p pins is driven over w/p output edges, least significant
bits first.

e The time specified by a timed or timestamped output represents the time from which
the first p bits of data are driven; the processor blocks until the last p bits are driven.

¢ An input of a w-bit value on p pins is sampled over w/p input edges, with earlier bits
received inserted in the least significant bits of w.

e The time specified by a timed or timestamped input represents the time from which
the first! p data bits are read from the pins.

The functions below define the serialiser component:

void putOutReq(chanend cts, pwidth_t data, int isTimed,
counter_t time, int isTS) {
/* protocol for outputting an ~output request' to a channel */
cts <: OUTPUT;
cts <: data;
if (isTimed) {

cts <: 1;
cts <: time;
}
else
cts <: 0;

cts <: isTS;

}

void putInReq(chanend cts, int isTimed, counter_t time, int isTS) {
/* protocol for inputting an ~output request' from a channel */
cts <: INPUT;
if (isTimed) {

cts <: 1;
cts <: time;
}
else
cts <: 0;

cts <: isTS;

LOn XS1 devices, the time specified by a timed or timestamped input is the time from which
the last bits are sampled (see §C.1.1). This requires the serialiser to be continually active (push
model), rather than being activated by the buffering component (pull model). It is anticipated—but not
guaranteed—that future generations of the XMOS architecture will support the above semantics.

B.3 Serialisation Component

void serialiser (int w, int p,
chanend clrln,

chanend cts, chanend buflIn,
chanend clrOut) {

chanend bufOut,

twidth_t data = 0;
counter_t time
counter_t ts =
int clr =
int isTimed =
int isTS

>
5
>

>

[elelNelNeNe

5>

while (1) {
select {
case bufIn :> int op
switch (op) {
case O0OUTPUT

getOutReq (bufln,
i<w/p;
pwidth_t chunk =

for (int i=0;

data >>= p;

putOutReq(cts,

cts :> int;

cts :> ts; // get ts (data)
}
bufIn <: 0; // synchronise
if (isTS) buflIn <: ts; // put ts (control+data)
break;
case INPUT
getInReq (bufIn, isTimed, time, isTS);
clr = 0;
for (int i=0; i<w/p && !'clr; i++) {
if (1 == 0)
putInReq(cts, isTimed, time, isTS);
else
putInReq(cts, 0, time, 0);
select {
case cts :> pwidth_t chunk // get input (data)
data = (data >> p) | (chunk << (w-p));
if (i == 0 && isTS)
cts :> ts; // get ts (data)
break;
case clrIn :> int x // clear (control)
clr = 1;
clrOut <: x;
break;
)
if (telr) {
bufOut <: data & ((1<<w)-1); // put output (data)
if (isTS) buflut <: ts; // put ts (data)
}
break;
}
break;

case clrIn :> int x
clrOut <: x;
break;

}r 3

data,
i++) {
((1 << p)

chunk,

isTimed,

time,

(isTimed && i

isTS);

1) & data;

=0,

// synchronise

time, 1);

118

XC 1/0 Specification

B.4 Buffering Component

A buffered port with a FIFO size of 0 is defined in the same way as if the buffering component
is not present. The program below defines this “pass-through” behaviour, avoiding the need
to remove the component from the model when buffering is not required.

void buffer (int size, int direction, chanend c, chanend, d, chanend isa,
int isRout, chanend clrIn, chanend clrOut) {

twidth_t data = 0;
int isTimed = 0;
counter_t time = 0;
int isTS = 0;
int op = 03
if (size == 0) {

while (1) {
isa :> int op;
switch (op) {
case O0UTPUT
getOutReq(isa, data, isTimed, time, isTS);
putOutReq(ser, data, isTimed, time, isTS);
ser :> int;
if (isTS) ser :> ts;
isa <: 0;
if (isTS) isa <: ts;
break;
case INPUT
getInReq(isa, isTimed, time, isTS);
putInReq(ser, isTimed, time, isTS);
ser :> data;
isa <: data;
if (isTS) {
ser :> ts;
isa <: ts;

} 3
)
else if (direction == 0UT)
portBufferOut (size, d, isa);
else

portBufferIn(size, d, e, isa, isRout, clrIn, clrOut);

B.4.1 FIFO Functions

The buffering components defined in the following sections make use of a standard first-in-
first-out (FIFO) data structure, which is interfaced using the following functions:

void addTail (FIFO f, twidth_t data, counter_t ts)
Adds an entry to the tail of the FIFO. If the FIFO is full, the oldest entry is removed
to make room.

{twidth_t, counter_t} getHead(FIFO f)
Returns the oldest entry from the head of the FIFO and removes it from the
queue. If the FIFO is empty, the result returned is undefined.

B.4 Buffering Component 119

int isEmpty(FIFO f)
Returns non-zero if the FIFO is empty, and zero otherwise.

int isFull(FIFO0 f)
Returns non-zero if the FIFO is full, and zero otherwise.

B.4.2 Buffered Output

The behaviour of outputting on a buffered port is defined as follows:

¢ An output inserts data into the port’s FIFO, which performs the output once all pending
outputs have completed; the processor blocks until the FIFO has space to accept the
data.

e A timed output causes the processor to wait until the specified time and then performs
the output.

The function below defines the buffering output component:

void portBufferOut (chanend ser, chanend isa) {

FIFO b = EMPTY;
twidth_t data = 0;
int isTimed = 0;
counter_t time = 0;
int isTS = 0;
counter_t ts = 0;
int wait = 0;

while (1) {
if (!'isEmpty(b) && !wait) {
{data, time} = getHead(b);
putOutReq(ser, data, (time != NOTIME), time, isTS);
wait = 1;
}
select {
case !isFull(b) => isa :> int op
switch (op) {
case OUTPUT
getOutReq(isa, data, isTimed, time, isTS);
isa <: 0;
if (isTimed)
addTail (b, data, time);
else
addTail (b, data, NOTIME);
break;
case INPUT
/* implementation-defined behaviour x*/
break;
¥
break;
case ser :> ts
if (isEmpty(b) && isTS)
isa <: ts;
wait = 0;
break;

}r 3

120 XC 1/0 Specification

B.4.3 Buffered Input

The behaviour of inputting on a buffered port is defined as follows:

e On each input edge, data is sampled by the port and inserted into the port’s FIFO; if
the FIFO is full then the oldest value is discarded to make room for the most recently
sampled value.

e An input fetches the next data from the FIFO; the processor blocks until the FIFO
contains data.

o If a buffered port is configured with a ready-out strobe, the ready-out signal is driven
high on each falling edge of the clock when the FIFO is not full.

e The time in a timed input represents time in the future; it causes the processor to
discard any data in the buffer prior to performing the input.

