
Safeguard IP and device authenticity

IN THIS DOCUMENT

· The xCORE AES module

· Develop with the AES module enabled

· Production flash programming flow

· Production OTP programming flow

xCORE devices contain on-chip one-time programmable (OTP) memory that can be
blown during or after device manufacture testing. You can program the xCORE
AES Module into the OTP of a device, allowing programs to be stored encrypted on
flash memory. This helps provide:

· Secrecy

Encrypted programs are hard to reverse engineer.

· Program Authenticity

The AES loader will not load programs that have been tampered with or other
third-party programs.

· Device Authenticity

Programs encrypted with your secret keys cannot be cloned using xCORE devices
provided by third parties.

Once the AES Module is programmed, the OTP security bits are blown, transforming
each tile into a “secure island” in which all computation, memory access, I/O and
communication are under exclusive control of the code running on the tile. When
set, these bits:

· force boot from OTP to prevent bypassing,

· disable JTAG access to the tile to prevent the keys being read, and

· stop further writes to OTP to prevent updates.

The AES module provides a strong level of protection from casual hackers. It is
important to realize, however, that there is no such thing as unbreakable security
and there is nothing you can do to completely prevent a determined and resourceful
attacker from extracting your keys.

Publication Date: 2013/11/11 Document Number: X6225B

XMOS © 2013, All Rights Reserved



Safeguard IP and device authenticity 2/5

1 The xCORE AES module

The xCORE AES Module authenticates and decrypts programs from SPI flash devices.
When programmed into a device, it enables the following secure boot procedure,
as illustrated in Figure 1.

Start

Execute program

Primary boot

Secure boot
bit set

Standard boot
(not shown)

Load and 
authenticate
flash loader

Load and
authenticate

encrypted image

Decrypt and
load program 

segments

Boot ROM

Flash Device

xCORE Device

Yes

No

OTP Memory

Security Bits

128b Authentication Key

128b Decryption Key

Flash Loader

Factory Image

0

1

Upgrade Image

Load secure
boot loader

AES Loader

Figure 1:

Secure boot
procedure

used with the
AES Module

1. The device loads the primary bootloader from its ROM, which detects that the
secure boot bit is set in the OTP and then loads and executes the AES Module
from OTP.

2. The AES Module loads the flash loader into RAM over SPI.

3. The AES Module authenticates the flash loader using the CMAC-AES-128 al-
gorithm and the 128-bit authentication key. If authentication fails, boot is
halted.

4. The AES Module places the authentication key and decryption key in registers
and jumps to the flash loader.

X6225B



Safeguard IP and device authenticity 3/5

The flash loader performs the following operations:

1. Selects the image with the highest number that validates against its CRC.

2. Authenticates the selected image header using its CMAC tag and authentication
key. If the authentication fails, boot is halted.

3. Authenticates, decrypts and loads the table of program/data segments into
memory. If any images fail authentication, the boot halts.

4. Starts executing the program.

For multi-node systems, the AES Module is written to the OTP of one tile, and a
secure boot-from-xCONNECT Link protocol is programmed into all other tiles.

2 Develop with the AES module enabled

You can activate the AES Module at any time during development or device manu-
facture. In a development environment, you can activate the module but leave the
security bits unset, enabling:

· XFLASH to use the device to load programs onto flash memory,

· XGDB to debug programs running on the device, and

· XBURN to later write additional OTP bits to protect the device.

In a production environment, you must protect the device to prevent the keys from
being read out of OTP by the end user.

To program the AES Module into the xCORE device on your development board,
start the command-line tools (see XM-000950-PC) and enter the following com-
mands:

1. xburn --genkey keyfile

XBURN writes two random 128-bit keys to keyfile. The first line is the authenti-
cation key, the second line the decryption key.

The keys are generated using the open-source library crypto++. If you prefer,
you can create this file and provide your own keys.

2. xburn -l

XBURN prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

3. xburn --id ID --lock keyfile --target-file target.xn --enable-jtag
--disable-master-lock

XBURN writes the AES Module and security keys to the OTP memory of the target
device and sets its secure boot bit. The SPI ports used for booting are taken
from the XN file (see XM-000929-PC).

X6225B

http://www.xmos.com/doc/XM-000950-PC/latest/page22#get-started-start-the-command-line-tools
http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice


Safeguard IP and device authenticity 4/5

To encrypt your program and write it to flash memory, enter the command:

· xflash --id ID bin.xe --key keyfile

To protect the xCORE device, preventing any further development, enter the
command:

· xburn --id ID --target-file target.xn --disable-jtag --lock keyfile

3 Production flash programming flow

In production manufacturing environments, the same program is typically pro-
grammed into multiple SPI devices.

To generate an encrypted image in the xCORE flash format, start the command-line
tools (see XM-000950-PC) and enter the following command:

· xflash prog.xe -key keyfile -o image-file

This image can be programmed directly into flash memory using a third-party flash
programmer, or it can be programmed using XFLASH (via an xCORE device). To
program using XFLASH, enter the following commands:

1. xflash -l

XFLASH prints an enumerated list of all JTAG adapters connected to your PC and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

2. xflash --id ID --target-file platform.xn --write-all image-file

XFLASH generates an image in the xCORE flash format that contains a first stage
loader and factory image comprising the binary and data segments from your
compiled program. It then writes this image to flash memory using the xCORE
device.

The XN file must define an SPI flash device and specify the four ports of the xCORE
device to which it is connected (see XM-000929-PC).

X6225B

http://www.xmos.com/doc/XM-000950-PC/latest/page22#get-started-start-the-command-line-tools
http://www.xmos.com/doc/XM-000929-PC/latest#xn-spec-externaldevice


Safeguard IP and device authenticity 5/5

4 Production OTP programming flow

In production manufacturing environments, the same keys are typically pro-
grammed into multiple xCORE devices.

To generate an image that contains the AES Module and security keys to be
written to the OTP, start the command-line tools (see XM-000950-PC) and enter the
following commands:

1. xburn --genkey keyfile

XBURN writes two random 128-bit keys to keyfile. The first line is the authenti-
cation key, the second line the decryption key.

The keys are generated using the open-source library crypto++. If you prefer,
you can create this file and provide your own keys.

2. xburn --target-file target.xn --lock keyfile -o aes-image.otp

XBURN generates an image that contains the AES Module, security keys and the
values for the security bits.

The image contains the keys and must be kept secret.

To write the AES Module and security bits to a device in a production environment,
enter the following commands:

1. xburn -l

XBURN prints an enumerated list of all JTAG adapters connected to the host and
the devices on each JTAG chain, in the form:

ID - NAME (ADAPTER-SERIAL-NUMBER)

2. xburn --id ID --target-file target.xn aes-image.otp

XBURN loads a program onto the device that writes the AES Module and security
keys to the OTP, and sets its secure boot bits. XBURN returns 0 for success or
non-zero for failure.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X6225B

http://www.xmos.com/doc/XM-000950-PC/latest/page22#get-started-start-the-command-line-tools

	The xCORE AES module
	Develop with the AES module enabled
	Production flash programming flow
	Production OTP programming flow