The function below defines the buffering input component:

void portBufferIn(chanend serIn, chanend serOut, chanend isa,
int isReadyOut, chanend clrIn, chanend clrOut) {

FIFO b = EMPTY;
twidth_t data = 0;
int isTimed = 0, isTS = O0;
counter_t time = 0, ts = 0;
while (1) {
if (!isReadyOut || !isFull(b))
putInReq(serIn, 0, 0, 1);
select {

case !isEmpty(b) => isa :> int op
switch (op) {
case OUTPUT : /* implementation-defined behaviour x*/
break;
case INPUT
getInReq(isa, isTimed, time, isTS);
if (!isTimed)

{data, ts} = getHead(b); // get buffered input (data)
else {

clrOut <: 1; // clear any pending inputs

select {

case clrIn :> int
doEmpty (b);
break;

case serOut :> twidth_t
clrIn :> int; doEmpty(b);

break;
}
putInReq(serIn, 1, time, isTS);
serOut :> data; // get input (data)
serOut :> ts; // get ts (data)
}
isa <: data; // put input (data)
if (isTS) isa <: ts; // put ts (data)
break;
}
break;
case serQOut :> data : // get input (data)
serOut :> ts; // get ts (data)
addTail (b, data, ts); // add buffer (data)
break;

} 13

B.5 Conditional Input: pinseq and pinsneq

121

B.5 Conditional Input: pinseq and pinsneq

The behaviour of a conditional input on a clocked port is defined by predicate functions. The
predicate functions pinseq and pinsneq are defined as follows:

o A conditional input with the function pinseq causes data to be sampled by the port on
input edges until the value of the sampled (port-width) bits is equal to the specified
paramter value; the processor waits until this time, taking the most recent data
sampled.

e A conditional input with the function pinsnseq causes data to be sampled by the
port on input edges until the value of the sampled (port-width) bits is unequal to the
specified paramter value; the processor waits until this time, taking the most recent
data sampled.

e A timed conditional input causes the processor to wait until the port counter equals
the specified time and then behaves as a conditional input.

Semantically, both of these functions are defined as part of a pins-conditional component

that appears between the clocking/timing/strobing component and the serialiser component.

rin rout clk
| A |

Pins Conditional
Component

pins <

* I * A 4 v
Clocking, @ . E‘ < d >
»| Timing and Serialisation e Buffering <
Strobing clr[1i] Component [| Component
Component clr[2]
clr[0]

»isa

This component requires the protocol used to communicate input requests through the
buffering and serialisation components to be extended to pass a condition, which may be
either none, pins equal to or pins unequal to. The function on the next page defines the

pins-conditional component. For this component to be integrated:

¢ The clocking/timing/strobing component (see §B.2) is modified so that it can accept

and respond to requests over an additional channel.

e The buffering input component (see §B.4) is modified to accept conditional input
requests. If a conditional input is requested, the buffering component clears any
pending inputs (as with timed inputs) and then communicates with this component

over another channel.

122

XC 1/0 Specification

void pinsConditional (chanend cts, chanend buf) {

pwidth_t data = 0;
counter_t time =
counter_t ts =
int isTimed =
int isTS =
int n =
int cond =
pwidth_t condData =
int matched =

(el el elNelNeNeNeoNeol

while (1) {
buf :> int;
getInReq(buf, isTimed, time, isTS);
buf :> cond;
buf :> condData;
n = 0;
matched = 0;
while (!matched) {
putInReq(cts, (isTimed && n == 0), time,
cts :> data;
if (isTS)
cts :> ts;
switch (comnd) {
case NONE
matched = 1;
break;
case PINSEQ
matched = (data == condData);
break;
case PINSNEQ
matched = (data != condData);
break;

// get cond

// get ts

F

buf <: data;

if (isTS)
buf <: ts;

break;

// snd data

// snd ts

// get input

// get input req (control)

(data)

isTS);
(data)

(data)

(data)

(data)

APPENDIX

XS1 Implementation of XC

The following sections describe the XS1 implementation of XC, including the extent to which
the I/0 specification is implemented, the standard port library, port-to-pin mappings, and
the size and alignment of types.

C.1 Support for XC Port Specification

The XC port declaration
port p;

declares a raw port. On XS1 devices, all ports used for inputting and outputting data are
clocked by a 100MHz reference clock (see §C.2.1) and use a single-entry buffer, even if their
declarations are not qualified with the keyword buffered.

The table below can be used to determine which I/0O operations are supported on XS1
ports, depending on whether or not the corresponding XC declaration is qualified with the
keyword buffered.

Operation
Mode Serialisation Strobing @ when
Unqualified X X X
buffered v v v

A compiler is required to detect and issue an error in the following cases:

e Serialisation: A port not qualified with buffered is declared with a transfer width
different from the port width.

e Strobing: A port not qualified with buffered is configured to use a ready-in or ready-out
signal.

e An input uses both @ and when: Both of these operators are used in an input statement
with a port whose declaration is not qualified with buffered.

124

XS1 Implementation of XC

C.1.1 Serialisation

If serialisation is used (see §B.3), the time specified by a timed input statement records the
time at which the last bits if data are sampled. This can result in unexpected behaviour when
serialisation is used, since the construction

causes the output on p to start at the same time as the input on q completes. To input and
output this data in parallel, the input time should be offset in the software by an amount
equal to the the transfer width divided by the port width.

C.1.2 Timestamping

The timestamp recorded by an input statement may come after the time when the data was
sampled. This is because the XS1 provides separate instructions for inputting data and
inputting the timestamp, so the timestamp can be input after the next data is sampled. This
issue also affects output statements, but does not affect inputs performed in the guards of a
select statement. A compiler should input the timestamp immediately after executing an
input or output instruction, so in practice this behaviour is rarely seen.

C.1.3 Implementation-Defined Behaviour

An attempt to change the direction of a port qualified with buffered results in undefined
behaviour.

C.2 XS1 Port Library: <xs1.h>

The header file <xs1.h> declares functions for configuring the mode of operation of ports
and for operating on them.

C.2.1 Clock Configuration

An XS1 device provides a single reference clock that ticks at a frequency derived from an
external oscillior. XC requires the system designer to ensure that the reference clock ticks at
100MHz for correct operation of timers.

Each XCore provides a set of programmable clock blocks, which can be used to produce
clock signals for ports. A clock block can use either a 1-bit port or a divided reference clock.
The header file <xs1.h> provides a resource type clock. A variable of type clock must be
declared globally and initialised with a unique clock block resource identifier, as in:

clock ¢ = XS1_CLKBLK_1;

The number of clock blocks available is given in the device datasheet. Their names are as the
above declaration, numbered sequentially from 1.
The functions below are used to configure a clock block.

C.2

XS1 Port Library: <xs1.h>

125

void

void

configure_clock_src(clock clk, void port p)
configure_clock_src configures a clock to use a 1-bit port as its source. If the
port is not 1-bit wide, an exception is raised.

configure_port_clock_output(void port p, const clock clk)
configure_port_clock_output configures a 1-bit port to drive a clock signal.
If the port is not 1-bit wide, an exception is raised. If the clock is internally-
generated and has a rate of 100MHz, no output is driven. Performing inputs or
outputs on a port configured in this mode results in undefined behaviour.

configure_clock_rate(clock clk, unsigned a, unsigned b)

void
void

void
void

void

void

This function configures a clock to run at a rate of 2MHz. If the specified rate is
not supported by the hardware, an exception is raised. The hardware supports a
rate of 100MHz and rates of the form (50/nMHz where n is in the range 1 to 255
inclusive. A 100MHz reference clock is required for correct operation.

configure_clock_rate_at_most(clock clk, unsigned a, unsigned b)
configure_clock_at_least(clock clk, unsigned char divide)
These functions configure a clock to run at the fastest/slowest non-zero rate
supported by the hardware that is less than or equal to ? MHz. An exception is
raised if no rate satisfies this criterion. A 100MHz reference clock is required for
correct operation.

set_clock_fall_delay(clock clk, unsigned n)

set_clock_rise_delay(clock clk, unsigned n)
These functions cause the falling/rising edge of the clock to be delayed by n
processor-clock cycles before it is seen by any port connected to the clock. The
delay must be a value in the range 0 to 512 inclusive. If the clock edge is delayed
by more than the clock period, no falling/rising edges are seen by any port
connected to the clock.

start_clock(clock clk)
start_clock causes the clock to start generating edges, and resets the counters
for all of the ports connected to the clock to 0.

stop_clock(clock clk)
stop_clock causes the processor to wait until a clock is low and then puts it into
a stopped state (in which it does not generate edges).

C.2.2 Port Configuration

The functions below are used to change the mode of operation of a port.

void
void

void

configure_in_port(void port p, comnst clock clk)
configure_in_port_strobed_master

(void port p, out port readyout, const clock clk)
configure_in_port_strobed_slave

(void port p, in port readyin, clock clk)

126

XS1 Implementation of XC

void

void
void

void

void

configure_in_port_handshake
(void port p, in port readyin, out port readyout, clock clk)
These functions configure a port with a specified clock, ready-in and ready-out
signals in input mode. If either the ready-in or ready-out ports are not 1-bit wide,
an exception is raised. (See §B.2 and §C.1.)

configure_out_port(void port p, const clock clk, unsigned initial)
configure_out_port_strobed_master

(void port p, out port readyout, const clock clk, unsigned initial)
configure_out_port_strobed_slave

(void port p, in port readyin, clock clk, unsigned initial)
configure_out_port_handshake

(void port p, in port readyin, out port readyout, clock clk, unsigned initial)

void

void
void

void
void

void
void

These functions configure a port with a specified clock, ready-in and ready-out
signals in output mode, causing the initial value to be driven immediately. If
either the ready-in or ready-out ports are not 1-bit wide, an exception is raised.
(See §B.2 and §C.1.)

set_pad_delay(void port p, unsigned n)
set_pad_delay sets a delay on the pins connected to a port. The input signals
sampled on the port’s pins are delayed by n processor-clock cycles before they
are seen on the port. The hardware supports delay values from 0 to 5 inclusive.
If multiple enabled ports are connected to the same pin (see §C.3), the delay on
that pin is set to that of the highest priority port.

set_port_inv(void port p)

set_port_no_inv(void port p)
set_port_inv configures a 1-bit port to invert the data which is sampled and
driven on its pins. If the port is used as the source for a clock, setting this
mode has the effect of the swapping the rising and falling edges of the clock.
set_port_no_inv ensures that the port does not invert the data. If the port is not
a 1-bit port, an exception is raised.

set_port_sample_delay(void port p)

set_port_no_sample_delay(void port p)
These functions set the sampling edge of a port. The first function sets the
sampling edge to the falling edge of the port’s clock; second sets it to the rising
edge. If the sample delay is set to the falling edge of the clock, a timed input
with a ready-out signal causes the ready-out signal to be driven at the specified
time, and the input to be completed a single period later.

set_port_drive(void port p)

set_port_pull_up(void port p)
These functions configure a port to be in either drive or pull-up mode (by default,
a port is configured in drive mode, the behaviour of which is described in
Appendix B). In pull-up mode, when the port is used for input, its internal pull-up
resistor is enabled. If the port is not 1-bit wide, values driven on the pins are
undefined. For 1-bit ports, an output of 0 causes the port to drive its pin low, and

C.2 XS1 Port Library: <xs1.h>

127

an output of 1 causes no value to be driven; when the pin is not driving data, the
pull-up resistor ensures that the value sampled by the port is high. The pull-up
is not strong enough to guarantee a defined external value.

C.2.3 Input and Output Operations

void pinseq(void port p, unsigned val)

void pinsneq(void port p, unsigned val)
These functions request a conditional input from the port. (See §B.5.) The
functions must be called as the when expression of an input on a port, omitting
the port from the call.

void timerafter(timer t, unsigned val)
timerafter causes the procecssor to wait until the value of the timer’s counter is
interpreted as coming after the specified value. The time A is considered to come
after the time B if ((int) (B - A) < 0) is true. This function must be called as
the when expression of an input on a timer, omitting the timer from the call.

void partout(void port p, unsigned bits, unsigned val)

unsigned partout_timestamped(void port p, unsigned bits, unsigned val)

unsigned partout_timed(void port p, unsigned bits, unsigned val, unsigned t)
These functions output the least significant bits bits of val to the specified port;
the second function timestamps the output; the third function causes the output
to be driven when the port counter equals the specified time. The port must be
declared with the qualifier buffered. The number of bits must be less than the
transfer width of the port, greater than zero and a multiple of the port width,
otherwise an exception is raised.

unsigned endin(void port p)

endin causes the port to end the current input on a port. The port must be
declared with the qualifier buffered. The number of bits sampled by the port
but not yet input by the processor is returned, which includes any data in the
FIFO or serialisation register. Subsequent inputs on the port cause the port to
provide transfer-width bits of data until there is less than one transfer-width bits
of data remaining. Any remaining data can be read with one further input, which
provides transfer-width bits of data with the remaining buffered data in the most
significant bits of this value.

void sync(void port p)
sync causes the processor to wait until a port has driven all pending outputs and
the last port-width bits of data has been held on the pins for one clock period.

void clearbuf(void port p)
clearbuf causes the port to discard any data in its FIFO. If the port is currently
driving data on its pins, the data continues to be driven; if the port is serial-
ising output, the current data continues to be driven with any remaining data
discarded.

128

XS1 Implementation of XC

unsigned peek(void port p)
peek causes the port to sample the current value on its pins. The port provides
the sampled port-width bits of data to the processor immediately, regardless of
its transfer width, clock, ready signals and buffering. The input has no effect on
subsequent I/O performed on the port.

C.3 Specifying Port-to-Pin Mappings

On XS1 devices, pins are used to interface with external components via ports and to construct
links to other devices over which channels are established. The ports are multiplexed,
allowing the pins to be configured for use by ports of different widths. Table I gives the XS1
port-to-pin mapping, which is interpreted as follows:

e The name of each pin is given in the format XnDpq where n is a valid XCore number
for the device and pg exists in the table. The physical position of the pin depends on
the packaging and is given in the device datasheet.

e Each link is identified by a letter A-D. The wires of a link are identified by means of a
superscripted digit 0-4.

e Each port is identified by its width (the first number 1, 4, 8, 16 or 32) and a letter that
distinguishes multiple ports of the same width (A-P). These names correspond to port
identifiers in the header file <xs1.h> (for example port 1A corresponds to the identifier
XS1_PORT_1A). The individual bits of the port are identified by means of a superscripted
digit 0-31.

o The table is divided into six rows (or banks). The first four banks provide a selection of
1, 4 and 8-bit ports, with the last two banks enabling the single 32-bit port. Different
packaging options may export different numbers of banks; the 16-bit and 32-bit ports
are not available on small devices.

The ports used by a program are determined by the set of XC port declarations. For example,
the declaration

on stdcore[0] : in port p = XS1_PORT_14;

uses the 1-bit port 1A on XCore 0, which is connected to pin X0DO0O.

Usually the designer should ensure that there is no overlap between the pins of the
declared ports, but the precedence has been designed so that, if required, portions of the
wider ports can be used when overlapping narrower ports are used. The ports to the left of
the table have precedence over ports to the right. If two ports are declared that share the
same pin, the narrower port takes priority. For example:

on stdcore[2] : out port pl = XS1_PORT_324;
on stdcore[2] : out port p2 = XS1_PORT_8B;
on stdcore[2] : out port p3 = XS1_PORT_4C;

In this example:
e I/0O on port p1 uses pins X2D02 to X2D09 and X2D49 to X2D70.

e I/0 on port p2 uses pins X2D16 to X2D19; inputting from p2 results in undefined values
in bits 0, 1, 6 and 7.

e I/0 on port p3 uses pins X2D14, X2D15, X2D20 and X2D21; inputting from p1 results
in undefined values in bits 28-31, and when outputting these bits are not driven.

TABLE I
AVAILABLE PORTS AND LINKS FOR EACH PIN

< highest Precedence lowest =

Pin link 1-bit ports 4-bit ports 8-bit ports 16-bit ports 32-bit port
XnDOO 1A

XnD01 A% in/out 1B

XnD02 A3 in/out 4A0 8A0 1640 32420
XnD03 A2 in/out 4A1 gAl 16A1 32421
XnD04 Al in/out 4B0 8A2 1642 32422
xnD05 A0 in/out 4Bl 8A3 1643 32423
xnD06 A0 out/in 4B? gAt 1644 32424
XnD07 Al out/in 4B3 8A5 16A5 32425
XnD08 A2 out/in 4A2 8A6 16A6 32426
XnD09 A3 out/in 4A3 8A7 16A7 32427
XnD10 A% out/in 1C

XnD11 1D

XnD12 1E

XnD13 B*in/out 1F

XnD14 B3 in/out 4¢0 880 16A8 32428
XnD15 B2 in/out 4ct 8Bl 1649 32429
XnD16 B! in/out 4p0 8B? 16410

XnD17 BY in/out 4p! 8B3 1641l

xnD18 BO out/in 4p? 8B4 16412

XnD19 B! out/in 4D3 8B° 16413

XnD20 B2 out/in 4c? 8BS 16414 32430
XnD21 B3 out/in 4¢3 8B7 16A15 32431
XnD22 B* out/in 1G

XnD23 1H

XnD24 1I

XnD25 1J

XnD26 4E0 8co 1680

XnD27 4! 8cC! 168!

XnD28 4F0 8C? 1682

XnD29 4F! 8C3 1683

XnD30 4F? 8c? 1684

XnD31 4F3 8C> 1685

XnD32 4E? 8Ct 1686

XnD33 4E3 8c’ 16B7

XnD34 1K

XnD35 1L

XnD36 1M 8D0 1688

XnD37 1N 8p! 1689

XnD38 10 8D2 16810

XnD39 1P 8D3 16811

XnD40 8D* 16812

XnD41 8D> 16813

XnD42 8D6 16814

XnD43 8D’ 16815

XnD49 C* in/out 3240
XnD50 €3 in/out 3241
XnD51 €2 in/out 3242
XnD52 Clin/out 3243
XnD53 0 in/out 3244
XnD54 O out/in 3245
XnD55 ¢! out/in 3246
XnD56 C2 out/in 3247
XnD57 €3 out/in 3248
XnD58 C* out/in 3249
XnD61 D* in/out 32410
XnD62 D3 in/out 32411
XnD63 D? in/out 32412
XnD64 D! in/out 32413
XnD65 DO in/out 32414
XnD66 DO out/in 32415
XnD67 D! out/in 32416
XnD68 D2 out/in 32417
XnD69 D3 out/in 32418

XnD70 D* out/in 32419

130

XS1 Implementation of XC

C4

Channel Communication

On some revisions of the XS1 architecture, it is not possible to input data of size less than 32
bits from a streaming channel in the guard of a select statement.

C.5

Data Types

The size and alignment of XC’s data types are not specified by the language. This allows
the size of int to be set to the natural word size of the target device, ensuring the fastest
possible performance for many computations. It also allows the alignment to be set wide
enough to enable efficient memory loads and stores. Table II gives the size and alignment
of the data types specified by the XMOS Application Binary Interface [8], which provides a
standard interface for linking objects compiled from both XC and C. In addition:

The char type is by default unsigned.
The types char, short and int may be specified in a bit-field’s declaration.
enunm bit-fields are unsigned unless the enum has negative values.

A zero-width bit-field forces padding until the next bit-offset aligned with the bit-field’s
declared type.

The notional transfer type of a port is unsigned int (32 bits).
The notional counter type of a port is unsigned short (16 bits).
The notional counter type of a timer is unsigned int (32 bits).

TABLE II
SIZE AND ALIGNMENT OF DATA TYPES ON XS1 DEVICES

Data Type Size Align Supported Meaning
(bits) (bits) XC C

char 8 8 v v Character type
short 16 16 v v Short integer
int 32 32 v v Native integer
long 32 32 X v Long integer
long long 64 32 X v Long long integer
float 32 32 X v 32-bit IEEE float
double 64 32 X v 64-bit IEEE float
long double 64 32 X v 64-bit IEEE float
void * 32 32 X v Data pointer
port 32 32 v X Port

timer 32 32 v X Timer

chanend 32 32 v X Channel end

Bibliography

[1] David May. The XMOS XS1 Architecture. XMOS Limited, 2009.
[2] Douglas Watt and Huw Geddes. The XMOS Tools User Guide. XMOS Limited, 2009.

[3] Peter Hedinger and Ali Dixon and Ross Owen and Neil Richards and David
May and Henk Muller. XS1 Ports: use and specification. Website, 2008. http:
//www.xmos . com/published/xsl-portspec.

[4] Hitachi TX14 Series LCD. Website, 2008. http://www.farrell.com/datasheets/
71533.pdf.

[5] IEEE 802.3 Section 2. Website, 2008. http://standards.ieee.org/getieee802/
download/802.3-2005_section2.pdf.

[6] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice
Hall Press, Upper Saddle River, NJ, USA, 1988.

[7] International Organization for Standardization. ISO/IEC 9899:1999: Program-
ming Languages — C. Wiley, West Sussex, England, December 1999.

[8] Douglas Watt and Richard Osborne and Martin Young. XMOS XS1 32-Bit Applica-
tion Binary Interface. Website, 2009. http://www.xmos.com/published/abi97.

0...octal constant............ccoveeeennnn.. 3, 68
0x... hexadecimal constant................ 3,68
+ addition operator.............coiiiiiinnnnn. 79
= assignment operator.............oeevenen.. 82
+= assignment operator...................... 82
\\ backslash character.................... 3, 69
Ob... binary constant....................... 3,68
& bitwise AND operator..........c.ccoevuvenn.. 80
~ bitwise exclusive OR operator............. 80
| bitwise inclusive OR operator 80
, COMMA OPETALOT . e v v e v eeeeaeaeaenns 82
?: conditional operator...................... 81
... declaration............cocuennn. 76, 89, 100
-- decrement operator.................... 74-77
/ division operator...............oviiiiiinnn. 79
=> enabling operator..................... 23, 96
== equality operator...............coeeueennn. 80
>= greater equal operator.................... 80
> greater than operator...................... 80
++ increment operator.................... 74-77
!=inequality operator 80
:> Input operatorviiiiiiininn 15, 92
:> >> input shift right operator..... 20, 92-94
<< left shift operator......................... 79
<=less equal operator..............cceeuuen... 80
< less than operator....................cu.en. 80
&& logical AND operator.........covvveuvennn. 81
! logical negation operator.................. 78
| | logical OR OPeratoroveeeeeeenns 81
% modulus operator...............ceiiuaan.. 79
* multiplication operator 79
~ one’s complement operator................ 78
<: output operator..............vevenen.. 14, 93
<: >> output shift right operator...19, 93-94
> quote character...........oovvviieiieennnnn. 69
" quote character............covvveiiiiiinanns 69
& reference operator 87-88
>> right shift operator 20, 79
. structure member operator................ 74
- subtraction operator................ccueen.. 79

@ time operator.........vovvvenenenens 43,92-94

Index

@ timestamp operator................ 43, 92-94
- unary minus operatoreeeuenen.. 77
+unary plus operatorcoeeieenann.. 77
_underscore character....................... 68
\0 null character........................... 3, 69
A
\a alert character..................coevvunn.n. 69
abstract declarator..............coooiiiinnn 90
addition operator, +.........ccoiiiiiiiiann.. 79
additive Operators.cvveveenerneneennnns 79
aliasing, illegal 10, 14, 76
alignment restriction..................... 12,77
ambiguity, if-else.......covveuiiinnienn... 7,96
argument function 9,75
argument list, void.........oooiviiiiiian.. 89
argument promotion...............ovvuienn.. 75
argument, definition of.................... 9,75
arithmetic conversions, usual 73
arithmetic types......cvvvvviiiiiiiiinennennn. 71
array declaration 2,87
array declarator..............cooiiiiiiinnn. 87
array initialisation......................... 2,90
array name, conversion of 73
array reference...............ccoieiiiiiiiain., 74
array subscriptingcooviiiinnn... 2,88
array, initialisation of two-dimensional 2
array, multi-dimensional.................. 2,88
array, storage order of 2,88
assignment eXpression.............oveuvennan. 82
assignment operator, =c.cieuen.. 82
assignment operator,+=..........cocieienannn. 82
assignment Operators............c.ceeueiennnt 82
assignment, conversion by................... 82
associativity of operators.................... 73
auto storage class specifier.................. 83
automatic storage class............cceeiennn 70
automatic variable ...l 70
automatics, initialisation of.................. 90
automatics, scope ofoviiiiiiiinn. 101

134 Index
B configure_clock_rate............coveuns 40, 125
\b backspace character 69 configure_clock_rate_at_least 125
backslash character, \\.................... 3, 69 configure_clock_rate_at_most............ 125
0 1S3 (G 7 70 configure_cloCK_STC.......cvvuvvurnnnn. 42,125
binary constant, Ob...ccvvueennen.. 3,68 configure_in_port.................u... 42,125
bitwise AND operator, &c...c...... 80 configure_in_port_handshake............. 126
bitwise exclusive OR operator, ~............. 80 configure_in_port_strobed_master........ 59
bitwise inclusive OR operator, | 80 configure_in_port_strobed_slave....58, 125
bitwise operators............coviiiiiiiiiinn.. 80 configure_out_Port......ceeeueeennnnn. 40, 126
block structurecovvvviiiiinnnnn.. 6, 95 configure_out_port_handshake............ 126
block, initialisation in..................... 6, 95 configure_out_port_strobed_master..... 126
break statement........................... 8,98 configure_out_port_strobed_slave....... 126
buffered port............ooiiiit 49-52,118 configure_port_clock_output......... 40, 125
declaration...........ooevviiiiiininaanns 50 configuring an external clock................ 41
Semanticsooiviiiiiiiiinn, 53,118 const qualifier......................... 2,72,84
buffered qualifier........................ 50, 84 constant expression.........co.eveieiiinaan. 82
constant suffix.....................oall, 3,68
C CONSTANT, TYPC. . eiireeeeiieeeennns 3,68
call by reference...................oeeee 9,75 [€0) 4151 =1 01 £ 3,68
callbyvalue...........ccoviviiiiiiiiiinnn... 9,75 continue statement........................ 8,97
carriage return character, \r................. 69 CONVETSION . et teit e eaaieaeenaennaenns 72-73
caselabel..........covviiiiiiiiiiiian, 7,21,96 by assignment..............coviiiiiann 82
case study bycast....oooviiiiii 73
Ethernet MII................coeennne 59-65 by return.....ccovviiiiiiiiiiiiiis 98
LCD screendriver...........cocevuen.n. 43 conversion of array name.................... 73
UART ... 18-23 conversions, usual arithmetic............... 73
Ccast OPerator........oveeeevneenneennnns. 78,90 core declaration.............c.ooeiiiiiiiinn. 85
cast, conversion by...............coiiiaaLL 73 COTE LY P ettt 71, 84
chan tyPe «ovivi i 32,71, 84
chanend typecoevnnn... 31, 71, 84, 130 D
changing direction of port.................. 124 data-valid signal....................cooeut 57,58
channel communication semantics....31, 102 declaration..............coviiiiiiiiiiian., 82-89
channel declaration...................... 32,85 21 - | 2,87
channel input.................oooiiiiiiaaa, 94 buffered port.............oocoiiiiiial, 50
channel output..........cooviiiiiiiiiinannn 94 channelcoiviiiiinn. ., 32,85
channel, streaming................... 34-35, 46 clocK. .o 40, 124
char typeoviiiiiiiiiiiiannn 2,70,84,130 [0 85
character constant.............cooveuivenn... 69 externalo.ooiiiiiiiii i 99
character, signedooiiiial 2,70 external variable........................ 99
clearbuf library function............... 53, 127 function.........cooooviiiiiiii 88
ClOCK . e 112 nullable..............cooiiiial 10, 88
clockblock......covviiiiiiiiiiiiaa... 40, 124) 070) i S, 14, 85, 87,123
clock declaration........................ 40, 124 reference.........oooviiiiiiiiiiiiiiinn.. 88
CLlOCK tYPC .o e e 40, 124 FSTS3 10 (el 89
clock, generatingo.ooviiiiiiiinanns 39 storage ClassS......ovviviiiiiiiiiiiinanns 83
clockedport.........ocovviiiiiina. 39-47,112 SITUCTUTE ..ot i e ieeaenes 85
clocked port semantics................. 46,112 Hmer ... s 17
[&07<) el 10) s HA AR see cast VP e e 87
COMMA OPETALOT, 4 «uveieeiieanaeaenenennn 82 typedef ..ottt 84, 91
({02191 00 Tc) 4 | R 67 LS 85
compound statementcoeeeunn.. 95 declarator.........covviiiiiiiiiiiiiiae, 87-89
concatenation, String.............coveveiinen.. 69 F2 Lo 13 0 1 U 90
concurrency statement.................. 27,98 F=1 1 1 | 87
conditional input........... see when condition function............cooviiiiiiiiin 88
conditional operator, ?:coeuen... 81 nullable.................ooLl 88

Index

135

reference...........ooviiiiiiiiiiin.. 88
decrement operator, --cuiennn. 74-77
default initialisation 90
default label...................ooiiaall. 7,96
definition

ArgUMeNt.......ovviiiiiiiieiieean 9,75

external variable 100

function..............coililll, 9, 99

parameter........c.cvvieieiininiiaan.. 9,75

storage class.......ccooiiiiiiiiiiiiiians 83

tentative.......cooviiiiiiii i 100
definition of storagecooall 82
dereference.............. see pass by reference
derived typeS ...vvviiiii i 71
deterministic thread performance....... iii, 37
disjointness, variable . 4, 28-32, 75, 82, 92-94,

98
division operator, /oiiiiiiiiiinnnt 79
dostatement..........ooviiiiiiiinnnennnnn. 8,97
driving output dataooeviiiniiann.. 13

E
else...iiiiiiiiiiiiiias see if-else statement
enabling operator, =>.................... 23, 96
endin library function.................. 64, 127
enum specifierL 86, 130
enumeration constant................ 68-69, 86
enumeration tag......cocvveviiiiiiiiiienen.. 86
enumeration typecooeviiiiiiiienn.n. 86
(231810133 - 10) N 86
equality operator, ==..........c..coeviennn.. 80
equality Operators......c..cvveeeuveneennennnns 80
equivalence, type........ovviiiiiiiiiiiinaan. 91
€SCAPE SEQUENCE . ..vvveeeeeeenenenenanns 2,3,69
escape sequences, tableof................... 69
Ethernet MII case study 59-65
evaluation, order of 4,73
(924 0) WS 1:1T0) o R 4, 73-82
expression statement 4,92
expression, assignment...................... 82
expression, CONStant.........ovvvuvuennennn.. 82
expression, parenthesised................... 74
eXpression, Primary........ooveveeveienennen. 74
extern storage class specifier............... 84
external clock, configuring................... 41
external declaration.......................... 99
external linkage..................... 70, 84, 101
external variable ...l 70

declaration...........ccoooiieiiinn. 99

definition...........ccoviviiiiiiiaen... 100

initialisation...............cocoill 90

ST a0) 0 101

F
\f formfeed character........................ 69

file scope...........ooin. see internal linkage
for statement...........cviviiiiiiiiniiann, 8,97
fork-join parallelism......................... 28
function
declaration...........c..coviiiiiiiian... 88
s€leCt .uviiiiiiiiiiii e 23-25, 100
ransactionovvvevenenenenennn 100
function argument 9,75
function call semantics...................... 75
function call syntax..........cooeeiiienniann 75
function declarator...................coeenn. 88
function definition 9,99
function prototypecovviiiiinn.. 9,76
G
generating aclock.................cooiiinll 39
greater equal operator, >=.............c..... 80
greater than operator, >...........cccovvvnenn. 80
guarded statement..............oiiiiiiinn.. 96
H
headerfile...........ooiiiiiiii i 1
hexadecimal constant, 0x................... 3,68
hexadecimal escape sequence \x............ 69
|
identifier.............ooiiiii i 68
if-else ambiguity...............ccoiiiet 7,96
if-else Statement................cccouennn. 6, 96
illegal aliasing 10, 14, 76
in qualifier 15,72, 84, 94
HINCIUAE «vve it ee i et e it 1
incomplete typeoiiiiiiiiiiiii 85
increment operator, ++........c..oviinn.. 74-77
inequality operator, '=............ccooeeunnnn. 80
initialisationcooiiiiiiiiiian., 2,89
by string literal 3,90
default........ooooviiiiiiiiiiiiin.., 90
inblock ...oooviiiiiiii 6, 95
(O i1 - | 2,90
of automatic variables 90
of external variables.................... 90
of static variables 90
of structure..........c.ovviieiiiiinnan.. 90
of union...........cooiiiiiiiiiiin. 90
initialisation of two-dimensional array....... 2
inline specifiercoooviiiiiiiiin., 85
input
from channel 94
fromport................ 15,94, 111-122
fromtimer.....................oiilll 95
timedcoviiiiii i 114
timestampedcoiiiiea.., 114
LU0 T ' 16, 18

input operator, :>.....c.cvviiiiiiiiinian. 15,92

136 Index
input shift right operator, :> >>..... 20, 92-94 0 E21 01 68
input statement.............oviiiiienn 92-95 NAME SPACE .+ v v v eeeeeeeeeeienenreenneneannens 101
ANt LYPe e 70, 84, 130 notional counter type, of port.......... 71,130
integer constant.........coovviviviininnnnenans 68 notional counter type, of timer............ 130
integral promotion................coooon.... 72 notional transfer type, of port......... 71,130
integral tyPesS....vvuvuiiiiii i iiiieiiennnns 71 null character, \O...............c.oeunnen. 3,69
internal linkageoooat 70,101 null constant.............covvvuennnn. 10, 68-69
invalid operation........................ 12,102 null statement............ccvviviiiiiineeennn. 91
isnull Operator.........c..coeeuennnn. 11, 77-78 nullable declaration...................... 10, 88
iteration statements............coveuvenennnn. 97 nullable declarator..............cooovieenn... 88

nullable operator, 7 11, 87-88
J
FUMP StAteMeNtS ... v veeeeeneeaneeneennnnn, 97 (0]
ObJeCT e 72
K octal ConStant, O.......vvereeenreeanennns.. 3,68
keywords, listof................coiilLl 68 on specifier...........ooiiiiiii i 83
on Statement..........oovviiiiieiinennnnns 28,98
L one’s complement operator, ~............... 78
label, case....vviiiiniiiiiiii e 7,21, 96 operators
label, defaultovvuneeeeeaeeeeaaaaanns 7,96 additiveoiiiiiiii 79
labelled statementccovueennen... 96 ASSIgNMeNtviiii i 82
LCD screen driver, case study............... 43 bitwise ... 80
left shift operator, <<un.... 79 equalitycoovvniiiiiii i 80
less equal operator, <=.............c.c.cuun.n. 80 multiplicative..............coviiiinnt. 79
less than Operator, <..........covveeeeeeenn.. 80 relationaloooii 80
lexical cONVeNntionsS............c.ovvvuieennnn.. 67 shift......ooooi 79
1eXiCal SCOPE. . v, 101 operators, associativity of 73
HNKAZE. ..t eeeeee et e iee e e eenenns 101 operators, precedence of.................. 4,73
external.........oooevuniennnn. 70, 84, 101 operators, table of ...l 4
internaloooviiniiiiiinnnnnn. 70, 101 order of evaluation........................ 4,73
logical AND OPerator, &&..........c.oveennsns 81 out qualifier...................... 14, 72, 84, 93
logical negation operator, !.................. 78 output
logical OR operator, | |......coevvvuieeennnn.. 81 tmed. ... 43
10nE LYDC v eaeeeneeanenns 70, 84, 130 timestamped ... 43
[107e) o P see while, do, for tochannel ... 94
valueoovveii 72 toport...........oooee 14, 94, 111-122
Ivalue, modifiableo.l. 72 output operator, <:ol 14, 93
output shift right operator, <: >>..19, 93-94
M output statement......................... 92-95
main fFUNCHON « . v e 1,28 OVEIflOW ..o 73
master statement......................... 33,99
member name, structure..................... 86 P
missing storage class specifier.............. 84 par replicator.............coiiiiiiiii, 35,98
missing type specifier........................ 84 par statement................cooiiinnn 28,98
modifiable Ivalue.................c.ceenennn. 72 parallel usage rules 28-32, 98
modulus operator,%........cveeieriienennnnn.. 79 PAramMeterovieei et e et 9,75
multi-dimensional array................... 2,88 parameter, definition...................... 9,75
multi-taskingcccoveiiiiiiiiin. .. 21 parenthesised expression.................... 74
multiple assignment statement.............. 92 partout library function................ 62,127
multiple return statement............... 11, 98 partout_timed library function............ 127
multiplication operator, *.................... 79 partout_timestamped library function..... 127
multiplicative Operatorsceeeeeee.. 79 pass by reference, argument.............. 9,75
pass by value, argument 9,75
N peek library function........................ 127
\n newline character.................... 2,3,69 pin-to-port mapping........................ 128

Index

137

pinseq library function............ 16,121,127
pinsneq library function............... 121,127
<platform.h> header file................. 14, 28
port
buffered................oo.l. 49-52,118
changing direction.................... 124
clocked ..o, 39-47,112
notional counter type............. 71,130
notional transfer type............. 71,130
L 113
serialisedccovninnn. 55-56, 116
shift register.................coooeenn.. 56
strobedooiilll 57-59, 114
transfer width...................... 56, 71
width..............oolLl 14, 56, 71
port declaration 14, 85, 87,123
portinput...........ccvvvuenn.. 15,94, 111-122
portoutput............coenen.. 14,94, 111-122
POTt tYPe. it 14, 71, 84, 130
port:m type ...ovviiiiiiiiiiann 50, 56, 71, 84
port-to-pin mappingcoevviviininnn. 128
ports, precedence ofooeunn.n. 128
ports, synchronisingcooeivuann. 52
precedence of operators 4,73
precedence of portsoovviiieennn. 128
predicate.................... see when condition
predictable thread performance......... iii, 37
preprocessor name, __XC__cuuvunnnn. 102
primary expressionc..oeiiiiiiian. 74
printf C library function...................... 1
program SCOpe see external linkage
promotion, argumentoeeiuiinnn.. 75
promotion, integral 72
prototype, function........................ 9,76
Q
qualifier, type......ccooiiiiiiiii i 84
quote character, >ccoviiiiiiinennan.. 69
quote character, "........coviiiiiiiiiinnnnnns 69
R
\r carriage return character................. 69
s L 01) o 113
ready-in strobe........................l 57,114
ready-out strobe................oiiiinn 58,114
reference clockcovvvvviinnn... 123,124
reference declaration 88
reference declarator..................coooo.e. 88
reference generation......................... 73
reference operator, &.............coeveun.. 87-88
register storage class specifier............. 83
reinterpret operator......... 12,74,76,77,90
reinterpretationcoviiiiiiiiiiien.. 76
relational operators.............coceveenn... 80

replicator, par......ovcveeiieiiniiaaen. 35, 98

replicator, selectcevvuvenennannnnns 25, 96
reservation of storage.................ccoonn 82
reserved identifiersl 68
TESOUICE TYPES. .ottt iiiiiiiiieieaaas 71
return statement..................coenn.. 9,98
return, type conversion by 98
right shift operator, >>................... 20,79
S
sampling input data...............cooonn..n. 13
10 01 101
scope of automaticscooeuiiuaan... 101
scope of externalScovviiiiinnn.. 101
SCopeTuleS . ..o 101
scope, lexical...........ooiiiiiiiiiii 101
select function..................... 23-25, 100
select replicator......................... 25, 96
select statement..................... 21, 34, 96
selection statementc..oeuiienn... 95
sequencing of statements................. 6,91
serialised port semantics 116, 124
serialising port......................
1S3 17 (3
service declaration
service storage class specifier.......... 70, 84
set_clock_fall_delay........covvuvunnnnn. 125
set_clock_rise_delay...........cuvvunnnnn. 125
set_pad_delayc.veuieiiiniiniiiiaaaanns 126
set_port_drive........ciiiiiiiiiiiiiiannn, 126
Set_port_inv......i.iiiiiiiiiiii e 126
Set_port_no_inv........ciiiiiiiiiiiiinianns 126
set_port_no_sample_delay................. 126
set_port_pull_Up......ooeieuiininninnennnn. 126
set_port_sample_delayoeeuvrnnnns 126
shared memory see variable disjointness
shift operatorsooovviiiiiiiiin. 79
short type....cvvvivviiiiiiiniinnnn. 70, 84, 130
side effectscooviiiiii i 73
SIgN eXteNSION ..o .vv e iiaeaenaes 69
signed character...................ccont 2,70
Signed tYPe..oovvvriiiiiiiii i 70, 84
size of structure..............ccoiiiiiii.n. 78
sizeof OPerator..........oevvvnvunenanns 77-78
slave statement................ccoevunnn 33,99
specifier
auto storage class................oouut 83
=5 S 86, 130
extern storage class.................... 84
i o0 5= 85
missing storage class................... 84
o ¢ 83
register storage class................. 83
service storage class.............. 70, 84
static storage clasS............c..oennns 83
Storage ClassS......vvvieiiiiiiiiiiiiienns 83

138

Index

=3 v o Lo AP 85
1874 L 84
L s 1 T 85
standard outputoovviiiiiiiii i 1
start_clock library function........... 41, 125
StatementsS.coovvvvieniii i 91-99
statements, sequencing of 6, 91
static storage classS.........oovveviieenniiinnns 70
static storage class specifier............... 83

static variable ..., 70
statics, initialisation of 90

stop_clock library function................ 125
storage Class......ouevriiiiiiiiiii i 70
2101 0] 10 F: U0 (ol 70
declaration of........................Ll 83
definitionof ..o, 83

L= v = ¢
MISSING .+ v
register
=T o I o

storage order of array..............ooennn. 2, 88
storage, definition of......................... 82
storage, reservation of

streaming qualifier.......................
string concatenationcocueiennn
string literal............cooooiiiiiiiiinant,
string literal, initialisation by.............
string, type of ...
strobed port.........cooviiiiiiiiann.

strobed port semanticS.....................
struct specifierl
structure declaration.................covun.n.
structure initialisation.......................
structure member name.....................
structure member operator, .
structure reference semantics

structure reference syntax...................

SIUCTUre tag....voe i 85
structure, size of ..., 78
subscripting, arraycooeiiieinnnn. 2,88
subtraction operator, -euunnn.. 79
suffix, constant...............cooiiiinin.n. 3,68
switch statement..............covvvuvnnnn. 7,96
sync library function 52,127
synchronising ports..........coeeiveuneenn... 52
syntax notation..........oovvieieieienennnnns 69
syntax of variable names 68

T
\t tab character...................oooiiiilt 69
table of escape sequences................... 69
table of operators............coeiiiiiieiiiain.. 4
tag
enumeration........co.ovveeiiienenan.. 86
SUUCTUTC . .ot eeeenes 85
1010110) o 85
tentative definition 100
thread, deterministic performance....... iii, 37
threading see par statement
time operator, @.............coovuenn.. 43, 92-94
timed iNput.......covviviiiiiii i 114
timed outputovvviiii i 43
L1100 1<) P 16
timer declaration......................oooa.l 17
UMer iNput.....coviiiiiiiiii i 95
timer type......c.oveunienn... 16,17, 71, 84, 130
timer, notional counter type 130
timerafter library function............ 17,127
timestamp operator, @............... 43,92,94
timestamped inputcoovvvvivinenn.. 114
timestamped output..............coiienn..n. 43
timing semanticScovevvuvenn. 114,124
100 <) s 67
transaction function........................ 100
transaction keyword............... 34, 83, 100
transaction statement................ 32-34, 99
L0110 K- U6 (0] SR 99
transfer width, of port................... 56, 71
translation unit..................... 67,99, 101
type conversion by return................... 98
type conversion operator see cast
type conversion rules .
type declaration.............covvviiiiiinenn...
type equivalencecooeiiiiiiienn..
TYPE NAIMES .ot eeeie e e e e e
type of constant.....................eunne
typeof stringcoooiiiiiiii.t
type qualifier
type specifier ..
type specifier, missing....................... 84
type, incompletecoiiiiiiiiion 85
typedef declaration...................... 84,91
types
arithmetic...............ocoiiiiiiinat. 71
baSIC .ot 70
derived........oooiiiiiii 71
integral........cooviiiiiiiiiii 71
TESOUTCE. .ttt e eeeieeneennneneaenens 71
)
UART case studyoovvveviiennnannn 18-23
unary minus operator, -coeveieienns 77

unary plus operator, +cocieiiennan.. 77

Index

139

underscore character _...................... 68
union declaration.....................ooiinln 85
union specifier...................oll, 85
L0001 10) 4 0 < T 85
union unitialisation.......................... 90
unsigned char type............coovviiiinninnn, 2
unsigned character........................ 2,70
unsigned constant....................ciiiinnn 3
unsigned tyPe......covviiuiiiiiiinnenns 2,70, 84
usual arithmetic conversions................ 73
V
\v vertical tab character..................... 69
variable. ... 2,70
F210 1001 0 F: U (A 70
externalcooviiiiiiiii 70
STATIC .ttt e 70
variable disjointness4, 28-32, 75, 82, 92-94, 98
variable names, syntax of 68
void argument list ..., 89
void port type....ovvvrveiniinnanns 71,73, 85
VOid tYPe.. v, 1,9,11, 71,73, 84
volatile qualifier............................ 84
w
when condition........................ 16, 93-94
while statement.............c.covivuvnnnnnn 7,97
white space..... ... 67
X
\x hexadecimal escape sequence............ 69
<xsi.h>header.......................oolll. 124

XS1_PORT_AX e eeeeeeanass 14, 128

	Programming XC on XMOS Devices
	Computation
	Hello, World!
	Variables, Constants and Expressions
	Control Flow
	Functions
	Reinterpretation
	Comparison with C

	Input and Output
	Outputting Data
	Inputting Data
	Waiting for a Condition on an Input Pin
	Controlling I/O Data Rates with Timers
	Case Study: UART (Part 1)
	Responding to Multiple Inputs
	Case Study: UART (Part 2)
	Parameterised Selection

	Concurrency
	Creating Concurrent Threads
	Thread Disjointness Rules
	Channel Communication
	Transactions
	Streams
	Parallel Replication
	Services
	Thread Performance

	Clocked Input and Output
	Generating a Clock Signal
	Using an External Clock
	Performing I/O on Specific Clock Edges
	Case Study: LCD Screen Driver
	Summary of Clocking Behaviour

	Port Buffering
	Using a Buffered Port
	Synchronising Clocked I/O on Multiple Ports
	Summary of Buffered Behaviour

	Serialisation and Strobing
	Serialising Output Data using a Port
	Deserialising Input Data using a Port
	Inputting Data Accompanied by a Data Valid Signal
	Outputting Data and a Data Valid Signal
	Case Study: Ethernet MII
	Summary

	XC Language Specification
	Lexical Conventions
	Syntax Notation
	Meaning of Identifiers
	Objects and Lvalues
	Conversions
	Expressions
	Declarations
	Statements
	External Declarations
	Scope and Linkage
	Channel Communication
	Invalid Operations
	Preprocessing
	Grammar

	XC I/O Specification
	The Functional Model of Clocked I/O
	Clocking, Timing and Strobing Component
	Serialisation Component
	Buffering Component
	Conditional Input: pinseq and pinsneq

	XS1 Implementation of XC
	Support for XC Port Specification
	XS1 Port Library: <xs1.h>
	Specifying Port-to-Pin Mappings
	Channel Communication
	Data Types

	Bibliography

